Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
The Rangeland Journal The Rangeland Journal Society
Journal of the Australian Rangeland Society
RESEARCH ARTICLE

Use of simulations to enhance knowledge integration and livestock producers’ adaptation to variability in the climate in northern Uruguay

H. Morales Grosskopf A G , J. F. Tourrand B , D. Bartaburu C , F. Dieguez A , P. Bommel D , J. Corral E , E. Montes C , M. Pereira A , E. Duarte C and P. Hegedus F
+ Author Affiliations
- Author Affiliations

A Instituto Plan Agropecuario, Bvar Artigas 3802, Montevideo, Uruguay.

B CIRAD-Green, Campus international de Baillarguet 34398 Montpellier, Cedex 5-France.

C Instituto Plan Agropecuario, Amorim 55, Salto, Uruguay.

D CIRAD-CIRAD, UPR Green, F-34398 Montpellier, France and Universidade PUC Rio, LES, Dept. Informática, Rio de Janeiro, Brazil.

E Universidad de la República Facultad de Ingeniería Instituto de Computación. J. Herrera y Reissig 565, Montevideo, Uruguay.

F Universidad de la República Facultad de Agronomía. Garzón 780, Montevideo, Uruguay.

G Corresponding author. Email: hmorales@planagropecuario.org.uy

The Rangeland Journal 37(4) 425-432 https://doi.org/10.1071/RJ14063
Submitted: 11 May 2014  Accepted: 16 June 2015   Published: 16 July 2015

Abstract

Basaltic soils have an extremely reduced capacity to accumulate water in Uruguay where they occupy 3.5 m ha (25% of the area of Uruguay) and are mainly exploited by extensive cattle production systems. Drought can have a negative effect on forage growth and cattle production and can have a devastating impact on the economy of livestock producers, and damage the entire beef-supply chain. To improve the livestock producers ability to adapt to climate variability, the past effects of droughts were modelled to understand the dynamics of droughts at the level of the production unit through the development of an interactive agent-based simulation model. The simulator was constructed in four steps by simulating: (i) forage growth using a logistic growth equation calibrated with data originated from the Moderate resolution imaging spectroradiometer (MODIS) satellite, (ii) the life cycle of livestock, (iii) the interaction between forage and livestock, and (iv) different strategies of management. Outputs of simulations were explored in five workshops with 82 livestock farmers and development actors. In these workshops, both biophysical models and those related to farm management were recognised as valid, and the typologies used were identified as realistic. Through the workshops and discussions about the models, the producers’ understanding of droughts was investigated. It was found that two types of information were important in encouraging better adaptation: (i) information that allowed a better understanding of the complex system and (ii) information that supported action. The workshops were found to valuable in generating a motivation to analyse and discuss climate variability.

Additional keywords: cattle production, complex systems, modelling, native grasslands, rangeland management.


References

Baethgen, W. E. (1997). ‘Relaciones entre la temperatura superficial del Pacífico tropical y los rendimientos de cultivos en Uruguay (Relations between the surface temperature of the tropical Pacific and crop yields in Uruguay.). In: ‘Workshop and Conference on the 1997–1998 El Niño: Impacts and Potential Applications of Climate Prediction in South–East South America’. December 1997. (INIA: Montevideo, Uruguay)

Balent, G., and Stafford-Smith, D. M. (1993). A conceptual model for evaluating the consequences of management practices on the use of pastoral resources. In: ‘Systems Studies in Agriculture and Rural Development’. (Eds J. Brossier, L. de Bonneval and E. Landais.) pp. 345–352. (INRA Editions: Paris, France.)

Bartaburu, D., Dieguez, F., Corral, J., Morales, H., Duarte, E., Montes, E., Pereira, M., De Hegedus, P., and Bommel, P. (2011). Sequia basalto. Modelación y simulación participativa para contribuir a la comprensión y comunicación del fenómeno de la sequía y mejorar la capacidad de adaptación de productores ganaderos del basalto Uruguay (Participatory modeling and simulation to contribute to the understanding and communication of the phenomenon of drought and improve the resilience of livestock producers of basalt in Uruguay.). Available at: http://cormas.cirad.fr/fr/applica/sequia.htm (accessed 16 April 2012).

Bommel, P., Dieguez, F., Bartaburu, D., Duarte, E., Montes, E., Pereira Machín, M., Corral, J., and Morales Grosskopf, H. (2014). A further step towards participatory modelling. Fostering stakeholder involvement in designing models by using executable UML. Journal of Artificial Societies and Social Simulation 17, 6.

