Register      Login
The Rangeland Journal The Rangeland Journal Society
Journal of the Australian Rangeland Society
RESEARCH ARTICLE

Temporal and spatial heterogeneity of drought impact on vegetation growth on the Inner Mongolian Plateau

Miao Bailing A B , Li Zhiyong A F , Liang Cunzhu A , Wang Lixin A , Jia Chengzhen C , Bao Fuxiang D and Jiang Chao E
+ Author Affiliations
- Author Affiliations

A School of Ecology and Environment, Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region 010021, P.R.China.

B Inner Mongolia Meteorological Institute, Hohhot, Inner Mongolia Autonomous Region 010051, P.R.China.

C Inner Mongolia Ecological and Agricultural Metrological Center, Hohhot, Inner Mongolia Autonomous Region 010051, P.R.China.

D Inner Mongolia Climate Center, Hohhot, Inner Mongolia Autonomous Region 010051, P.R.China.

E Grassland Research Institute, The Chinese Academy of Agricultural Sciences, Hohhot, Inner Mongolia Autonomous Region 010010, P.R.China.

F Corresponding author. Email: zylee007@imu.edu.cn

The Rangeland Journal 40(2) 113-128 https://doi.org/10.1071/RJ16097
Submitted: 24 September 2016  Accepted: 7 November 2017   Published: 12 January 2018

Abstract

Drought frequency and intensity have increased in recent decades, with consequences for the structure and function of ecosystems of the Inner Mongolian Plateau. In this study, the Palmer drought severity index (PDSI) was chosen to assess the extent and severity of drought between 1982 and 2011. The normalised difference vegetation index (NDVI) was used to analyse the responses of five different vegetation types (forest, meadow steppe, typical steppe, desert steppe and desert) to drought. Our results show that during the last 30 years, the frequency and intensity of droughts have increased significantly, especially in summer and autumn. The greatest decline in NDVI in response to drought was observed in typical steppe and desert steppe vegetation types. Compared with other seasons, maximum decline in NDVI was observed in summer. In addition, we found that NDVI in the five vegetation types showed a lag time of 1–2 months from drought in the spring and summer. Ancillary soil moisture conditions influenced the drought response, with desert steppe showing a stronger lag effect to spring and summer drought than the other vegetation types. Our results show that drought explains a high proportion of changes in NDVI, and suggest that recent climate change has been an important factor affecting vegetation productivity in the area.

Additional keywords: vegetation dynamics, spatial variation, resilience of rangeland systems, grassland ecosystems.


References

Alley, W. M. (1984). The Palmer drought severity index: limitations and assumptions. Journal of Climate and Applied Meteorology 23, 1100–1109.
The Palmer drought severity index: limitations and assumptions.Crossref | GoogleScholarGoogle Scholar |

Anderson, L. O., Malhi, Y., Aragão, , L. , E. O. C., Ladle, R., Arai, E., Barbier, N., and Phillips, O. (2010). Remote sensing detection of droughts in Amazonian forest canopies. New Phytologist 187, 733–750.
Remote sensing detection of droughts in Amazonian forest canopies.Crossref | GoogleScholarGoogle Scholar |

Andreadis, K. M., and Lettenmaier, D. P. (2006). Trends in 20th century drought over the continental United States. Geophysical Research Letters 33, L10403.
Trends in 20th century drought over the continental United States.Crossref | GoogleScholarGoogle Scholar |

Arnone, J. A. Arnone, J. A. (2008). Prolonged suppression of ecosystem carbon dioxide uptake after an anomalously warm year. Nature 455, 383–386.
Prolonged suppression of ecosystem carbon dioxide uptake after an anomalously warm year.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFamsL7L&md5=f0fbbda0a10612790b00305b11be0a74CAS |

Bai, Y. F., Wu, J. G., Xing, Q., Pan, Q. M., Huang, J. H., Yang, D. L., and Han, X. G. (2008). Primary production and rain use efficiency across a precipitation gradient on the Mongolia Plateau. Ecology 89, 2140–2153.
Primary production and rain use efficiency across a precipitation gradient on the Mongolia Plateau.Crossref | GoogleScholarGoogle Scholar |

Brando, P. M., Goetz, S. J., Baccini, A., Nepstad, D. C., Beck, P. S., and Christman, M. C. (2010). Seasonal and interannual variability of climate and vegetation indices across the Amazon. Proceedings of the National Academy of Sciences of the United States of America 107, 14685–14690.
Seasonal and interannual variability of climate and vegetation indices across the Amazon.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVOgsb%2FF&md5=18b500d177838c8290cb9c7db33491f7CAS |

Burke, E. J., and Brown, S. J. (2008). Evaluating uncertainties in the projection of future drought. Journal of Hydrometeorology 9, 292–299.
Evaluating uncertainties in the projection of future drought.Crossref | GoogleScholarGoogle Scholar |

Byun, H. R., and Wilhite, D. A. (1999). Objective quantification of drought severity and duration. Journal of Climate 12, 2747–2756.
Objective quantification of drought severity and duration.Crossref | GoogleScholarGoogle Scholar |

Cai, W. W., Yuan, W. P., Liang, S. L., Zhang, X. T., Dong, W. J., Xia, J. Z., Fu, Y., Chen, Y., Liu, D., and Zhang, Q. (2014). Improved estimations of gross primary production using satellite-derived photosynthetically active radiation. Journal of Geophysical Research. Biogeosciences 119, 110–123.
Improved estimations of gross primary production using satellite-derived photosynthetically active radiation.Crossref | GoogleScholarGoogle Scholar |

