Register      Login
The Rangeland Journal The Rangeland Journal Society
Journal of the Australian Rangeland Society
RESEARCH ARTICLE

A woody plant community and tree-cacti associations change with distance to a water source in a dry Chaco forest of Argentina

Carolina B. Trigo A B E , Andrés Tálamo A B , Mauricio M. Núñez-Regueiro C , Enrique J. Derlindati A , Gustavo A. Marás A , Alicia H. Barchuk D and Antonio Palavecino A
+ Author Affiliations
- Author Affiliations

A Facultad de Ciencias Naturales, Universidad Nacional de Salta, Avda. Bolivia 5150, Salta, Argentina.

B Instituto de Bio y Geociencias del NOA (IBIGEO), Universidad Nacional de Salta, Consejo Nacional de Investigaciones Científicas y Técnicas, Mendoza 2, Salta, Argentina.

C School of Natural Resources and the Environment and Center for Latin American Studies, University of Florida, Gainesville, FL 32601, USA.

D Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba, Ing Agr. Felix Aldo Marrone 746 – Ciudad Universitaria, Córdoba, Argentina.

E Corresponding author. Email: carolinatrigo88@gmail.com

The Rangeland Journal 39(1) 15-23 https://doi.org/10.1071/RJ16014
Submitted: 12 February 2016  Accepted: 21 November 2016   Published: 5 January 2017

Abstract

In semiarid regions, livestock is concentrated around water sources generating a piosphere pattern (gradients of woody vegetation degradation with increasing proximity to water). Close to the water source, livestock may affect the composition, structure and regeneration strategies of woody vegetation. We used the proximity from a water source as a proxy of grazing pressure. Our objectives were (1) to compare woody vegetation attributes (richness, diversity, species composition, density and basal area) and ground cover between sites at two distances to a water source: near (higher grazing pressure) and far from the water source (lower grazing pressure), and (2) to quantify and compare cases of spatial association among the columnar cacti Stetsonia coryne (Salm-Dyck) Britton and Rose (Cactaceae), and the dominant tree Bulnesia sarmientoi Lorentz ex Griseb. (Zygophyllaceae). We used a paired design with eight pairs of rectangular plots distributed along a large and representative natural water source. We found lower total species richness, plant density and soil cover near than far from water source, and more cases of spatial associations between the two species studied. Our results show evidence of increased livestock impacts around water sources. However, we found no difference in terms of species composition or basal area at near versus far sites. We conclude that grazing pressure might be changing some attributes of the woody plant community, and that the association of young trees with thorny plants (grazing refuge) could be a regeneration mechanism in this semiarid forest with high grazing pressure.

Additional keywords: grazing pressure, regeneration, water resource.


References

Adámoli, J., Neumann, R., Ratier de Colina, A. D., and Morello, J. (1972). El chaco aluvional salteño. Revista de Investigación Agropecuaria, Instituto Nacional de Tecnologia Agropecuaria 9, 165–237.

Andrew, M. H. (1988). Grazing impact in relation to livestock watering points. Trends in Ecology & Evolution 3, 336–339.
Grazing impact in relation to livestock watering points.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3M7gvFektg%3D%3D&md5=47f4724de6590dd1dbe0a8d454ff61a2CAS |

Arenas, P., and Suárez, M. (2006). Woods employed by Gran Chaco Indians to make fire drills. Candollea 62, 27–40.

Asner, G., Elmore, A., Olander, L., Martin, R. E., and Harris, A. T. (2004). Grazing systems, ecosystem responses, and global change. Annual Review of Environment and Resources 29, 261–299.
Grazing systems, ecosystem responses, and global change.Crossref | GoogleScholarGoogle Scholar |

Augustine, D. J., and McNaughton, S. J. (1998). Ungulate effects on the functional species composition of plant communities: Herbivore selectivity and plant tolerance. The Journal of Wildlife Management 62, 1165–1183.
Ungulate effects on the functional species composition of plant communities: Herbivore selectivity and plant tolerance.Crossref | GoogleScholarGoogle Scholar |

Bedunah, D. J., and Angerer, J. P. (2012). Rangeland degradation, poverty, and conflict: how can rangeland scientists contribute to effective responses and solutions? Rangeland Ecology and Management 65, 606–612.
Rangeland degradation, poverty, and conflict: how can rangeland scientists contribute to effective responses and solutions?Crossref | GoogleScholarGoogle Scholar |

Belsky, A. (1986). Does herbivory benefit plants? A review of the evidence. American Naturalist 127, 870–892.
Does herbivory benefit plants? A review of the evidence.Crossref | GoogleScholarGoogle Scholar |

Bertness, M. D., and Callaway, R. M. (1994). Positive interactions in communities. Trends in Ecology & Evolution 9, 191–193.
Positive interactions in communities.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3M7itFSntg%3D%3D&md5=7e5de66b7850730eb9d1c276cc1b4fcfCAS |

Bianchi, A. R., and Yáñez, C. E. (1992). ‘Las Precipitaciones en el Noroeste Argentino.’ Segunda Edición. pp. 383. (Instituto Nacional de Tecnología Agropecuaria: Salta, Argentina.)