Bousquet, F., Bakam, I., Proton, H., and Le Page, C. (1998). Cormas: common-pool resources and multi-agent systems. In: ‘Tasks and Methods in Applied Artificial Intelligence’. (Eds A. Pobil, J. Mira and M. Ali.) pp. 826–837. (Springer: Heidelberg, Germany.)

Bousquet, F., D’Aquino, P., Rouchier, J., Requier–Desjardins, M., Bah, A., Canal, R., and Le Page, C. (1999). Rangeland herd and herder mobility in dry inter tropical ones: multi-agent systems and adaptation. In: ‘People of the Rangelands. Building the Future. Proceedings of the VI International Rangeland Congress’. (Eds D. Eldridge and D. Freudenberger.) pp. 819–824. (VI International Rangeland Congress Inc.: Townsville, Qld.)

Cash, D. W., Clark, W. C., Alcock, F., Dickson, N. M., Eckley, N., Guston, D. H., Jäger, J., and Mitchell, R. B. (2003). Knowledge systems for sustainable development. Proceedings of the National Academy of Sciences of the United States of America 100, 8086–8091.
Knowledge systems for sustainable development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlsFGnsrc%3D&md5=595d6787a5e2c8022d573d63238fd0c7CAS | 12777623PubMed |

Checkland, P. (1999). ‘Systems Thinking: Systems Practice.’ (John Wiley and Sons: Chichester, UK.)

Corral, J., and Calegari, D. (2011). Towards an agent-based methodology for developing agro-ecosystem simulations. In: ‘Software Engineering and Formal Methods’. (Eds G. Barthe, A. Pardo and A, Schneider.) pp. 431–446. (Springer: Heidelberg, Germany.)

Dieguez Cameroni, F., Bommel, P., Corral, J., Bartaburu, D., Pereira Machín, M., Duarte, E., and Morales Grosskopf, H. (2012). Modelización de una explotación ganadera extensiva criadora en basalto. (Modelling of extensive basalt cattle farm). Agrociencia (Uruguay) 16, 120–130.

Dieguez Cameroni, F., Bommel, P., Corral, J., Bartaburu, D., Pereira, M., Montes, E., Duarte, E., and Morales Grosskopf, H. (2014). Virtual experiments using a participatory multi-agent model to explore interactions between climatic variability and management decisions in extensive grazing systems in the basaltic region of Uruguay. Agricultural Systems 130, 89–104.
Virtual experiments using a participatory multi-agent model to explore interactions between climatic variability and management decisions in extensive grazing systems in the basaltic region of Uruguay.Crossref | GoogleScholarGoogle Scholar |

Edward–Jones, G., and McGregor, M. (1994). The necessity, theory and reality of developing models of farm households. In: ‘Rural and Farming Systems Analysis. European Perspectives’. (Eds J. B. Dent and M. McGregor.) pp. 338–352. (CABI: Wallingford, UK.)

Epstein, J. M. (2008). Why model? Journal of Artificial Societies and Social Simulation 11, 12.

Etienne, M. (2010). ‘La modélisation d’accompagnement Une démarche participative en appui au développement durable (Accompanying modelling. A participative approach in support of sustainable development).’ (Update Sciences and Technologies, Editions Quæ: Versailles, France.)

Fowler, M. (2004). ‘UML Distilled. A Brief Guide to the Standard Object Modelling Language.’ 3rd edn. (Addison Wesley: Boston, MA, USA.)

Gunderson, L. H., and Holling, C. S. (2002). ‘Panarchy. Understanding Transformations in Human and Natural Systems.’ (Island Press: Washington, DC, USA.)

Hess, C., and Ostrom, E. (Eds) (2006). ‘Understanding Knowledge as a Commons: From Theory to Practice.’ (MIT Press: Cambridge, MA, USA.)

Ison, R. (2010). ‘Systems Practice: How to Act in a Climate Change World.’ (Springer: Heidelberg, Germany.)

Ison, R. L., High, C., Blackmore, C. P., and Cerf, M. (2000). Theoretical frameworks for learning-based approaches to change in industrialised-country agricultures. In: ‘Cow up a Tree: Knowing and Learning for Change in Agriculture. Case Studies from Industrialised Countries’. (LEARN Group. INRA Editions: Paris, France.)

Johnson–Laird, P. (2010). Mental models and human reasoning. Proceedings of the National Academy of Sciences of the United States of America 107, 18243–18250.
Mental models and human reasoning.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtl2ktr7K&md5=ab9510a62fadbad30303400bfc8d83aeCAS | 20956326PubMed |

Kahneman, D. (2011). ‘Thinking, Fast and Slow.’ (Farrar, Strauss and Giroux: New York, USA.)

