Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Systematic Botany Australian Systematic Botany Society
Taxonomy, biogeography and evolution of plants
RESEARCH ARTICLE

Phenotypic disparity and adaptive radiation in the genus Cladia (Lecanorales, Ascomycota)

H. Thorsten Lumbsch A E , Sittiporn Parnmen B C , Achariya Rangsiruji C and John A. Elix D
+ Author Affiliations
- Author Affiliations

A Department of Botany, The Field Museum, 1400 South Lake Shore Drive, Chicago, IL 60605, USA.

B Herbarium, Department of Biology, Faculty of Science, Ramkamhaeng University, Bangkok 10140, Thailand.

C Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand.

D Research School of Chemistry, Australian National University, Building 33, Canberra, ACT 0200, Australia.

E Corresponding author. Email: tlumbsch@fieldmuseum.org

Australian Systematic Botany 23(4) 239-247 https://doi.org/10.1071/SB10010
Submitted: 4 March 2009  Accepted: 15 June 2010   Published: 31 August 2010

Abstract

Phylogenetic relationships of the genera Cladia, Heterodea and Ramalinora were reconstructed using a combined dataset of ribosomal nuclear ITS and LSU and mitochondrial SSU, and protein-coding Mcm7 DNA sequences. Maximum likelihood and Bayesian analyses strongly supported a monophyletic group in which the species of the foliose genus Heterodea and the crustose genus Ramalinora were nested within the fruticose genus Cladia. Alternative hypothesis testing rejected an independent status of Ramalinora. We tested the hypothesis that an adaptive radiation led to the morphological disparity found in the Cladia clade. Gamma-statistics indicated a significantly disproportional clustering of origins of extant lineages at the base of the Cladia clade and lineage-through-time plots were also consistent with the hypothesis of an adaptive radiation at the base of the Cladia clade. Ancestral-range reconstructions supported an origin of Cladia and the three major lineages within Cladia in Australia. On the basis of these results, we propose an evolutionary hypothesis for the genus. The results suggest that processes of adaptive radiation of the ancestor of Cladia in Australia led to the morphological disparity in the extant taxa, and that the broad distribution of some extant species is due to subsequent long-distance dispersal.


Acknowledgements

We thank Gintaras Kantvilas (Hobart) for providing us with material and for helping us organise a field trip to Tasmania and Roderick W. Rogers for a recent collection of Ramalinora glaucolivida. Newly obtained DNA sequences were generated in the Pritzker Laboratory for Molecular Systematics and Evolution at the Field Museum. Erin Sackett-Herman and Fabian Ernemann (Chicago) are thanked for performing most of the work in the molecular laboratory. We also thank the RAMK herbarium staff for their kindness and support. This work was financially supported by a Scholarship of The Field Museum to SP and the National Research Council of Thailand.


References


Aguileta G, Marthey S, Chiapello H, Lebrun MH, Rodolphe F, Fournier E, Gendrault-Jacquemard A, Giraud T (2008) Assessing the performance of single-copy genes for recovering robust phylogenies. Systematic Biology 57, 613–627.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Ahti T (1982) The morphological interpretation of cladoniiform thalli in lichens. Lichenologist 14, 105–113.
Crossref | GoogleScholarGoogle Scholar | open url image1

Ahti T (2000) Cladoniaceae. Flora Neotropica 78, 1–362. open url image1

Blackman AJ, Bratt GC, Cashin JA (1973) Distribution and chemistry of Heterodea muelleri (Hampe) Nyl. The Bryologist 76, 410–413.
Crossref | GoogleScholarGoogle Scholar | open url image1

Blanco O, Crespo A, Elix JA, Hawksworth DL, Lumbsch HT (2004) A molecular phylogeny and a new classification of parmelioid lichens containing Xanthoparmelia-type lichenan (Ascomycota: Lecanorales). Taxon 53, 959–975.
Crossref | GoogleScholarGoogle Scholar | open url image1

