Short-term responses to sheep grazing in a Patagonian steppe
Magalí D. Valenta A F , Rodolfo A. Golluscio B C , Ana L. Frey A , Lucas A. Garibaldi D and Pablo A. Cipriotti C EA Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Ovinotecnia, Buenos Aires, Argentina.
B Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Forrajicultura, Buenos Aires, Argentina.
C Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Buenos Aires, Argentina.
D Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural (IRNAD), Sede Andina, Universidad Nacional de Río Negro (UNRN) y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mitre 630, CP 8400, San Carlos de Bariloche, Río Negro, Argentina.
E Universidad de Buenos Aires, Facultad de Agronomía. Departamento de Métodos Cuantitativos y Sistemas de Información, Buenos Aires, Argentina.
F Corresponding author. Email: mvalenta@agro.uba.ar
The Rangeland Journal 42(1) 1-8 https://doi.org/10.1071/RJ19012
Submitted: 15 March 2019 Accepted: 16 December 2019 Published: 25 March 2020
Abstract
Grazing modifies ecosystem function through direct effects on plants, but also through indirect effects mediated by floristic changes induced by grazing. Although both types of effects occur in the long term, only the direct effects are evident in the short term. We evaluated the short-term direct effects of sheep (Ovis aries) grazing on a Patagonian steppe during one growing season. We measured plant aerial cover in permanent transects located at increasing distances from a watering point in three paddocks with different stocking rates through the growing season. We also measured frequency of defoliation for vegetative and reproductive phases of different plant species located along these transects. Sheep grazing directly (a) reduced aerial cover and/or increased frequency of defoliation of certain preferred grasses and perennial forbs, (b) did not increase the aerial cover of any life form, but only the proportion of bare soil, (c) did not change the litter aerial cover, and (d) defoliated the flowers of even the least preferred shrub. Result a) was coincident with previous plant aerial cover long-term studies; but results (b) and (c) were contrary to long-term studies, probably because they resulted from indirect rather than direct grazing effects. Result (d) was not detected by long-term studies, probably because flower defoliation through grazing is undetectable when measuring shrub plant aerial cover. Our study showed that grazing has short-term direct effects mainly on the most preferred species. This could be useful for rangeland management and conservation of Patagonian steppes because short-term effects may be more easily reversible than long-term ones, and may provide early warning of rangeland condition deterioration.
Additional keywords: degradation, defoliation, herbivory, non-preferred species, plant functional types, preferred species.
References
Austrheim, G., Mysterud, A., Pedersen, B., Halvorsen, R., Hassel, K., and Evju, M. (2008). Large scale experimental effects of three levels of sheep densities on an alpine ecosystem. Oikos 117, 837–846.| Large scale experimental effects of three levels of sheep densities on an alpine ecosystem.Crossref | GoogleScholarGoogle Scholar |
Bates, D., Maechler, M., Bolker, B., and Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67, 1–48.
| Fitting linear mixed-effects models using lme4.Crossref | GoogleScholarGoogle Scholar |
Bertiller, M. B., and Bisigato, A. (1998). Vegetation dynamics under grazing disturbance. The state-and-transition model for the Patagonian steppes. Ecología Austral 8, 191–199.
Bisigato, A. J., and Bertiller, M. B. (1997). Grazing effects on patchy dryland vegetation in northern Patagonia. Journal of Arid Environments 36, 639–653.
| Grazing effects on patchy dryland vegetation in northern Patagonia.Crossref | GoogleScholarGoogle Scholar |
Bottaro, H. S. (2007). Influencias de la productividad, la calidad de la vegetación y el deterioro sobre la receptividad ganadera en el NO de la Patagonia. thesis, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina.