Le Page, C., and Bommel, P. (2006). A methodology to building agent-based simulations of common pool resources management: from a conceptual model designed with UML to its implementation in CORMAS. In: ‘Companion Modelling and Multi-agent Systems for Integrated Resource Management in Asia’. (Eds F. Bousquet, G. Trémil and B. Hardy.) pp. 327–350. (International Rice Research Institute: Los Baños, Philippines.)

Lynam, T., and Stafford–Smith, M. (2003). Monitoring in a complex world: seeking slow variables, a scaled focus and speedier learning. In: ‘Proceedings of the VIIth International Rangelands Congress’. Durban, South Africa, 26 July–1 August 2003. (Eds N. Allsopp, A. R. Palmer, S. J. Milton, K. P. Kirkman, G. I. H. Kerley, C. R. Hurt and C. J. Brown.) pp. 617–629. (International Rangelands Congress: Durban, South Africa.)

March, J. G. (1994). ‘A Primer on Decision-making. How Decisions Happen.’ (Simon and Schuster: New York, USA.)

March, J. G. (2010). ‘The Ambiguities of Experience.’ (Cornell University Press: Ithaca, New York, USA.)

Matthews, K. B., Schwarz, G., Buchan, K., Rivington, M., and Miller, D. (2008). Whither agricultural DSS? Computers and Electronics in Agriculture 61, 149–159.
Whither agricultural DSS?Crossref | GoogleScholarGoogle Scholar |

Matthews, K. B., Rivington, M., Blackstock, K. L., McCrum, G., Buchan, K., and Miller, D. G. (2011). Raising the bar? The challenges of evaluating the outcomes of environmental modelling and software. Environmental Modelling & Software 26, 247–257.
Raising the bar? The challenges of evaluating the outcomes of environmental modelling and software.Crossref | GoogleScholarGoogle Scholar |

McCown, R. L. (2002a). Locating agricultural decision support systems in the troubled past and socio-technical complexity of ‘models for management’. Agricultural Systems 74, 11–25.
Locating agricultural decision support systems in the troubled past and socio-technical complexity of ‘models for management’.Crossref | GoogleScholarGoogle Scholar |

McCown, R. L. (2002b). Changing systems for supporting farmers’ decisions: problems, paradigms and prospects. Agricultural Systems 74, 179–220.
Changing systems for supporting farmers’ decisions: problems, paradigms and prospects.Crossref | GoogleScholarGoogle Scholar |

McCown, R. L., Carberry, P. S., Dalgliesh, N. P., Foale, M. A., and Hochman, Z. (2012). Farmers use intuition to reinvent analytic decision support for managing seasonal climatic variability. Agricultural Systems 106, 33–45.
Farmers use intuition to reinvent analytic decision support for managing seasonal climatic variability.Crossref | GoogleScholarGoogle Scholar |

Morale Grosskopf, H., Bommel, P., Corral, J., Tourrand, J. F., and Arbeleteche, P. (2010). Modéliser le changement dans la gestion des terres de parcours en Uruguay (Modelling of changes in the management of the rangelands of Uruguay). Cahiers Agricultures 192, 112–117.

Morales, H. (2007). L’évaluation des conséquences de décisions stratégiques en élevage extensif en Uruguay. Une approche par les systèmes multi agents (Evaluating the consequences of strategic decisions about extensive management of livestock in Uruguay. An approach using multi-agent modelling system). PhD Thesis, AgroParisTech, Paris, France.

Morales, H., Correa, P., Noboa, A., and Salvarrey, L. (2003). Knowing the strategies of the livestock farmers of the NW of Uruguay. In: ‘Proceedings of the VIIth International Rangelands Congress’. Durban, South Africa, 26 July–1 August 2003. (Eds N. Allsopp, A. R. Palmer, S. J. Milton, K. P. Kirkman, G. I. H. Kerley, C. R. Hurt and C. J. Brown.) pp. 1857–1859. (VIIth International Rangelands Congress: Durban, South Africa.)

National Research Council (2011). ‘Learning Science through Computer Games and Simulations. Committee on Science Learning: Computer Games.’ (The National Academic Press: Washington, DC, USA.)

Norberg, J., and Cumming, G. S. (2008). ‘Complexity Theory for a Sustainable Future.’ (Columbia University Press: New York, USA.)

Nussbaum, M. C. (2011). ‘Creating Capabilities: The Human Development Approach.’ (Harvard University Press: Cambridge, MA, USA.)