Crespo A, Lumbsch HT, Mattsson JE, Blanco O, Divakar PK, Articus K, Wiklund E, Bawingan PA, Wedin M (2007) Testing morphology-based hypotheses of phylogenetic relationships in Parmeliaceae (Ascomycota) using three ribosomal markers and the nuclear RPB1 gene. Molecular Phylogenetics and Evolution 44, 812–824.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Drummond AJ, Rambaut A (2007) Beast: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7, 214.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Drummond AJ, Ho SYW, Phillips MJ, Rambaut A (2006) Relaxed phylogenetics and dating with confidence. PLoS Biology 4, e88.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Edwards AWF (1972) ‘Likelihood.’ (Johns Hopkins University Press: Baltimore, MD)

Ekman S (2001) Molecular phylogeny of the Bacidiaceae (Lecanorales, lichenized Ascomycota). Mycological Research 105, 783–797.
Crossref | GoogleScholarGoogle Scholar | open url image1

Filson RB (1978) A revision of the genus Heterodea Nyl. Lichenologist 10, 13–25.
Crossref | GoogleScholarGoogle Scholar | open url image1

Filson RB (1981) A revision of the lichen genus Cladia Nyl. Journal of the Hattori Botanical Laboratory 49, 1–75. open url image1

Filson R (1992) Cladiaceae. Flora of Australia 54, 101–107. open url image1

Galloway DJ (1966) Podetium development in the lichen genus Cladia. Transactions of the Royal Society of New Zealand. Botany 3, 161–167. open url image1

Gaya E, Navarro-Rosines P, Llimona X, Hladun N, Lutzoni F (2008) Phylogenetic reassessment of the Teloschistaceae (lichen-forming Ascomycota, Lecanoromycetes). Mycological Research 112, 528–546.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Givinish T , Systma K (1997) ‘Molecular evolution and adaptive radiation.’ (Cambridge University Press: Cambridge, UK)

Harmon LJ, Schulte JA, Larson A, Losos JB (2003) Tempo and mode of evolutionary radiation in iguanian lizards. Science 301, 961–964.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Harvey PH, May RM, Nee S (1994) Phylogenies without fossils. Evolution 48, 523–529.
Crossref | GoogleScholarGoogle Scholar | open url image1

Hirose S, Tanda S, Kiss L, Grigaliunaite B, Havrylenko M, Takamatsu S (2005) Molecular phylogeny and evolution of the maple powdery mildew (Sawadaea, Erysiphaceae) inferred from nuclear rDNA sequences. Mycological Research 109, 912–922.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Högnabba F (2006) Molecular phylogeny of the genus Stereocaulon (Stereocaulaceae, lichenized ascomycetes). Mycological Research 110, 1080–1092.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Holst-Jensen A, Kohn LM, Jakobsen KS, Schumacher T (1997a) Molecular phylogeny and evolution of Monilinia (Sclerotiniaceae) based on coding and noncoding rDNA sequences. American Journal of Botany 84, 686–701.
Crossref | GoogleScholarGoogle Scholar | open url image1

Holst-Jensen A, Kohn LM, Schumacher T (1997b) Nuclear rDNA phylogeny of the Sclerotiniaceae. Mycologia 89, 885–899.
Crossref | GoogleScholarGoogle Scholar | open url image1

Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Hur JS, Harada H, Oh SO, Lim KM, Kang ES, Lee SM, Kahng HY, Kim HW, Jung JS, Koh YJ (2004) Distribution of lichen flora on South Korea. Journal of Microbiology 42, 163–167. open url image1

Jahns HM (1970) Untersuchungen zur Entwicklungsgeschichte der Cladoniaceen mit besonderer Berücksichtigung des Podetien–Problems. Nova Hedwigia 20, 1–vi + 1–177.