Bisigato, A. J., Bertiller, M. B., Ares, J. O., and Pazos, G. E. (2005). Effect of grazing on plant patterns in arid ecosystems of Patagonian Monte. Ecography 28, 561–572.
Effect of grazing on plant patterns in arid ecosystems of Patagonian Monte.Crossref | GoogleScholarGoogle Scholar |

Boughton, H. E., Quintana-Ascencio, P. F., and Bohlen, P. J. (2011). Refuge effects of Juncus effusus in grazed, subtropical wetland plant communities. Plant Ecology 212, 451–460.
Refuge effects of Juncus effusus in grazed, subtropical wetland plant communities.Crossref | GoogleScholarGoogle Scholar |

Brits, J., Van Rooyen, M. J., and Van Rooyen, N. (2002). Ecological impact of large herbivores on the woody vegetation at selected watering points on the eastern basaltic soils in the Kruger National Park. African Journal of Ecology 40, 53–60.
Ecological impact of large herbivores on the woody vegetation at selected watering points on the eastern basaltic soils in the Kruger National Park.Crossref | GoogleScholarGoogle Scholar |

Bucher, E. H. (1987). Herbivory in arid and semi-arid regions of Argentina. Revista Chilena de Historia Natural 60, 265–273.

Callaway, R. M. (1995). Positive interactions among plants. Botanical Review 61, 306–349.
Positive interactions among plants.Crossref | GoogleScholarGoogle Scholar |

Carmona, C. P., Azcarate, F. M., and Peco, B. (2013). Does cattle dung cause differences between grazing increaser and decreaser germination response? Acta Oecologica 47, 1–7.
Does cattle dung cause differences between grazing increaser and decreaser germination response?Crossref | GoogleScholarGoogle Scholar |

Derlindati, E., Núñez-Regueiro, M., Tálamo, A., Vázquez, D., Marás, G., Palavecino, A., Trigo, C., López Morales, R., and Cruz, N. (2012). Inventario de biodiversidad. Línea de base para la propiedad Finca El Paraíso, de la Universidad Católica de Salta. In: ‘Formulación del Plan de Manejo Sostenible de Finca El Paraíso, Campo Experimental de la Universidad Católica de Salta’. (Ed. Universidad Católica de Salta.) pp. 7–47. (Universidad Católica de Salta: Salta, Argentina.)

Feinsinger, P. (2004). ‘El diseño de estudios de campo para la conservación de la biodiversidad.’ pp. 242. (Editorial FAN: Santa Cruz de la Sierra, Bolivia.)

Fleischner, T. L. (1994). Ecological costs of livestock grazing in western North America. Conservation Biology 8, 629–644.
Ecological costs of livestock grazing in western North America.Crossref | GoogleScholarGoogle Scholar |

Gandiwa, E., Tupulu, N., Zisadza-Gandiwa, P., and Muvengwi, J. (2012). Structure and composition of woody vegetation around permanent-artificial and ephemeral-natural water points in northern Gonarezhou National Park, Zimbabwe. Tropical Ecololgy 53, 169–175.

Gao, Y., Wang, D., Ba, L., Bai, Y., and Liu, B. (2008). Interactions between herbivory and resource availability on grazing tolerance of Leymus chinensis. Environmental and Experimental Botany 63, 113–122.
Interactions between herbivory and resource availability on grazing tolerance of Leymus chinensis.Crossref | GoogleScholarGoogle Scholar |

Guevara, J. C., Estevez, O. R., and Stasi, C. R. (2006). Respuesta de la vegetación en un gradiente de intensidad de pastoreo en Mendoza, Argentina. Multequina 15, 27–36.

Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., Thau, D., Stehman, S. V., Goetz, S. J., Loveland, T. R., Kommareddy, A., Egorov, A., Chini, L., Justice, C. O., and Townshend, J. R. G. (2013). High-resolution global maps of 21st-century forest cover change. Science 342, 850–853.
High-resolution global maps of 21st-century forest cover change.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslCrsrbO&md5=f010d2e1d7cfe512fc7e3fc82317e681CAS |

Harris, R. B., Samberg, L. H., and Yeh, E. T. (2016). Rangeland responses to pastoralists’ grazing management on a Tibetan steppe grassland, Qinghai Province, China. The Rangeland Journal 38, 1–15.
Rangeland responses to pastoralists’ grazing management on a Tibetan steppe grassland, Qinghai Province, China.Crossref | GoogleScholarGoogle Scholar |

Hernández Vargas, G., Velásquez Sánchez, L. R., Carmona Valdovidos, T. F., Pineda López, M. R., and Cuevas Guzmán, R. (2000). Efecto de la ganadería extensiva sobre la regeneración arbórea de los bosques de la Sierra de Manantlán. Madera y Bosques 6, 13–28.

Landsberg, J., James, C. D., Morton, S. R., Muller, W. J., and Stol, J. (2003). Abundance and composition of plant species along grazing gradients in Australian rangelands. Journal of Applied Ecology 40, 1008–1024.
Abundance and composition of plant species along grazing gradients in Australian rangelands.Crossref | GoogleScholarGoogle Scholar |

Lange, R. T. (1969). The piosphere: sheep track and dung patterns. Journal of Range Management 22, 396–400.
The piosphere: sheep track and dung patterns.Crossref | GoogleScholarGoogle Scholar |

Macchi, L., and Grau, H. R. (2012). Piospheres in the dry Chaco. Contrasting effects of livestock puestos on forest vegetation and bird communities. Journal of Arid Environments 87, 176–187.
Piospheres in the dry Chaco. Contrasting effects of livestock puestos on forest vegetation and bird communities.Crossref | GoogleScholarGoogle Scholar |

McAuliffe, J. R. (1986). Herbivore-limited establishment of a Sonoran desert tree Cercidium microphyllum. Ecology 67, 276–280.
Herbivore-limited establishment of a Sonoran desert tree Cercidium microphyllum.Crossref | GoogleScholarGoogle Scholar |

McCune, B., and Grace, J. B. (2002). ‘Analysis of Ecological Communities.’ MjM Software Design. (Gleneden Beach, OR, USA). Available at: www.researchgate.net/profile/James_Grace/publication/216769990_Analysis_of_ecological_communities/links/0a85e5318e69b2ae7f000000.pdf (accessed 25 October 2014).

McCune, B., and Mefford, M. (1999). ‘PC-ORD. Multivariate Analysis of Ecological Data, Version 4 for Windows.’ (MjM Software Design: Gleneden Beach, OR, USA.) Available at: www.pcord.com/ (accessed 10 October 2014)

Milchunas, D. G., and Lauenroth, W. K. (1993). Quantitative effects of grazing on vegetation and soils over a global range of environments. Ecological Monographs 63, 327–366.
Quantitative effects of grazing on vegetation and soils over a global range of environments.Crossref | GoogleScholarGoogle Scholar |

Milchunas, D. G., and Noy-Meir, I. (2002). Grazing refuges, external avoidance of herbivory and plant diversity. Oikos 99, 113–130.
Grazing refuges, external avoidance of herbivory and plant diversity.Crossref | GoogleScholarGoogle Scholar |

Mohseni Saravi, M., Chaichi, M. R., and Attaeian, B. (2015). Effects of soil compaction by animal trampling on growth characteristics of Agropyrum repens (Case Study: Lar Rangeland, Iran). International Journal of Agriculture & Biology 7, 909–914.
Effects of soil compaction by animal trampling on growth characteristics of Agropyrum repens (Case Study: Lar Rangeland, Iran).Crossref | GoogleScholarGoogle Scholar |

Morello, J., and Adámoli, J. (1974). Las grandes unidades de vegetación y ambiente del Chaco Argentino. Segunda Parte: Vegetación y ambiente de la Provincia del Chaco. Secretaría de Estado de Agricultura y Ganadería de la Nación. INTA, Serie Fitogeográfica No. 13, 130 pp. (Buenos Aires, Argentina.) Available at: www.sidalc.net/cgi-bin/wxis.exe/?IsisScript=LIBROS.xis&method=post&formato=2&cantidad=1&expresion=mfn=003833 (20 January 2015)

Noy-Meir, I., Gutman, M., and Kaplan, Y. (1989). Responses of Mediterranean grassland plants to grazing and protection. Journal of Ecology 77, 290–310.
Responses of Mediterranean grassland plants to grazing and protection.Crossref | GoogleScholarGoogle Scholar |

