Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
The Rangeland Journal The Rangeland Journal Society
Journal of the Australian Rangeland Society
RESEARCH ARTICLE

Plant litter decomposition in a semiarid rangeland of Argentina: species and defoliation effects

Mariela L. Ambrosino A B , Carlos A. Busso C D F , Yanina A. Torres D E , Leticia S. Ithurrart D , Juan M. Martínez C D , Gabriela Minoldo D , Daniela S. Cardillo C and Iris R. Palomo C
+ Author Affiliations
- Author Affiliations

A Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 (C1425FQB) Ciudad Autónoma de Buenos Aires, Argentina.

B Facultad de Ciencias Exactas y Naturales, Universidad Nacional de La Pampa, 6300 Santa Rosa, Provincia de La Pampa, Argentina.

C CERZOS [Centro de Recursos Naturales Renovables de la Zona Semiárida (CONICET)] 8000 Bahía Blanca, Provincia de Buenos Aires, Argentina.

D Departamento de Agronomía, Universidad Nacional del Sur (UNS), 8000 Bahía Blanca, Provincia de Buenos Aires, Argentina.

E CIC (Comisión de Investigaciones Científicas de la Provincia de Buenos Aires) 8000 Bahía Blanca, Provincia de Buenos Aires, Argentina.

F Corresponding author. Email: carlosbusso1@gmail.com

The Rangeland Journal 41(5) 371-381 https://doi.org/10.1071/RJ18070
Submitted: 28 June 2018  Accepted: 18 September 2019   Published: 23 October 2019

Abstract

Plant litter decomposition is critical for terrestrial ecosystem productivity. Poa ligularis Nees ex Steud and Nassella tenuis (Phil.) Barkworth are native, desirable perennial grasses in central Argentina’s rangelands. Amelichloa ambigua (Speg.) Arriaga & Barkworth is only consumed when a better forage is unavailable. Litter traps were used to collect aboveground litter during two years. In March 2012, six bags, each one containing either leaf blade (three bags, one per species) or root litter (three bags, one per species) of the three species were located below the canopy of each replicate plant of the studied species (hereafter referred to as ‘location’). Blade litter bags were located on the soil surface, and root litter bags buried at 10 cm soil depth. This allowed evaluation of the effects of defoliation, the different species canopies and the microbial community activity around their roots on decomposition of above- and belowground litter. For each species, twenty plants were either defoliated twice (5 cm stubble height) or remained undefoliated during the growing season. Litter bags were collected after 2, 7, 13 and 24 months incubation. The study was repeated in 2013, with additional bags were placed for N content determination on leaf blade and root litters. Aboveground litter production was highest in P. ligularis; however, no differences were observed among species when the effect of plant size was eliminated. Aboveground litter of desirable species had higher N content and decomposed faster than that of A. ambigua. The opposite was recorded for root litter. Defoliation had no effect on litter decomposition, but location effects were detected after one year of incubation. Desirable perennial grasses promoted organic matter loss from litter, a key factor in increasing soil fertility in this semiarid ecosystem.

Additional keywords: desirable and undesirable grasses, leaf litter, nitrogen, perennial grasses.


References

Aerts, R., and Chapin, F. S. (2000). The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Advances in Ecological Research 30, 1–67.

Ambrosino, M. L. (2017). Factores que afectan el funcionamiento del ecosistema en sitios dominados por especies de diferente calidad forrajera en el noreste patagónico. PhD Thesis, Bahía Blanca, Argentina.

Austin, A. T., and Vivanco, L. (2006). Plant litter decomposition in a semiarid ecosystem controlled by photodegradation. Nature 442, 555–558.
Plant litter decomposition in a semiarid ecosystem controlled by photodegradation.Crossref | GoogleScholarGoogle Scholar | 16885982PubMed |

Ayres, E., Dromph, K. M., and Bardgett, R. D. (2006). Do plant species encourage soil biota that specialise in the rapid decomposition of their litter? Soil Biology & Biochemistry 38, 183–186.
Do plant species encourage soil biota that specialise in the rapid decomposition of their litter?Crossref | GoogleScholarGoogle Scholar |

Bardgett, R. D., and Wardle, D. A. (2003). Herbivore mediated linkages between aboveground and belowground communities. Ecology 84, 2258–2268.
Herbivore mediated linkages between aboveground and belowground communities.Crossref | GoogleScholarGoogle Scholar |