Chen, Z. J., He, X. Y., Cook, E. R., He, H.-S., Chen, W., Sun, Y., and Cui, M. X. (2011). Detecting dryness and wetness signals from tree-rings in Shenyang, Northeast China. Palaeogeography, Palaeoclimatology, Palaeoecology 302, 301–310.
Detecting dryness and wetness signals from tree-rings in Shenyang, Northeast China.Crossref | GoogleScholarGoogle Scholar |

Chen, G. S., Tian, H. Q., Zhang, C., Liu, M. L., Ren, W., Zhu, W. Q., Chappelka, A. H., Prior, S. A., and Lockaby, G. B. (2012). Drought in the Southern United States over the 20th century: variability and its impacts on terrestrial ecosystem productivity and carbon storage. Climatic Change 114, 379–397.
Drought in the Southern United States over the 20th century: variability and its impacts on terrestrial ecosystem productivity and carbon storage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFaiu7fP&md5=d41fce96d1c92a57cac9012a821b3468CAS |

Chen, Y., Xia, J. Z., Liang, S. L., Feng, J. M., Fisher, J. B., Li, X., Li, X. L., Liu, S. G., Ma, Z. G., Miyata, A., Mu, Q. Z., Sun, L., Tang, J. W., Wang, K. C., Wen, J., Xue, Y. J., Yu, G. R., Zha, T. G., Zhang, L., Zhang, Q., Zhao, T. B., Zhao, L., and Yuan, W. P. (2014). Comparison of satellite-based evapotranspiration models over terrestrial ecosystems in China. Remote Sensing of Environment 140, 279–293.
Comparison of satellite-based evapotranspiration models over terrestrial ecosystems in China.Crossref | GoogleScholarGoogle Scholar |

Cherwin, K., and Knapp, A. (2012). Unexpected patterns of sensitivity to drought in three semi-arid grasslands. Oecologia 169, 845–852.
Unexpected patterns of sensitivity to drought in three semi-arid grasslands.Crossref | GoogleScholarGoogle Scholar |

Ciais, P., Reichstein, M., Viovy, N., Granier, A., Ogee, J., Allard, V., Aubinet, M., Buchmann, N., Bernhofer, C., Carrara, A., Chevallier, F., De Noblet, N., Friend, A. D., Friedlingstein, P., Grunwald, T., Heinesch, B., Keronen, P., Knohl, A., Krinner, G., Loustau, D., Manca, G., Matteucci, G., Miglietta, F., Ourcival, J. M., Papale, D., Pilegaard, K., Rambal, S., Seufert, G., Soussana, J. F., Sanz, M. J., Schulze, E. D., Vesala, T., and Valentini, R. (2005). Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437, 529–533.
Europe-wide reduction in primary productivity caused by the heat and drought in 2003.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVajs7rL&md5=5116068247b792483c39d45de9a7bc23CAS |

Cook, E. R., Seager, R., Cane, M. A., and Stahle, D. W. (2007). North American drought: Reconstructions, causes, and consequences. Earth-Science Reviews 81, 93–134.
North American drought: Reconstructions, causes, and consequences.Crossref | GoogleScholarGoogle Scholar |

Craine, J. M., Ocheltree, T. W., Nippert, J. B., Towne, E. G., Skibbe, A. M., Kembel, S. W., and Fargione, J. E. (2012). Global diversity of drought tolerance and grassland climate-change resilience. Nature Climate Change 3, 63–67.
Global diversity of drought tolerance and grassland climate-change resilience.Crossref | GoogleScholarGoogle Scholar |

Dai, A. G. (2011a). Drought under global warming: a review. Wiley Interdisciplinary Reviews: Climate Change 2, 45–65.
Drought under global warming: a review.Crossref | GoogleScholarGoogle Scholar |

Dai, A. G. (2011b). Characteristics and trends in various forms of the Palmer Drought Severity Index during 1900–2008. Journal of Geophysical Research, D, Atmospheres 116, D12115.
Characteristics and trends in various forms of the Palmer Drought Severity Index during 1900–2008.Crossref | GoogleScholarGoogle Scholar |

Dai, A. G. (2012). Increasing drought under global warming in observations and models. Nature Climate Change 3, 52–58.
Increasing drought under global warming in observations and models.Crossref | GoogleScholarGoogle Scholar |

Dai, A. G., Trenberth, K. E., and Karl, T. R. (1998). Global variations in droughts and wet spells: 1900–1995. Geophysical Research Letters 25, 3367–3370.
Global variations in droughts and wet spells: 1900–1995.Crossref | GoogleScholarGoogle Scholar |

Dai, A. G., Trenberth, K. E., and Qian, T. T. (2004). A global data set of Palmer Drought Severity Index for 1870–2002: Relationship with soil moisture and effects of surface warming. Journal of Hydrometeorology 5, 1117–1130.
A global data set of Palmer Drought Severity Index for 1870–2002: Relationship with soil moisture and effects of surface warming.Crossref | GoogleScholarGoogle Scholar |

Davi, N. K., Jacoby, G. C., D’Arrigo, R. D., Baatarbileg, N., Li, J. B., and Curtis, A. E. (2009). A tree-ring-based drought index reconstruction for far-western Mongolia: 1565–2004. International Journal of Climatology 29, 1508–1514.
A tree-ring-based drought index reconstruction for far-western Mongolia: 1565–2004.Crossref | GoogleScholarGoogle Scholar |