Núñez-Regueiro, M. M., Branch, L., Fletcher, R. J., Marás, G. A., Derlindati, E., and Tálamo, A. (2015). Spatial patterns of mammal occurrence in forest strips surrounded by agricultural crops of the Chaco region, Argentina. Biological Conservation 187, 19–26.
Spatial patterns of mammal occurrence in forest strips surrounded by agricultural crops of the Chaco region, Argentina.Crossref | GoogleScholarGoogle Scholar |

Olff, H., Vera, F. W. M., Bokdam, J., Bakker, E. S., Gleichman, J. M., de Maeyer, K., and Smit, R. (1999). Shifting mosaics in grazed woodlands driven by the alternation of plant facilitation and competition. Plant Biology 1, 127–137.
Shifting mosaics in grazed woodlands driven by the alternation of plant facilitation and competition.Crossref | GoogleScholarGoogle Scholar |

Pettit, N. E., Froend, R. H., and Ladd, P. J. (1995). Grazing in remnant woodland vegetation: changes in species composition and life form groups. Journal of Vegetation Science 6, 121–130.
Grazing in remnant woodland vegetation: changes in species composition and life form groups.Crossref | GoogleScholarGoogle Scholar |

Plieninger, T., Schaich, H., and Kizos, T. (2011). Land-use legacies in the forest structure of silvopastoral oak woodlands in the Eastern Mediterranean. Regional Environmental Change 11, 603–615.
Land-use legacies in the forest structure of silvopastoral oak woodlands in the Eastern Mediterranean.Crossref | GoogleScholarGoogle Scholar |

Quiroga, E. R., Blanco, L. J., and Ferrando, C. A. (2009). A case study evaluating economic implications of two grazing strategies for cattle ranches in Northwest Argentina. Rangeland Ecology and Management 62, 435–444.
A case study evaluating economic implications of two grazing strategies for cattle ranches in Northwest Argentina.Crossref | GoogleScholarGoogle Scholar |

Rebollo, S., Milchunas, D. G., Noy-Meir, I., and Chapman, P. L. (2002). The role of a spiny plant refuge in structuring grazed shortgrass steppe plant communities. Oikos 98, 53–64.
The role of a spiny plant refuge in structuring grazed shortgrass steppe plant communities.Crossref | GoogleScholarGoogle Scholar |

Rebollo, S., Milchunas, D. G., and Noy-Meir, I. (2005). Refuge effects of a cactus in grazed short-grass steppe. Journal of Vegetation Science 16, 85–92.
Refuge effects of a cactus in grazed short-grass steppe.Crossref | GoogleScholarGoogle Scholar |

Saravia Toledo, C. (1988). Compatibilizacion de manejo de pastizales, bosque y fauna en los sistema agrosilvopastoriles del Chaco Semiárido. In: ‘Forrajeras y Cultivos Adecuados para la Región Chaqueña Semiárida’. pp. 99–105. Ed. Oficina Regional de la FAO para América Latina y el Caribe (Santiago, Chile)

Smit, C., Ouden, J. D., and Muller-Scharer, H. (2006). Unpalatable plants facilitate tree sapling survival in wooded pastures. Journal of Applied Ecology 43, 305–312.
Unpalatable plants facilitate tree sapling survival in wooded pastures.Crossref | GoogleScholarGoogle Scholar |

Smit, C., Vandenberghe, C., Ouden, J. D., and Muller-Scharer, H. (2007). Nurse plants, tree saplings and grazing pressure: changes in facilitation along a biotic environmental gradient. Oecologia 152, 265–273.
Nurse plants, tree saplings and grazing pressure: changes in facilitation along a biotic environmental gradient.Crossref | GoogleScholarGoogle Scholar |

Suárez, M. (2014). ‘Etnobotánica wichí del bosque xerófito en el Chaco semiárido salteño.’ (Autores de Argentina: Buenos Aires.)

Tálamo, A., Barchuk, A., Cardozo, S., Trucco, C., Maras, G., and Trigo, C. (2015a). Direct vs. indirect facilitation (herbivore-mediated) among woody plants in a semiarid Chaco forest: a spatial association approach. Austral Ecology 40, 573–580.
Direct vs. indirect facilitation (herbivore-mediated) among woody plants in a semiarid Chaco forest: a spatial association approach.Crossref | GoogleScholarGoogle Scholar |

Tálamo, A., Barchuk, A. H., Garibaldi, L. A., Trucco, C. E., Cardozo, S., and Mohr, F. (2015b). Disentangling the effects of shrubs and herbivores on tree regeneration in a dry Chaco forest (Argentina). Oecologia 178, 847–854.
Disentangling the effects of shrubs and herbivores on tree regeneration in a dry Chaco forest (Argentina).Crossref | GoogleScholarGoogle Scholar |