Briske, D. D., Derner, J. D., Brown, J. R., Fublendorf, S. D., Teaque, W. R., Havstad, K. M., Gillen, R. L., Ash, A. J., and Willms, W. D. (2008). Rotational grazing on rangelands: reconciliation of perception and experimental evidence. Rangeland Ecology and Management 61, 3–17.
| Rotational grazing on rangelands: reconciliation of perception and experimental evidence.Crossref | GoogleScholarGoogle Scholar |
Cavagnaro, F. P., and Golluscio, R. A. (2017). Structural anti-herbivore defense reduction of two Patagonian spiny shrubs in response to long time exclusion of large herbivores. Journal of Arid Environments 142, 36–40.
| Structural anti-herbivore defense reduction of two Patagonian spiny shrubs in response to long time exclusion of large herbivores.Crossref | GoogleScholarGoogle Scholar |
Cavagnaro, F. P., Golluscio, R. A., Wassner, D. F., and Ravetta, D. A. (2003). Caracterización química de arbustos patagónicos con diferente preferencia para los herbívoros. Ecología Austral 13, 215–222.
Cesa, A., and Paruelo, J. M. (2011). Changes in vegetation structure induced by domestic grazing in Patagonia (Southern Argentina). Journal of Arid Environments 75, 1129–1135.
| Changes in vegetation structure induced by domestic grazing in Patagonia (Southern Argentina).Crossref | GoogleScholarGoogle Scholar |
Cocimano, M., Lange, A., and Menvielle, E. (1977). Equivalencias ganaderas para vacunos de carne y ovinos. (AA-CREA: Buenos Aires, Argentina.)
Del Valle, H. F., Elissalde, N. O., Gagliardini, D. A., and Milovich, J. (1998). Status of desertification in the Patagonian Region: assessment and mapping from satellite imagery. Arid Soil Research and Rehabilitation 12, 95–122.
Elissalde, N., Escobar, J., and Nakamatsu, V. (2002). ‘Inventario y evaluación de pastizales naturales de la zona árida y semiárida de la Patagonia. Programa de acción nacional de lucha contra la desertificación.’ (INTA-GTZ: Chubut, Argentina.)
Fernández, R. J., Nuñez, A. H., and Soriano, A. (1992). Contrasting demography of two Patagonian shrubs under different conditions of sheep grazing and resource supply. Oecologia 91, 39–46.
| Contrasting demography of two Patagonian shrubs under different conditions of sheep grazing and resource supply.Crossref | GoogleScholarGoogle Scholar | 28313371PubMed |
Golluscio, R. A., Oesterheld, M., and Aguiar, M. R. (2005). Relationship between phenology and life form: a test with twenty five Patagonian species. Ecography 28, 273–282.
| Relationship between phenology and life form: a test with twenty five Patagonian species.Crossref | GoogleScholarGoogle Scholar |
Golluscio, R. A., Austin, A. T., García Martínez, G. C., Gonzalez-Polo, M., Sala, O. E., and Jackson, R. B. (2009). Sheep grazing decreases organic carbon and nitrogen pools in the Patagonian steppe: combination of direct and indirect effects. Ecosystems 12, 686–697.
| Sheep grazing decreases organic carbon and nitrogen pools in the Patagonian steppe: combination of direct and indirect effects.Crossref | GoogleScholarGoogle Scholar |
Graff, P., Aguiar, M. R., and Chaneton, J. C. (2007). Shifts in positive and negative plant interactions along a grazing intensity gradient. Ecology 88, 188–199.
| Shifts in positive and negative plant interactions along a grazing intensity gradient.Crossref | GoogleScholarGoogle Scholar | 17489467PubMed |
Greig Smith, P. (1983). ‘Quantitative Plant Ecology.’ 3rd edn. (Blackwell Scientific Publications: Oxford, UK.)
Jobbágy, E., and Sala, O. E. (2000). Controls of grass and shrub aboveground production in the Patagonian steppe. Ecological Applications 10, 541–549.
| Controls of grass and shrub aboveground production in the Patagonian steppe.Crossref | GoogleScholarGoogle Scholar |
Lange, R. T., and Willcocks, M. C. (1978). The relation between sheep-time spent and egesta accumulated within in arid zone paddock. Australian Journal of Experimental Agriculture and Animal Husbandry 18, 764–767.
| The relation between sheep-time spent and egesta accumulated within in arid zone paddock.Crossref | GoogleScholarGoogle Scholar |
León, R. J. C., and Aguiar, M. R. (1985). El deterioro por uso pastoril en estepas herbáceas patagónicas. Phytocoenologia 13, 181–196.