Ding, Y. H., Wang, Z. Y., and Sun, Y. (2008). Inter-decadal variation of the summer precipitation in East China and its association with decreasing Asian summer monsoon. Part I: Observed evidences. International Journal of Climatology 28, 1139–1161.
Inter-decadal variation of the summer precipitation in East China and its association with decreasing Asian summer monsoon. Part I: Observed evidences.Crossref | GoogleScholarGoogle Scholar |

Dreesen, F. E., De Boeck, H. J., Janssens, I. A., and Nijs, I. (2012). Summer heat and drought extremes trigger unexpected changes in productivity of a temperate annual/biannual plant community. Environmental and Experimental Botany 79, 21–30.
Summer heat and drought extremes trigger unexpected changes in productivity of a temperate annual/biannual plant community.Crossref | GoogleScholarGoogle Scholar |

Du, S. Q., Gu, H. H., Wen, J. H., Chen, K., and Van Rompaey, A. (2015). Detecting flood variations in Shanghai over 1949–2009 with Mann–Kendall tests and a newspaper-based database. Water 7, 1808–1824.
Detecting flood variations in Shanghai over 1949–2009 with Mann–Kendall tests and a newspaper-based database.Crossref | GoogleScholarGoogle Scholar |

Fang, J. Y., Piao, S. L., Zhou, L. M., He, J. S., Wei, F. Y., Myneni, R. B., Tucker, C. J., and Tan, K. (2005). Precipitation patterns alter growth of temperate vegetation. Geophysical Research Letters 32, L21411.
Precipitation patterns alter growth of temperate vegetation.Crossref | GoogleScholarGoogle Scholar |

Fernández-Giménez, M. E., Batkhishig, B., and Batbuyan, B. (2012). Cross-boundary and cross-level dynamics increase vulnerability to severe winter disasters (dzud) in Mongolia. Global Environmental Change 22, 836–851.
Cross-boundary and cross-level dynamics increase vulnerability to severe winter disasters (dzud) in Mongolia.Crossref | GoogleScholarGoogle Scholar |

Fisher, R. A., Williams, M., Lola Da Costa, A., Malhi, Y., Da Costa, R. F., Almeida, S., and Meir, P. (2007). The response of an Eastern Amazonian rain forest to drought stress: results and modelling analyses from a throughfall exclusion experiment. Global Change Biology 13, 2361–2378.
The response of an Eastern Amazonian rain forest to drought stress: results and modelling analyses from a throughfall exclusion experiment.Crossref | GoogleScholarGoogle Scholar |

Gao, T., Jiang, X. G., and Hu, Y. H. (2013). Climate condition of the significant precipitation decrease over the middle-eastern region of Inner Mongolia, China in recent 10 years (2001–2010). Theoretical and Applied Climatology 111, 265–274.
Climate condition of the significant precipitation decrease over the middle-eastern region of Inner Mongolia, China in recent 10 years (2001–2010).Crossref | GoogleScholarGoogle Scholar |

Gao, T., Yu, J. Y., and Paek, H. (2016). Impacts of four northern-hemisphere teleconnection patterns on atmospheric circulations over Eurasia and the Pacific. Theoretical and Applied Climatology 129, 815–831.

Gudmundsson, L., and Seneviratne, S. I. (2015). European drought trends. Proceedings of the International Association of Hydrological Sciences 369, 75–79.
European drought trends.Crossref | GoogleScholarGoogle Scholar |

Guo, L. H., Wu, S. H., Zhao, D. S., Yin, Y. H., Leng, G. Y., and Zhang, Q. Y. (2014). NDVI-based vegetation change in Inner Mongolia from 1982 to 2006 and its relationship to climate at the biome scale. Advances in Meteorology 2014, 692068.
NDVI-based vegetation change in Inner Mongolia from 1982 to 2006 and its relationship to climate at the biome scale.Crossref | GoogleScholarGoogle Scholar |

Guttman, N. B. (1991). A sensitivity analysis of the Palmer hydrologic drought index. Jawra Journal of the American Water Resources Association 27, 797–807.
A sensitivity analysis of the Palmer hydrologic drought index.Crossref | GoogleScholarGoogle Scholar |

Hamed, K. H. (2008). Trend detection in hydrologic data: The Mann–Kendall trend test under the scaling hypothesis. Journal of Hydrology 349, 350–363.
Trend detection in hydrologic data: The Mann–Kendall trend test under the scaling hypothesis.Crossref | GoogleScholarGoogle Scholar |

Hamed, K. H. (2009). Exact distribution of the Mann–Kendall trend test statistic for persistent data. Journal of Hydrology 365, 86–94.
Exact distribution of the Mann–Kendall trend test statistic for persistent data.Crossref | GoogleScholarGoogle Scholar |

Hao, Z. C., and Singh, V. P. (2015). Drought characterization from a multivariate perspective: A review. Journal of Hydrology 527, 668–678.
Drought characterization from a multivariate perspective: A review.Crossref | GoogleScholarGoogle Scholar |

He, B., Lü, A. F., Wu, J. J., Zhao, L., and Liu, M. (2011). Drought hazard assessment and spatial characteristics analysis in China. Journal of Geographical Sciences 21, 235–249.
Drought hazard assessment and spatial characteristics analysis in China.Crossref | GoogleScholarGoogle Scholar |

Heim, R. R. (2002). A review of Twentieth‒Century drought indices used in the United States. Bulletin of the American Meteorological Society 83, 1149–1165.
A review of Twentieth‒Century drought indices used in the United States.Crossref | GoogleScholarGoogle Scholar |