Nuthall, P. L. (2012). The intuitive world of farmers – the case of grazing management systems and experts. Agricultural Systems 107, 65–73.
The intuitive world of farmers – the case of grazing management systems and experts.Crossref | GoogleScholarGoogle Scholar |

O’Reagain, P. J., and Scanlan, J. C. (2013). Sustainable management for rangelands in a variable climate: evidence and insights from northern Australia. Animal 7, 68–78.
Sustainable management for rangelands in a variable climate: evidence and insights from northern Australia.Crossref | GoogleScholarGoogle Scholar | 23031187PubMed |

O’Reagain, P. J., Mc Keon, G., Day, K., and Ash, A. (1999). Managing for temporal variability in extensive rangelands – a perspective from northern Australia. In: ‘People of the Rangelands. Building the Future. Proceedings of the VI International Rangeland Congress’. (Eds D. Eldridge and D. Freudenberger.) pp. 825–831. (VI International Rangeland Congress Inc.: Townsville, Qld, Australia.)

Paruelo, J. M., Oesterheld, M., Di Bella, C. M., Arzadum, M., Lafontaine, J., Cahuepe, M., and Rebella, C. M. (2000). Estimation of primary production of sub-humid rangelands from remotely sensing data. Applied Vegetation Science 3, 189–195.
Estimation of primary production of sub-humid rangelands from remotely sensing data.Crossref | GoogleScholarGoogle Scholar |

Passioura, J. B. (1996). Simulation models: science, snake oil, education, or engineering? Agronomy Journal 88, 690–694.
Simulation models: science, snake oil, education, or engineering?Crossref | GoogleScholarGoogle Scholar |

Perez, P., Aubert, S., Daré, W., Ducrot, R., Jones, N., Queste, J., Trébuil, G., and Van Paasen, A. (2010). Evaluation et suivi des effets de la demarche (Evaluating and following the effects of the approach). In: ‘Une Démarche Participative en Appui au Développement Durable. (A Participative Approach in Support of Sustainable Development)’. (Ed. M. Etienne.) pp. 153–182. (Update Sciences and Technologies Quæ: Versailles, France.)

Pidgeon, N., and Fischhoff, B. (2011). The role of social decision sciences in communicating uncertain climate risks. Nature Climate Change 1, 35–41.
The role of social decision sciences in communicating uncertain climate risks.Crossref | GoogleScholarGoogle Scholar |

Röling, N. G., and Wagemakers, M. A. E. (1998). ‘Facilitating Sustainable Agriculture. Participatory Learning and Adaptive Management in Times of Environmental Uncertainty.’ (Cambridge University Press: Cambridge, UK.)

Simon, H. (1996). ‘The Sciences of the Artificial.’ 3rd edn. (MIT Press: Cambridge, MA, USA.)

Soca, P., Rinaldi, C., and Espasandin, A. (1994). ‘Presiones de pastoreo, reducción de áreas pastoreadas y comportamiento animal (Grazing pressures, reduced grazed areas and animal behavior).’ Serie Técnica INIA 94. pp. 157–163. (INIA: Montevideo, Uruguay.)

Stuth, J. W., and Stafford-Smith, M. (1993). Decision support for grazing lands: an overview. In: ‘Decision support systems for management of grazing lands’. Emerging issues man and the biosphere series. Vol. II. (Eds J. W. Stuth and B. G. Lyons.) pp. 1–34. (UNESCO: Paris, France.)

Taleb, N. N. (2007). ‘The Black Swan. The Impact of the Highly Improbable.’ (Random House: New York, USA.)

Voinov, A., and Bousquet, F. (2010). Modelling with stakeholders. Environmental Modelling & Software 25, 1268–1281.
Modelling with stakeholders.Crossref | GoogleScholarGoogle Scholar |

Vulturius, G., and Gerger Swartling, Å. (2013). ‘Transformative learning and engagement with climate change adaptation: experiences with Sweden’s forestry sector.’ Mistra-SWECIA Working Paper No. 7 and SEI Project Report. (Stockholm Environment Institute: Stockholm, Sweden). Available at www.sei-international.org/mediamanager/documents/Publications/Climate/SEI-WP-2013–12-Transformative-learning-forestry-adaptation.pdf (accessed 6 June 2015).

Zhang, D., Lee, H., Wang, C., Lie, B., Pei, Q., Zhang, J., and An, Y. (2011). The causality analysis of climate change and large-scale human crisis. Proceedings of the National Academy of Sciences of the United States of America 108, 17296–17301.
The causality analysis of climate change and large-scale human crisis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVShsbfF&md5=ba1c498df5c3e48d738de7b4019b49b8CAS | 21969578PubMed |