Berg, B. (1986). Nutrient release from litter and humus in coniferous forest soils-a mini review. Scandinavian Journal of Forest Research 1, 359–369.
Nutrient release from litter and humus in coniferous forest soils-a mini review.Crossref | GoogleScholarGoogle Scholar |

Biondini, M. E., Patton, B. D., and Nyren, P. E. (1998). Grazing intensity and ecosystem processes in Northern Mixed-Grass Prairie, USA. Ecological Applications 8, 469–479.
Grazing intensity and ecosystem processes in Northern Mixed-Grass Prairie, USA.Crossref | GoogleScholarGoogle Scholar |

Bormann, F. H., and Likens, G. E. (1979). ‘Pattern and Process in a Forested Ecosystem.’ (Springer-Verlag: New York.)

Bremner, J. M. (1996). Nitrogen – total. In ‘Methods of Soil Analysis. Part 3. Chemical Methods’. (Ed. D. L. Sparks.) pp. 1085–1121. (American Society of Agronomy: Madison, WI, USA.)

Burritt, B. (2015). Clipping does not simulate grazing. Available at: https://publiclandgrazing.org/clipping-does-not-simulate-grazing/ (accessed 21 August 2019).

Busso, C. A., Bonvissuto, G. L., and Torres, Y. A. (2012). Germination and seedling establishment of grasses and shrubs in arid Patagonia, Argentina. Land Degradation & Development 23, 116–129.
Germination and seedling establishment of grasses and shrubs in arid Patagonia, Argentina.Crossref | GoogleScholarGoogle Scholar |

Campanella, M. V., and Bertiller, M. B. (2008). Plant phenology, leaf traits, and leaf litterfall of contrasting life forms in the arid Patagonian Monte, Argentina. Journal of Vegetation Science 19, 75–85.
Plant phenology, leaf traits, and leaf litterfall of contrasting life forms in the arid Patagonian Monte, Argentina.Crossref | GoogleScholarGoogle Scholar |

Campanella, M. V., and Bertiller, M. B. (2010). Leaf litterfall patterns of perennial plant species in the arid Patagonian Monte, Argentina. Plant Ecology 210, 43–52.
Leaf litterfall patterns of perennial plant species in the arid Patagonian Monte, Argentina.Crossref | GoogleScholarGoogle Scholar |

Cano, E. (1988). ‘Pastizales naturales de La Pampa. Descripción de las especies más importantes.’ (Convenio AACREA: Provincia de La Pampa, Argentina.)

Carrera, A. L., Vargas, D. N., Campanella, M. V., Bertiller, M. B., Sain, C. L., and Mazzarino, M. J. (2005). Soil nitrogen in relation to quality and decomposability of plant litter in the Patagonian Monte, Argentina. Plant Ecology 181, 139–151.
Soil nitrogen in relation to quality and decomposability of plant litter in the Patagonian Monte, Argentina.Crossref | GoogleScholarGoogle Scholar |

Carrera, A. L., Bertiller, M. B., and Larreguy, C. (2008). Leaf litterfall, fine-root production, and decomposition in shrublands with different canopy structure induced by grazing in the Patagonian Monte, Argentina. Plant and Soil 311, 39–50.
Leaf litterfall, fine-root production, and decomposition in shrublands with different canopy structure induced by grazing in the Patagonian Monte, Argentina.Crossref | GoogleScholarGoogle Scholar |

Cornwell, W. K., Cornelissen, J. H. C., Amatangelo, K., Dorrepaal, E., Eviner, V. T., Godoy, O., Hobbie, S. E., Hoorens, B., Kurokawa, H., Pérez-Harguindeguy, N., Quested, H. M., Santiago, L. S., Wardle, D. A., Wright, I. J., Aerts, R., Allison, S. D., van Bodegom, P., Brovkin, V., Chatain, A., Callaghan, T. V., Díaz, S., Garnier, E., Gurvich, D. E., Kazakou, E., Klein, J. A., Read, J., Reich, P. B., Soudzilovskaia, N. A., Vaieretti, M. V., and Westoby, M. (2008). Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecology Letters 11, 1065–1071.
Plant species traits are the predominant control on litter decomposition rates within biomes worldwide.Crossref | GoogleScholarGoogle Scholar | 18627410PubMed |