Holben, B. N. (1986). Characteristics of maximum-value composite images from temporal AVHRR data. International Journal of Remote Sensing 7, 1417–1434.
Characteristics of maximum-value composite images from temporal AVHRR data.Crossref | GoogleScholarGoogle Scholar |

Huang, J., Xue, Y., Sun, S. L., and Zhang, J. C. (2015). Spatial and temporal variability of drought during 1960–2012 in Inner Mongolia, north China. Quaternary International 355, 134–144.
Spatial and temporal variability of drought during 1960–2012 in Inner Mongolia, north China.Crossref | GoogleScholarGoogle Scholar |

IPCC (2013). Climate change 2013: The physical science basis. In ‘Contribution of Working Group 1 to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change’. (Eds T. Stocker, D. H. Qin, G.-K. Plattner, et al.) pp. 1535. (Cambridge University Press: Cambridge, UK.)

Jacobi, J., Perrone, D., Duncan, L. L., and Hornberger, G. (2013). A tool for calculating the Palmer drought indices. Water Resources Research 49, 6086–6089.
A tool for calculating the Palmer drought indices.Crossref | GoogleScholarGoogle Scholar |

Ji, L., and Peters, A. J. (2003). Assessing vegetation response to drought in the northern Great Plains using vegetation and drought indices. Remote Sensing of Environment 87, 85–98.
Assessing vegetation response to drought in the northern Great Plains using vegetation and drought indices.Crossref | GoogleScholarGoogle Scholar |

John, R., Chen, J. Q., Lu, N., Guo, K., Liang, C. Z., Wei, Y. F., Noormets, A., Ma, K. P., and Han, X. G. (2008). Predicting plant diversity based on remote sensing products in the semi-arid region of Inner Mongolia. Remote Sensing of Environment 112, 2018–2032.
Predicting plant diversity based on remote sensing products in the semi-arid region of Inner Mongolia.Crossref | GoogleScholarGoogle Scholar |

John, R., Chen, J. Q., Ou-Yang, Z. T., Xiao, J. F., Becker, R., Samanta, A., Ganguly, S., Yuan, W. P., and Batkhishig, O. (2013). Vegetation response to extreme climate events on the Mongolian Plateau from 2000 to 2010. Environmental Research Letters 8, 035033.
Vegetation response to extreme climate events on the Mongolian Plateau from 2000 to 2010.Crossref | GoogleScholarGoogle Scholar |

Kendall, M. G. (1975). ‘Rank Correlation Methods.’ (Griffin: London, UK.)

Keyantash, J., and Dracup, J. A. (2002). The quantification of drought: An evaluation of drought indices. Bulletin of the American Meteorological Society 83, 1167–1180.
The quantification of drought: An evaluation of drought indices.Crossref | GoogleScholarGoogle Scholar |

Kuzyakov, Y., and Gavrichkova, O. (2010). Review: time lag between photosynthesis and carbon dioxide efflux from soil: a review of mechanisms and controls. Global Change Biology 16, 3386–3406.
Review: time lag between photosynthesis and carbon dioxide efflux from soil: a review of mechanisms and controls.Crossref | GoogleScholarGoogle Scholar |

Li, J. B., Cook, E. R., D’arrigo, R., Chen, F., and Gou, X. H. (2009). Moisture variability across China and Mongolia: 1951–2005. Climate Dynamics 32, 1173–1186.
Moisture variability across China and Mongolia: 1951–2005.Crossref | GoogleScholarGoogle Scholar |

Liu, Y., Yang, X. G., Wang, E. L., and Xue, C. Y. (2014a). Climate and crop yields impacted by ENSO episodes on the North China Plain: 1956–2006. Regional Environmental Change 14, 49–59.
Climate and crop yields impacted by ENSO episodes on the North China Plain: 1956–2006.Crossref | GoogleScholarGoogle Scholar |

Liu, Y., Zhou, Y. L., Ju, W. M., Wang, S. Q., Wu, X. C., and He, M. Z. (2014b). Impacts of droughts on carbon sequestration by China’s terrestrial ecosystems from 2000 to 2011. Biogeosciences 11, 2583–2599.
Impacts of droughts on carbon sequestration by China’s terrestrial ecosystems from 2000 to 2011.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhs1Sju73M&md5=30dee41af0d76097bc38999aba9c07ebCAS |

Liu, S. L., Kang, W. P., and Wang, T. (2016). Drought variability in Inner Mongolia of northern China during 1960–2013 based on standardized precipitation evapotranspiration index. Environmental Earth Sciences 75, 1–14.

Lu, N., Wilske, B., Ni, J., John, R., and Chen, J. (2009). Climate change in Inner Mongolia from 1955 to 2005-trends at regional, biome and local scales. Environmental Research Letters 4, 045006.
Climate change in Inner Mongolia from 1955 to 2005-trends at regional, biome and local scales.Crossref | GoogleScholarGoogle Scholar |

Mann, H. B. (1945). Nonparametric tests against trend. Econometrica 13, 245–259.
Nonparametric tests against trend.Crossref | GoogleScholarGoogle Scholar |

McDowell, N. G., Beerling, D. J., Breshears, D. D., Fisher, R. A., Raffa, K. F., and Stitt, M. (2011). The interdependence of mechanisms underlying climate-driven vegetation mortality. Trends in Ecology & Evolution 26, 523–532.
The interdependence of mechanisms underlying climate-driven vegetation mortality.Crossref | GoogleScholarGoogle Scholar |

McKee, T. B., Doesken, N. J., and Kleist, J. (1993). The relationship of drought frequency and duration to time scales. In ‘Eighth Conference on Applied Climatology’. pp. 179–184. (American Meteorological Society: Anaheim, CA, USA.)