Jahns HM (1972) Individualität und Variabilität in der Flechtengattung Cladia Nyl. Herzogia 2, 277–290. open url image1

Jahns HM, Van der Knapp F (1973) Die Flechtengattung Heterodea Nyl. Systematik und Ontogenie der Fruchtkörper. Herzogia 2, 437–451. open url image1

Jahns M, Sensen M, Ott S (1995) Significance of developmental structures in lichens, especially in the genus Cladonia. Annales Botanici Fennici 32, 35–48. open url image1

Kantvilas G, Elix JA (1987) A new species of Cladia (lichenized Ascomycotina) from Tasmania. Mycotaxon 29, 199–205. open url image1

Kantvilas G, Elix JA (1999) Studies on the lichen genus Cladia Nyl. in Tasmania: the C. aggregata complex. Muelleria 12, 135–162. open url image1

LaGreca S, Lumbsch HT (2001) No evidence from rDNA ITS sequence data for a placement of Ramalinora in the Ramalinaceae. Lichenologist 33, 172–176.
Crossref | GoogleScholarGoogle Scholar | open url image1

Lamb IM, Weber WA, Jahns HM, Huneck S (1972) Calathaspis, a new genus of the lichen family Cladoniaceae. Occasional Papers of the Farlow Herbarium of Cryptogamic Botany, Harvard University 4, 1–12. open url image1

Losos JB, Miles DB (2002) Testing the hypothesis that a clade has adaptively radiated: Iguanid lizard clades as a case study. American Naturalist 160, 147–157.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Lumbsch HT, Huhndorf SH (2007) Outline of Ascomycota – 2007. Myconet 13, 1–58. open url image1

Lumbsch HT, Rambold G, Elix JA (1995) Ramalinora (Ramalinaceae) – a new lichen genus from Australia. Australian Systematic Botany 8, 521–530.
Crossref | GoogleScholarGoogle Scholar | open url image1

Lumbsch HT, Hipp AL, Divakar PK, Blanco O, Crespo A (2008) Accelerated evolutionary rates in tropical and oceanic parmelioid lichens (Ascomycota). BMC Evolutionary Biology 8, 257.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Lumbsch HT, Ahti T, Parnmen S (2010) (1926) Proposal to conserve Cladia against Heterodea (Ascomycota). Taxon 59, 643. open url image1

Lutzoni F, Kauff F, Cox C, McLaughlin D, Celio G , et al . (2004) Assembling the fungal tree of life: progress, classification, and evolution of subcellular traits. American Journal of Botany 91, 1446–1480.
Crossref | GoogleScholarGoogle Scholar | open url image1

Nee S, Mooers AO, Harvey PH (1992) Tempo and mode of evolution revealed from molecular phylogenies. Proceedings of the National Academy of Sciences, USA 89, 8322–8326.
Crossref | GoogleScholarGoogle Scholar | open url image1

Nylander JAA, Ronquist F, Huelsenbeck JP, Nieves-Aldrey JL (2004) Bayesian phylogenetic analysis of combined data. Systematic Biology 53, 47–67.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Nylander JAA, Wilgenbusch JC, Warren DL, Swofford DL (2007) AWTY (are we there yet?): a system for graphical exploration of MCMC convergence in Bayesian phylogenetics. Bioinformatics 24, 581–583.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Page RDM (1996) Treeview: an application to display phylogenetic trees on personal computers. Computer Applications in the Biosciences 12, 357–358.
PubMed |
open url image1

Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Parnmen S, Rangsiruji A, Mongulsuk P, Boonpragob K, Elix JA, Lumbsch HT (2010) Morphological plasticity in Cladoniaceae: the foliose genus Heterodea evolved from fruticose Cladia species (Lecanorales, Ascomycota). Taxon 59, 841–849. open url image1

Pinto G, Mahler DL, Harmon LJ, Losos JB (2008) Testing the island effect in adaptive radiation: rates and patterns of morphological diversification in Caribbean and mainland Anolis lizards. Proceedings of the Royal Society B, Biological Sciences 275, 2749–2757.
Crossref | GoogleScholarGoogle Scholar | open url image1

Pybus OG, Harvey PH (2000) Testing macro-evolutionary models using incomplete molecular phylogenies. Proceedings of the Royal Society of London. Series B. Biological Sciences 267, 2267–2272.
Crossref | GoogleScholarGoogle Scholar | open url image1