Tefera, S., Snyman, H. A., and Smit, G. N. (2007). Rangeland dynamics of southern Ethiopia: (2). Assessment of woody vegetation structure in relation to land use and distance from water in semi-arid Borana rangenlands. Journal of Environmental Management 85, 443–452.
Rangeland dynamics of southern Ethiopia: (2). Assessment of woody vegetation structure in relation to land use and distance from water in semi-arid Borana rangenlands.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1SrtrjK&md5=134ce6db4e1a58b6017be35f9837d2acCAS |

The Nature Conservancy, Fundación Vida Silvestre Argentina, Fundación Para El Desarrollo Sustentable Del Chaco, and Wildife Conservation Society Bolivia (2005). ‘Evaluación Ecorregional del Gran Chaco Americano/Gran Chaco Americano Ecoregional Assessment.’ (Fundación Vida Silvestre Argentina: Buenos Aires, Argentina.) Available at: www.nature.org/media/aboutus/dossier_eval_ecorregional_del_gran_chaco_americano.pdf (accessed 23 December 2014).

Todd, S. W. (2006). Gradients in vegetation cover, structure and species richness of Nama-Karoo shrublands in relation to distance from watering points. Journal of Applied Ecology 43, 293–304.
Gradients in vegetation cover, structure and species richness of Nama-Karoo shrublands in relation to distance from watering points.Crossref | GoogleScholarGoogle Scholar |

Torella, S. A., and Adámoli, J. (2006). Situación ambiental de la ecoregión del Chaco seco. In: ‘Brown, A., Martínez Ortiz, U., Acerbi, M., and Corcuera, J. (2005). La situación ambiental Argentina. pp. 75–82. Ed. Fundación Vida Silvestre Argentina, (Buenos Aires, Argentina) Available at: http://oab.org.ar/capitulos/cap01.pdf (accessed 18 December 2014).

Torres, R. C., and Renison, D. (2015). Effects of vegetation and herbivores on regeneration of two tree species in a seasonally dry forest. Journal of Arid Environments 121, 59–66.
Effects of vegetation and herbivores on regeneration of two tree species in a seasonally dry forest.Crossref | GoogleScholarGoogle Scholar |

Torres, R. C., and Renison, D. (2016). Indirect facilitation becomes stronger with seedling age in a degraded seasonally dry forest. Acta Oecologica 70, 138–143.
Indirect facilitation becomes stronger with seedling age in a degraded seasonally dry forest.Crossref | GoogleScholarGoogle Scholar |

Torres, R., Gasparri, N. I., Blendinger, P. G., and Grau, H. R. (2014). Land use and land-cover effects on regional biodiversity distribution in a subtropical dry forest: a hierarchical integrative multi-taxa study. Regional Environmental Change 14, 1549–1561.
Land use and land-cover effects on regional biodiversity distribution in a subtropical dry forest: a hierarchical integrative multi-taxa study.Crossref | GoogleScholarGoogle Scholar |

Vallejos, M., Volante, J. M., Mosciaro, M. J., Vale, L. M., Bustamante, M. L., and Paruelo, J. M. (2014). Transformation dynamics of the natural cover in the Dry Chaco ecoregión: A plot level geo-database from 1976 to 2012. Journal of Arid Environments 123, 1–9.
Transformation dynamics of the natural cover in the Dry Chaco ecoregión: A plot level geo-database from 1976 to 2012.Crossref | GoogleScholarGoogle Scholar |

Volante, J. N., Alcaraz-Segura, D., Mosciaro, M. J., Viglizzo, E. F., and Paruelo, J. M. (2012). Ecosystem functional changes associated with land clearing in NW Argentina. Agriculture, Ecosystems & Environment 154, 12–22.
Ecosystem functional changes associated with land clearing in NW Argentina.Crossref | GoogleScholarGoogle Scholar |

Winkel, V., and Roundy, B. (1991). Effects of cattle trampling and mechanical seedbed preparation on grass seedling emergence. Journal of Range Management 44, 176–180.
Effects of cattle trampling and mechanical seedbed preparation on grass seedling emergence.Crossref | GoogleScholarGoogle Scholar |

Zamora, R., Castro, J., Gómez, J. M., García, D., Hodar, J. A., Gómez, L., and Baraza, E. (2001). El papel de los matorrales en la regeneración forestal. Quercus 187, 41–47.

Zar, J. H. (1999). ‘Biostatical Analysis.’ 4th edn. pp. 663. (Prentice-Hall Inc.: Upper Saddle River, NJ.)