Mishra, A. K., and Singh, V. P. (2010). A review of drought concepts. Journal of Hydrology 391, 202–216.
A review of drought concepts.Crossref | GoogleScholarGoogle Scholar |

Mohammat, A., Wang, X. H., Xu, X. T., Peng, L. Q., Yang, Y., Zhang, X. P., Myneni, R. B., and Piao, S. L. (2013). Drought and spring cooling induced recent decrease in vegetation growth in Inner Asia. Agricultural and Forest Meteorology 179, 21–30.
Drought and spring cooling induced recent decrease in vegetation growth in Inner Asia.Crossref | GoogleScholarGoogle Scholar |

Mu, S. J., Chen, Y. Z., Li, J. L., Ju, W. M., Odeh, I. O. A., and Zou, X. L. (2013). Grassland dynamics in response to climate change and human activities in Inner Mongolia, China between 1985 and 2009. The Rangeland Journal 35, 315–329.
Grassland dynamics in response to climate change and human activities in Inner Mongolia, China between 1985 and 2009.Crossref | GoogleScholarGoogle Scholar |

Nandintsetseg, B., and Shinoda, M. (2013). Assessment of drought frequency, duration, and severity and its impact on pasture production in Mongolia. Natural Hazards 66, 995–1008.
Assessment of drought frequency, duration, and severity and its impact on pasture production in Mongolia.Crossref | GoogleScholarGoogle Scholar |

Palmer, W. C. (1965). ‘Meteorological Drought.’ (US Department of Commerce, Weather Bureau: Washington, DC, USA.)

Peng, J., Dong, W. J., Yuan, W. P., and Zhang, Y. (2012). Responses of grassland and forest to temperature and precipitation changes in Northeast China. Advances in Atmospheric Sciences 29, 1063–1077.
Responses of grassland and forest to temperature and precipitation changes in Northeast China.Crossref | GoogleScholarGoogle Scholar |

Piao, S. L., Mohammat, A., Fang, J. Y., Cai, Q., and Feng, J. M. (2006). NDVI-based increase in growth of temperate grasslands and its responses to climate changes in China. Global Environmental Change 16, 340–348.
NDVI-based increase in growth of temperate grasslands and its responses to climate changes in China.Crossref | GoogleScholarGoogle Scholar |

Qian, S., Wang, L. Y., and Gong, X. F. (2012). Climate change and its effects on grassland productivity and carrying capacity of livestock in the main grasslands of China. The Rangeland Journal 34, 341–347.
Climate change and its effects on grassland productivity and carrying capacity of livestock in the main grasslands of China.Crossref | GoogleScholarGoogle Scholar |

Rammig, A., Wiedermann, M., Donges, J. F., Babst, F., Vonbloh, W., Frank, D., Thonicke, K., and Mahecha, M. D. (2014). Tree-ring responses to extreme climate events as benchmarks for terrestrial dynamic vegetation models. Biogeosciences Discussions 11, 2537–2568.
Tree-ring responses to extreme climate events as benchmarks for terrestrial dynamic vegetation models.Crossref | GoogleScholarGoogle Scholar |

Saatchi, S., Asefi-Najafabady, S., Malhi, Y., Aragão, , L. , E. O. C., Anderson, L. O., Myneni, R. B., and Nemani, R. (2013). Persistent effects of a severe drought on Amazonian forest canopy. Proceedings of the National Academy of Sciences of the United States of America 110, 565–570.
Persistent effects of a severe drought on Amazonian forest canopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFOhtbY%3D&md5=788811bc918cb4296873ffb462c0b830CAS |

Saleska, S. R., Didan, K., Huete, A. R., and da Rocha, H. R. (2007). Amazon forests green-up during 2005 drought. Science 318, 612.
Amazon forests green-up during 2005 drought.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtF2rsbjE&md5=898fb0447426bb426c8b3b60ac771ed7CAS |

Schwalm, C. R., Williams, C. A., Schaefer, K., Arneth, A., Bonal, D., Buchmann, N., Chen, J. Q., Law, B. E., Lindroth, A., Luyssaert, S., Reichstein, M., and Richardson, A. D. (2010). Assimilation exceeds respiration sensitivity to drought: A FLUXNET synthesis. Global Change Biology 16, 657–670.
Assimilation exceeds respiration sensitivity to drought: A FLUXNET synthesis.Crossref | GoogleScholarGoogle Scholar |

Schwalm, C. R., Williams, C. A., Schaefer, K., Baldocchi, D., Black, T. A., Goldstein, A. H., Law, B. E., Oechel, W. C., Kyaw Tha Paw, U., and Scott, R. L. (2012). Reduction in carbon uptake during turn of the century drought in western North America. Nature Geoscience 5, 551–556.
Reduction in carbon uptake during turn of the century drought in western North America.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFWjtrfN&md5=2e47c2f5521ab2090eb643c11b2f109eCAS |

Shanahan, T. M., Overpeck, J. T., Anchukaitis, K. J., Beck, J. W., Cole, J. E., Dettman, D. L., Peck, J. A., Scholz, C. A., and King, J. W. (2009). Atlantic forcing of persistent drought in West Africa. Science 324, 377–380.
Atlantic forcing of persistent drought in West Africa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXksVOlsb0%3D&md5=14081a1b7d8f3c6752e37ab1efe7559bCAS |