Dam, M., and Christensen, S. (2015). Defoliation reduces soil biota – and modifies stimulating effects of elevated CO2. Ecology and Evolution 5, 4840–4848.
Defoliation reduces soil biota – and modifies stimulating effects of elevated CO2.Crossref | GoogleScholarGoogle Scholar | 26640664PubMed |

Di Rienzo, J. A., Casanoves, F., Balzarini, M. G., Gonzalez, L., Tablada, M., and Robledo, C. W. (2016). ‘INFOSTAT version 2016.’ (Grupo INFOSTAT, FCA: Universidad Nacional de Córdoba, Argentina.)

Distel, R. A., and Bóo, R. M. (1996). Vegetation states and transitions in temperate semiarid rangelands of Argentina. In ‘Proceedings of the Vth International Rangeland Congress. Rangelands in a Sustainable Biosphere’. (Ed. E. N. West.) pp. 117–118. (Society for Range Management: Salt Lake City, UT, USA.)

Freschet, G. T., Aerts, R., and Cornelissen, J. H. C. (2012). A plant economics spectrum of litter decomposability. Functional Ecology 26, 56–65.
A plant economics spectrum of litter decomposability.Crossref | GoogleScholarGoogle Scholar |

Giese, M., Gao, Y. Z., Zhao, Y., Pan, Q., Lin, S., Peth, S., and Brueck, H. (2009). Effects of grazing and rainfall variability on root and shoot decomposition in a semi-arid grassland. Applied Soil Ecology 41, 8–18.
Effects of grazing and rainfall variability on root and shoot decomposition in a semi-arid grassland.Crossref | GoogleScholarGoogle Scholar |

Giorgetti, H. D., Montenegro, O. A., Rodríguez, G. D., Busso, C. A., Montani, T., Burgos, M. A., Flemmer, A. C., Toribio, M. B., and Horvitz, S. S. (1997). The comparative influence of past management and rainfall on range herbaceous standing crop in east-central Argentina: 14 years of observations. Journal of Arid Environments 36, 623–637.
The comparative influence of past management and rainfall on range herbaceous standing crop in east-central Argentina: 14 years of observations.Crossref | GoogleScholarGoogle Scholar |

Giorgetti, H. D., Manuel, Z., Montenegro, O. A., Rodríguez, G. D., and Busso, C. A. (2000). Phenology of some herbaceous and woody species in central, semiarid Argentina. Phyton - International Journal of Experimental Botany 69, 91–108.

Giorgetti, H. D., Busso, C. A., Montenegro, O. A., Rodríguez, G. D., and Kugler, N. M. (2006). Cattle raising in central, semiarid rangelands of Argentina. Rangelands 28, 32–36.
Cattle raising in central, semiarid rangelands of Argentina.Crossref | GoogleScholarGoogle Scholar |

Golluscio, R. A., and Sala, O. E. (1993). Plant functional types and ecological strategies in Patagonian forbs. Journal of Vegetation Science 4, 839–846.
Plant functional types and ecological strategies in Patagonian forbs.Crossref | GoogleScholarGoogle Scholar |

Heady, H. F., and Child, D. R. (1994). ‘Rangeland Ecology and Management.’ (Westview Press: Boulder, CO, USA.)

Ithurrart, L. (2015). Efectos de la defoliación luego de la quema de gramíneas perennes nativas, palatables y no palatables, en el sudoeste bonaerense. PhD thesis, Bahía Blanca, Argentina.

Jenkinson, D. S. (1977). Studies on the decomposition of plant material in soil. V. The effects of plant cover and soil type on the loss of carbon from 14C labelled ryegrass decomposing under field conditions. Journal of Soil Science 28, 424–434.
Studies on the decomposition of plant material in soil. V. The effects of plant cover and soil type on the loss of carbon from 14C labelled ryegrass decomposing under field conditions.Crossref | GoogleScholarGoogle Scholar |

Langer, R. H. M. (1972). ‘How Grasses Grow.’ (Arnold: London.)