León, R. J. C., Bran, D., Collantes, M., Paruelo, J. M., and Soriano, A. (1998). Grandes unidades de vegetación de la Patagonia extra andina. Ecología Austral 8, 125–144.
Loeser, M. R., Crews, T. E., and Sisk, T. D. (2004). Defoliation increased above-ground productivity in a semi-arid grassland. Journal of Range Management 57, 442–447.
| Defoliation increased above-ground productivity in a semi-arid grassland.Crossref | GoogleScholarGoogle Scholar |
Milchunas, D. G., and Lauenroth, W. K. (1993). Quantitative effect of grazing on vegetation and soils over a global range of environments. Ecological Monographs 63, 327–366.
| Quantitative effect of grazing on vegetation and soils over a global range of environments.Crossref | GoogleScholarGoogle Scholar |
Milton, S. J., Dean, W. R. J., du Plessis, M. A., and Siegfried, W. R. (1994). A conceptual model of arid rangeland degradation. The escalating cost of declining productivity. Bioscience 44, 70–76.
| A conceptual model of arid rangeland degradation. The escalating cost of declining productivity.Crossref | GoogleScholarGoogle Scholar |
Olofsson, J. (2006). Short- and long-term effects of changes in reindeer grazing pressure on tundra heath vegetation. Journal of Ecology 94, 431–440.
| Short- and long-term effects of changes in reindeer grazing pressure on tundra heath vegetation.Crossref | GoogleScholarGoogle Scholar |
Oñatibia, G. R., and Aguiar, M. R. (2016). Continuous moderate grazing management promotes biomass production in Patagonian arid rangelands. Journal of Arid Environments 125, 73–79.
| Continuous moderate grazing management promotes biomass production in Patagonian arid rangelands.Crossref | GoogleScholarGoogle Scholar |
Paruelo, J. M., Aguiar, M. R., and Golluscio, R. A. (1988). Soil water availability in the Patagonian and steppe gravel content effect. Arid Soil Research and Rehabilitation 2, 67–74.
| Soil water availability in the Patagonian and steppe gravel content effect.Crossref | GoogleScholarGoogle Scholar |
Perelman, S., León, R., and Bussacca, J. (1997). Floristic changes related to grazing intensity in a Patagonian shrub steppe. Ecography 20, 400–406.
| Floristic changes related to grazing intensity in a Patagonian shrub steppe.Crossref | GoogleScholarGoogle Scholar |
Pinheiro, J., Bates, D., DebRoy, S., and Sarkar, D. (2009). The R Core Team, nlme: Linear and Nonlinear Mixed Effects Models. R package ver. 3.1-96.
Sistema de Información Patagonia Sur (SIPA) (2019). Resumen Anual de Boletín Meteorológico Estación Meteorológica Río Mayo. Available at: http://sipas.inta.gob.ar/?q=agrometeorologia-boletines-estacion&idEstacion=19 (accessed 20 June 2019).
Soriano, A., and Sala, O. E. (1984). Ecological strategies in a Patagonian arid steppe. Vegetation 56, 9–15.
| Ecological strategies in a Patagonian arid steppe.Crossref | GoogleScholarGoogle Scholar |
Soriano, A., Sala, O. E., and León, R. J. C. (1980). Vegetación actual y vegetación potencial en el pastizal de coirón amargo (Stipa spp.) del S.W. de Chubut. Boletín de la Sociedad Argentina de Botánica 19, 309–314.
Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A., and Smith, G. M. (2009). ‘Mixed Effects Models and Extensions in Ecology with R.’ (Springer: Berlin.)