She, D. X., and Xia, J. (2013). The spatial and temporal analysis of dry spells in the Yellow River basin, China. Stochastic Environmental Research and Risk Assessment 27, 29–42.
The spatial and temporal analysis of dry spells in the Yellow River basin, China.Crossref | GoogleScholarGoogle Scholar |

Sheffield, J., Wood, E. F., and Roderick, M. L. (2012). Little change in global drought over the past 60 years. Nature 491, 435–438.
Little change in global drought over the past 60 years.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1OgtL3N&md5=4646608e8f1b6d07ffa82537979323f7CAS |

Shi, Z., Thomey, M. L., Mowll, W., Litvak, M., Brunsell, N. A., Collins, S. L., Pockman, W. T., Smith, M. D., Knapp, A. K., and Luo, Y. (2014). Differential effects of extreme drought on production and respiration: synthesis and modeling analysis. Biogeosciences 11, 621–633.
Differential effects of extreme drought on production and respiration: synthesis and modeling analysis.Crossref | GoogleScholarGoogle Scholar |

Smith, M. D. (2011a). An ecological perspective on extreme climatic events: a synthetic definition and framework to guide future research. Journal of Ecology 99, 656–663.
An ecological perspective on extreme climatic events: a synthetic definition and framework to guide future research.Crossref | GoogleScholarGoogle Scholar |

Smith, M. D. (2011b). The ecological role of climate extremes: current understanding and future prospects. Journal of Ecology 99, 651–655.
The ecological role of climate extremes: current understanding and future prospects.Crossref | GoogleScholarGoogle Scholar |

Song, L. C., Cannon, A. J., and Whitfield, P. H. (2007). Changes in seasonal patterns of temperature and precipitation in China during 1971–2000. Advances in Atmospheric Sciences 24, 459–473.
Changes in seasonal patterns of temperature and precipitation in China during 1971–2000.Crossref | GoogleScholarGoogle Scholar |

Spinoni, J., Naumann, G., Carrao, H., Barbosa, P., and Vogt, J. V. (2014). World drought frequency, duration, and severity for 1951–2010. International Journal of Climatology 34, 2792–2804.
World drought frequency, duration, and severity for 1951–2010.Crossref | GoogleScholarGoogle Scholar |

Spinoni, J., Naumann, G., Vogt, J. V., and Barbosa, P. (2015). European drought climatologies and trends based on a multi-indicator approach. Global and Planetary Change 127, 50–57.
European drought climatologies and trends based on a multi-indicator approach.Crossref | GoogleScholarGoogle Scholar |

Sui, X. H., Zhou, G. S., and Zhuang, Q. L. (2013). Sensitivity of carbon budget to historical climate variability and atmospheric CO2 concentration in temperate grassland ecosystems in China. Climatic Change 117, 259–272.
Sensitivity of carbon budget to historical climate variability and atmospheric CO2 concentration in temperate grassland ecosystems in China.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXitFaltbc%3D&md5=b709fdb875c2ca0b3bc03ff77a9619cfCAS |

Teuling, A. J., Seneviratne, S. I., Stockli, R., Reichstein, M., Moors, E., Ciais, P., Luyssaert, S., van den Hurk, B., Ammann, C., Bernhofer, C., Dellwik, E., Gianelle, D., Gielen, B., Grunwald, T., Klumpp, K., Montagnani, L., Moureaux, C., Sottocornola, M., and Wohlfahrt, G. (2010). Contrasting response of European forest and grassland energy exchange to heatwaves. Nature Geoscience 3, 722–727.
Contrasting response of European forest and grassland energy exchange to heatwaves.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1ajtrfN&md5=d766039a4dcf42e74337e32a164c21c7CAS |

van der Molen, M. K., Dolman, A. J., Ciais, P., Eglin, T., Gobron, N., Law, B. E., Meir, P., Peters, W., Phillips, O. L., Reichstein, M., Chen, T., Dekker, S. C., Doubková, M., Friedl, M. A., Jung, M., van den Hurk, B. J. J. M., de Jeu, R. A. M., Kruijt, B., Ohtan, T., Rebel, K. T., Plummer, S., Seneviratnep, S. I., Sitchg, S., Teuling, A. J., van der Werf, G. R., and Wang, G. (2011). Drought and ecosystem carbon cycling. Agricultural and Forest Meteorology 151, 765–773.
Drought and ecosystem carbon cycling.Crossref | GoogleScholarGoogle Scholar |

Vicente-Serrano, S. M., Beguería, S., Lorenzo-Lacruz, J., Camarero, J. J., López-Moreno, J. I., Azorin-Molina, C., Revuelto, J., Morán-Tejeda, E., and Sanchez-Lorenzo, A. (2012). Performance of drought indices for ecological, agricultural, and hydrological applications. Earth Interactions 16, 1–27.
Performance of drought indices for ecological, agricultural, and hydrological applications.Crossref | GoogleScholarGoogle Scholar |

Vicente-Serrano, S. M., Gouveia, C., Camarero, J. J., Beguería, S., Trigo, R., López-Moreno, J. I., Azorín-Molina, C., Pasho, E., Lorenzo-Lacruz, J., Revuelto, J., Morán-Tejeda, E., and Sanchez-Lorenzo, A. (2013). Response of vegetation to drought time-scales across global land biomes. Proceedings of the National Academy of Sciences of the United States of America 110, 52–57.
Response of vegetation to drought time-scales across global land biomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnvVWgtA%3D%3D&md5=6ec40da1a2d6bdfaf0b7b92902525875CAS |