McNaughton, S. J., Banyikwa, F. F., and McNaughton, M. M. (1998). Root biomass and productivity in a grazing ecosystem: the Serengeti. Ecology 79, 587–592.
Root biomass and productivity in a grazing ecosystem: the Serengeti.Crossref | GoogleScholarGoogle Scholar |

Moore, K. J., Moser, L. E., Vogel, K. P., Waller, S. S., Johnson, B. E., and Pedersen J. F. (1991). Describing and quantifying growth stages of perennial forage grasses. Agronomy and Horticulture Faculty Publications. Paper no. 507. Available at: http://digitalcommons.unl.edu/agronomyfacpub/507 (accessed 5 October 2019).

Moretto, A. S., and Distel, R. A. (2003). Decomposition of and nutrient dynamics in leaf litter and roots of Poa ligularis and Stipa gyneriodes. Journal of Arid Environments 55, 503–514.
Decomposition of and nutrient dynamics in leaf litter and roots of Poa ligularis and Stipa gyneriodes.Crossref | GoogleScholarGoogle Scholar |

Moretto, A. S., Distel, R. A., and Didone, N. G. (2001). Decomposition and nutrient dynamic of leaf litter and roots from palatable and unpalatable grasses in a semi-arid grassland. Applied Soil Ecology 18, 31–37.
Decomposition and nutrient dynamic of leaf litter and roots from palatable and unpalatable grasses in a semi-arid grassland.Crossref | GoogleScholarGoogle Scholar |

Poca, M., Pérez-Harguindeguy, N., Vaieretti, M. V., and Cingolani, A. M. (2014). Descomposición y calidad físico-química foliar de 24 especies dominantes de los pastizales de altura de las sierras de Córdoba, Argentina. Ecología Austral 24, 249–257.

Saint Pierre, C., Busso, C. A., Montenegro, O. A., Rodríguez, G. D., Giorgetti, H. D., Montani, T., and Bravo, O. A. (2004). Direct assessment of competitive ability and defoliation tolerance in perennial grasses. Canadian Journal of Plant Science 84, 195–204.
Direct assessment of competitive ability and defoliation tolerance in perennial grasses.Crossref | GoogleScholarGoogle Scholar |

Seastedt, T. R., Parton, W. J., and Ojima, D. S. (1992). Mass loss and nitrogen dynamics of decaying litter of grasslands: the apparent low nitrogen immobilization potential of root detritus. Canadian Journal of Botany 70, 384–391.
Mass loss and nitrogen dynamics of decaying litter of grasslands: the apparent low nitrogen immobilization potential of root detritus.Crossref | GoogleScholarGoogle Scholar |

Silver, W. L., and Miya, R. K. (2001). Global patterns in root decomposition: comparisons of climate and litter quality effects. Oecologia 129, 407–419.
Global patterns in root decomposition: comparisons of climate and litter quality effects.Crossref | GoogleScholarGoogle Scholar | 28547196PubMed |

Smith, S. W., Woodin, S. J., Pakeman, R. J., Johnson, D., and van der Wal, R. (2014). Root traits predict decomposition across a landscape-scale grazing experiment. New Phytologist 203, 851–862.
Root traits predict decomposition across a landscape-scale grazing experiment.Crossref | GoogleScholarGoogle Scholar | 24841886PubMed |

Soil Survey Staff (2014). ‘Keys to Soil Taxonomy.’ 12th edn. (USDA, Natural Resources Conservation Service: Washington, DC.)

Sokal, R. R., and Rohlf, F. J. (1984). ‘Introducción a la Bioestadística.’ (Editorial Reverté S.A., Barcelona, España.)

Swift, M. J., Heal, O. W., and Anderson, J. M. (1979). ‘Decomposition in Terrestrial Ecosystems.’ (Blackwell Scientific Publications: Oxford, UK.)

Wardle, D. A., Bonner, K. I., and Barker, G. M. (2002). Linkage between plant litter decomposition, litter quality, and vegetation responses to herbivores. Functional Ecology 16, 585–595.
Linkage between plant litter decomposition, litter quality, and vegetation responses to herbivores.Crossref | GoogleScholarGoogle Scholar |

Wardle, D. A., Bardgett, R. D., Klironomos, J. N., Setälä, H., van der Putten, W. H., and Wall, D. H. (2004). Ecological linkages between aboveground and belowground biota. Science 304, 1629–1633.
Ecological linkages between aboveground and belowground biota.Crossref | GoogleScholarGoogle Scholar | 15192218PubMed |