Ree RH, Smith SA (2008) Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. Systematic Biology 57, 4–14.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Ree RH, Moore BR, Webb CO, Donoghue MJ (2005) A likelihood framework for inferring the evolution of geographic range on phylogenetic trees. Evolution 59, 2299–2311.
PubMed |
open url image1

Rodriguez F, Oliver JL, Marin A, Medina JR (1990) The general stochastic-model of nucleotide substitution. Journal of Theoretical Biology 142, 485–501.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Rogers RW (1982) The nomenclature of some Australian lichens described as Lecanora and Placodium by Müller-Argoviensis. Muelleria 5, 31–34. open url image1

Schmidt HA, Strimmer K, Vingron M, von Haeseler A (2002) TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18, 502–504.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Schmitt I, Messuti MI, Feige GB, Lumbsch HT (2001) Molecular data support rejection of the generic concept in the Coccotremataceae (Ascomycota). Lichenologist 33, 315–321.
Crossref | GoogleScholarGoogle Scholar | open url image1

Schmitt I, Crespo A, Divakar PK, Fankhauser J, Herman-Sackett E, Nelsen MP, Nelson NA, Rivas Plata E, Shimp AD, Widhelm T, Lumbsch HT (2009) New primers for single-copy protein-coding genes for fungal systematics. Persoonia – Molecular Phylogeny and Evolution of Fungi 23, 35–40.
Crossref | GoogleScholarGoogle Scholar | open url image1

Shimodaira H, Hasegawa M (2001) CONSEL: for assessing the confidence of phylogenetic tree selection. Bioinformatics 17, 1246–1247.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Simpson GG (1953) ‘The major features of evolution.’ (Columbia University Press: New York)

Søchting U, Lutzoni F (2003) Molecular phylogenetic study at the generic boundary between the lichen-forming fungi Caloplaca and Xanthoria (Ascomycota, Teloschistaceae). Mycological Research 107, 1266–1276.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Stenroos SK, DePriest PT (1998) SSU rDNA phylogeny of cladoniiform lichens. American Journal of Botany 85, 1548–1559.
Crossref | GoogleScholarGoogle Scholar | open url image1

Stenroos S, Hyvönen J, Myllys L, Thell A, Ahti T (2002) Phylogeny of the genus Cladonia s.lat. (Cladoniaceae, Ascomycetes) inferred from molecular, morphology and chemical data. Cladistics 18, 237–278.
Crossref | GoogleScholarGoogle Scholar | open url image1

Strimmer K, Rambaut A (2002) Inferring confidence sets of possibly misspecified gene trees. Proceedings of the Royal Society of London. Series B. Biological Sciences 269, 137–142.
Crossref | GoogleScholarGoogle Scholar | open url image1

Tehler A, Irestedt M (2007) Parallel evolution of lichen growth forms in the family Roccellaceae (Arthoniales, Ascomycota). Cladistics 23, 432–454.
Crossref | GoogleScholarGoogle Scholar | open url image1

Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL-W – improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22, 4673–4680.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Verdon D, Elix JA (1986) Myelorrhiza, a new Australian lichen genus from north Queensland. Brunonia 9, 193–214.
Crossref | GoogleScholarGoogle Scholar | open url image1

Wedin M, Döring H (1999) The phylogenetic relationship of the Sphaerophoraceae, Austropeltum and Neophyllis (lichenized Ascomycota) inferred by SSU rDNA sequences. Mycological Research 103, 1131–1137.
Crossref | GoogleScholarGoogle Scholar | open url image1

Wedin M, Döring H, Ekman S (2000) Molecular phylogeny of the lichen families Cladoniaceae, Sphaerophoraceae, and Stereocaulaceae (Lecanorales, Ascomycotina). Lichenologist 32, 171–187.
Crossref | GoogleScholarGoogle Scholar | open url image1

Zhou QM, Wei JC, Ahti T, Stenroos S, Högnabba F (2006) The systematic position of Gymnoderma and Cetradonia based on SSU rDNA sequences. Journal of the Hattori Botanical Laboratory 100, 871–880. open url image1

Zwickl DJ (2006) ‘Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion.’ (The University of Texas: Austin, TX)