Wang, H. J. (2001). The weakening of the Asian monsoon circulation after the end of 1970’s. Advances in Atmospheric Sciences 18, 376–386.
The weakening of the Asian monsoon circulation after the end of 1970’s.Crossref | GoogleScholarGoogle Scholar |

Wang, G. L. (2005). Agricultural drought in a future climate: results from 15 global climate models participating in the IPCC 4th assessment. Climate Dynamics 25, 739–753.
Agricultural drought in a future climate: results from 15 global climate models participating in the IPCC 4th assessment.Crossref | GoogleScholarGoogle Scholar |

Wang, D., and Ba, L. (2008). Ecology of meadow steppe in northeast China. The Rangeland Journal 30, 247–254.
Ecology of meadow steppe in northeast China.Crossref | GoogleScholarGoogle Scholar |

Weiss, J. L., Gutzler, D. S., Coonrod, J. E. A., and Dahm, C. N. (2004). Long-term vegetation monitoring with NDVI in a diverse semi-arid setting, central New Mexico, USA. Journal of Arid Environments 58, 249–272.
Long-term vegetation monitoring with NDVI in a diverse semi-arid setting, central New Mexico, USA.Crossref | GoogleScholarGoogle Scholar |

Wilhite, D. A. (2000). Drought as a natural hazard: Concepts and definitions. In ‘Drought: A Global Assessment, Vol. I’. (Ed. D. A. Wilhite.) pp. 3–18. (Routledge: London, UK and New York, USA.)

Wu, J. G., Zhang, Q., Li, A., and Liang, C. Z. (2015). Historical landscape dynamics of Inner Mongolia: patterns, drivers, and impacts. Landscape Ecology 30, 1579–1598.
Historical landscape dynamics of Inner Mongolia: patterns, drivers, and impacts.Crossref | GoogleScholarGoogle Scholar |

Xia, J. Z., Liang, S. L., Chen, J. Q., Yuan, W. P., Liu, S. G., Li, L. H., Cai, W. W., Zhang, L., Fu, Y., Zhao, T. B., Feng, J. M., Ma, Z. G., Ma, M. G., Liu, S. M., Zhou, G. S., Asanuma, J., Chen, S. P., Du, M. Y., Davaa, G., Kato, T., Liu, Q., Liu, S. H., Li, S. G., Shao, C. L., Tang, Y. H., and Zhao, X. (2014). Satellite-based analysis of evapotranspiration and water balance in the grassland ecosystems of Dryland East Asia. PLoS One 9, e97295.
Satellite-based analysis of evapotranspiration and water balance in the grassland ecosystems of Dryland East Asia.Crossref | GoogleScholarGoogle Scholar |

Xiao, J. F., Zhuang, Q. L., Liang, E. Y., McGuire, A. D., Moody, A., Kicklighter, D. W., Shao, X. M., and Melillo, J. M. (2009). Twentieth-Century droughts and their impacts on terrestrial carbon cycling in China. Earth Interactions 13, 1–31.
Twentieth-Century droughts and their impacts on terrestrial carbon cycling in China.Crossref | GoogleScholarGoogle Scholar |

Xu, M., Chang, C. P., Fu, C. B., Qi, Y., Robock, A., Robinson, D., and Zhang, H. M. (2006). Steady decline of east Asian monsoon winds, 1969–2000: Evidence from direct ground measurements of wind speed. Journal of Geophysical Research, D, Atmospheres 111, D24111.
Steady decline of east Asian monsoon winds, 1969–2000: Evidence from direct ground measurements of wind speed.Crossref | GoogleScholarGoogle Scholar |

Yan, H., Wang, S. Q., Wang, J. B., Lu, H. Q., Guo, A. H., Zhu, Z. C., Myneni, R. B., and Shugart, H. H. (2016). Assessing spatiotemporal variation of drought in China and its impact on agriculture during 1982–2011 by using PDSI indices and agriculture drought survey data. Journal of Geophysical Research, D, Atmospheres 121, 2283–2298.
Assessing spatiotemporal variation of drought in China and its impact on agriculture during 1982–2011 by using PDSI indices and agriculture drought survey data.Crossref | GoogleScholarGoogle Scholar |

Yang, Y. H., Fang, J. Y., Ma, W. H., and Wang, W. (2008). Relationship between variability in aboveground net primary production and precipitation in global grasslands. Geophysical Research Letters 35, L23710.
Relationship between variability in aboveground net primary production and precipitation in global grasslands.Crossref | GoogleScholarGoogle Scholar |

Yang, T. T., Li, P., Wu, X. H., Hou, X. Y., Liu, P. T., and Yao, G. Z. (2014). Assessment of vulnerability to climate change in the Inner Mongolia steppe at a county scale from 1980 to 2009. The Rangeland Journal 36, 545–555.
Assessment of vulnerability to climate change in the Inner Mongolia steppe at a county scale from 1980 to 2009.Crossref | GoogleScholarGoogle Scholar |

Yang, Y. T., Guan, H. D., Batelaan, O., McVicar, T. R., Long, D., Piao, S. L., Liang, W., Liu, B., Jin, Z., and Simmons, C. T. (2016). Contrasting responses of water use efficiency to drought across global terrestrial ecosystems. Scientific Reports 6, 23284.
Contrasting responses of water use efficiency to drought across global terrestrial ecosystems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XktlKiu7Y%3D&md5=5b59b2a5db377bc7a49ee23194ef00c8CAS |

Yu, F. F., Price, K. P., Ellis, J., and Shi, P. J. (2003). Response of seasonal vegetation development to climatic variations in eastern central Asia. Remote Sensing of Environment 87, 42–54.
Response of seasonal vegetation development to climatic variations in eastern central Asia.Crossref | GoogleScholarGoogle Scholar |

Yu, M. X., Li, Q. F., Hayes, M. J., Svoboda, M. D., and Heim, R. R. (2014). Are droughts becoming more frequent or severe in China based on the Standardized Precipitation Evapotranspiration Index: 1951–2010? International Journal of Climatology 34, 545–558.
Are droughts becoming more frequent or severe in China based on the Standardized Precipitation Evapotranspiration Index: 1951–2010?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXlsFGju74%3D&md5=3a5078e2a76400d402b319e23d0df7e6CAS |

Yuan, W. P., Liu, D., Dong, W. J., Liu, S. G., Zhou, G. S., Yu, G. R., Zhao, T. B., Feng, J. M., Ma, Z. G., Chen, J. Q., Chen, Y., Chen, S. P., Han, S. J., Huang, J. P., Li, L. H., Liu, H. Z., Liu, S. M., Ma, M. G., Wang, Y. F., Xia, J. Z., Xu, W. F., Zhang, Q., Zhao, X. Q., and Zhao, L. (2014). Multiyear precipitation reduction strongly decreases carbon uptake over northern China. Journal of Geophysical Research. Biogeosciences 119, 881–896.
Multiyear precipitation reduction strongly decreases carbon uptake over northern China.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXpsFejtro%3D&md5=ea0fcf545a8a25085abbb1710076fbf0CAS |

Yuan, W. P., Xu, B., Chen, Z. Q., Xia, J. Z., Xu, W. F., Chen, Y., Wu, X. X., and Fu, Y. (2015). Validation of China-wide interpolated daily climate variables from 1960 to 2011. Theoretical and Applied Climatology 119, 689–700.
Validation of China-wide interpolated daily climate variables from 1960 to 2011.Crossref | GoogleScholarGoogle Scholar |

Yue, S., Pilon, P., Phinney, B., and Cavadias, G. (2002). The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrological Processes 16, 1807–1829.
The influence of autocorrelation on the ability to detect trend in hydrological series.Crossref | GoogleScholarGoogle Scholar |

Zargar, A., Sadiq, R., Naser, B., and Khan, F. I. (2011). A review of drought indices. Environmental Reviews 19, 333–349.
A review of drought indices.Crossref | GoogleScholarGoogle Scholar |

Zhang, L. X., and Zhou, T. J. (2015). Drought over East Asia: A review. Journal of Climate 28, 3375–3399.
Drought over East Asia: A review.Crossref | GoogleScholarGoogle Scholar |

Zhang, Q., Liu, C. L., Xu, C. Y., Xu, Y. Y., and Jiang, T. (2006). Observed trends of annual maximum water level and streamflow during past 130 years in the Yangtze River basin, China. Journal of Hydrology 324, 255–265.
Observed trends of annual maximum water level and streamflow during past 130 years in the Yangtze River basin, China.Crossref | GoogleScholarGoogle Scholar |

Zhang, X. Y., Hu, Y. F., Zhuang, D. F., Qi, Y. Q., and Ma, X. (2009). NDVI spatial pattern and its differentiation on the Mongolian Plateau. Journal of Geographical Sciences 19, 403–415.
NDVI spatial pattern and its differentiation on the Mongolian Plateau.Crossref | GoogleScholarGoogle Scholar |

Zhang, G. G., Kang, Y. M., Han, G. D., and Sakurai, K. (2011). Effect of climate change over the past half century on the distribution, extent and NPP of ecosystems of Inner Mongolia. Global Change Biology 17, 377–389.
Effect of climate change over the past half century on the distribution, extent and NPP of ecosystems of Inner Mongolia.Crossref | GoogleScholarGoogle Scholar |

Zhang, H. C., Yuan, W. P., Dong, W. J., and Liu, S. G. (2014). Seasonal patterns of litterfall in forest ecosystem worldwide. Ecological Complexity 20, 240–247.
Seasonal patterns of litterfall in forest ecosystem worldwide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXlsFGjtL0%3D&md5=b79af6056ec4eca7bac61a2613d33ea4CAS |

Zhang, Y. X., Wu, M. X., Li, D. L., Liu, Y. G., and Li, S. C. (2017). Spatiotemporal decompositions of summer drought in China and its teleconnection with global sea surface temperatures during 1901–2012. Journal of Climate 30, 6391–6412.
Spatiotemporal decompositions of summer drought in China and its teleconnection with global sea surface temperatures during 1901–2012.Crossref | GoogleScholarGoogle Scholar |

Zhao, M. S., and Running, S. W. (2010). Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 329, 940–943.
Drought-induced reduction in global terrestrial net primary production from 2000 through 2009.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVaqur%2FE&md5=926fb2a9213cd1b4abb96b206ee6f5ceCAS |

Zhao, M. S., Heinsch, F. A., Nemani, R. R., and Running, S. W. (2005). Improvements of the MODIS terrestrial gross and net primary production global data set. Remote Sensing of Environment 95, 164–176.
Improvements of the MODIS terrestrial gross and net primary production global data set.Crossref | GoogleScholarGoogle Scholar |