Register      Login
The Rangeland Journal The Rangeland Journal Society
Journal of the Australian Rangeland Society
RESEARCH ARTICLE

Flooding effects on grassland species composition in the Azul creek basin, Argentina

Ilda Entraigas A B C E , Natalia Vercelli A C D , Guadalupe Ares A D , Marcelo Varni A and Sofía Zeme A B
+ Author Affiliations
- Author Affiliations

A Instituto de Hidrología de Llanuras ‘Dr Eduardo J. Usunoff’, CC 47, (B7300), Azul, Buenos Aires, Argentina.

B CIC, Instituto de Hidrología de Llanuras ‘Dr Eduardo J. Usunoff’, CC 47, (B7300), Azul, Buenos Aires, Argentina.

C Facultad de Agronomía, Universidad Nacional del Centro de la Provincia de Buenos Aires, CC 47, (B7300), Azul, Buenos Aires, Argentina.

D CONICET, Instituto de Hidrología de Llanuras ‘Dr Eduardo J. Usunoff’, CC 47, (B7300), Azul, Buenos Aires, Argentina.

E Corresponding author. Email: ilda@faa.unicen.edu.ar

The Rangeland Journal 39(3) 245-252 https://doi.org/10.1071/RJ16034
Submitted: 21 April 2016  Accepted: 5 April 2017   Published: 6 June 2017

Abstract

From a hydrological point of view, the characteristic of the water behaviour in catchments so depressed as the Azul creek basin (centre of Buenos Aires province, Argentina) is water accumulation above the land surface. Thus, water on the ground does not have a single runoff direction, but moves in a disorderly, indefinite and unpredictable way. Considering that periodic floods are a typical disturbance of the region, the objective of this study is to analyse, under field conditions, the transformative effect of prolonged flooding on floristic composition, taking into account the different vegetation patches and their relative position over the relief, the chemical characteristics and the groundwater fluctuation, and some edaphic properties in each site.

Vegetation samplings were performed during three consecutive springs, when the grassland was on different hydrological conditions due to very different rainfall precedent histories. A digital terrain model of the study area was built and a flow accumulation map was created from it. Pits were dug to describe edaphic variables and shallow wells were drilled for monitoring the groundwater characteristics. Flooding, in relation with surface and groundwater dynamics and soil characteristics, is the factor that determines and promotes the differentiation among sites that are relatively close, contiguous and even topographically in almost identical positions. So, some patches of vegetation get their differentiation through the limiting conditions of their soils, while others receive greater influence from the hydrodynamics to which they are subject. Thus, in this study it becomes evident how certain stands are floristically homogenised or differentiated over time according to their flooding conditions and, hence, according to the area from which they receive surface and groundwater flow. Also, results corroborate the way the water regime determines the structure and heterogeneity of plant communities in such environments.

Additional keywords: grasslands, floodplain ecosystems, plant spatial patterns, vegetation dynamics.


References

APHA (2005). ‘Standard Methods for the Examination of Water and Wastewater.’ 21st edn. (American Public Health Association: Washington, DC.)

Bilello, G., Puppi, N., and González, M. C. (2010). La nueva ganadería. Cambios a partir de la expansión agrícola. Relocalización e intensificación productiva. Un estudio comparativo en dos provincias argentinas. Revista Interdisciplinaria de Estudios Agrarios 31, 51–57.

Brady, N. C., and Weil, R. R. (2008). ‘The Nature and Properties of Soils.’ (Pearson Prentice Hall: Upper Saddle River, NJ.)

Burkart, A. (1969–2005). ‘Flora ilustrada de Entre Ríos.’ Vol. 6. (Parts, II, III, IV, V y VI). (Colección Científica del INTA: Buenos Aires.)

Burkart, S. E., León, R. J. C., and Movia, C. P. (1990). Inventario fitosociológico del pastizal de la Depresión del Salado (Prov. Bs. As.) en un área representativa de sus principales ambientes. Darwiniana 30, 27–69.

Burkart, S. E., León, R. J. C., Perelman, S. B., and Agnusdei, M. (1998). The grasslands of the flooding Pampa (Argentina): floristic heterogeneity of natural communities of the southern río Salado basin. Coenoses 13, 17–27.

Cabrera, A. L. (1963–1970). ‘Flora de la provincia de Buenos Aires.’ Vol. 4. (Parts I, II, III, IV, V y VI). (Colección Científica del INTA: Buenos Aires.)

Chaneton, E. J., and Facelli, J. M. (1991). Disturbance effects on plant community diversity: spatial scales and dominance hierarchies. Vegetatio 93, 143–155.
Disturbance effects on plant community diversity: spatial scales and dominance hierarchies.Crossref | GoogleScholarGoogle Scholar |

Chaneton, E. J., Facelli, J. M., and León, R. J. C. (1988). Floristic changes induced by flooding on grazed and ungrazed lowland grasslands in Argentina. Journal of Range Management 41, 495–501.
Floristic changes induced by flooding on grazed and ungrazed lowland grasslands in Argentina.Crossref | GoogleScholarGoogle Scholar |

Correa, M. (1969–1999). ‘Flora patagónica.’ Vol. 8. (Colección Científica del INTA: Buenos Aires.)

Gerard, M., El Kahloun, M., Mertens, W., Verhagen, B., and Meire, P. (2008). Impact of flooding on potential and realized grassland species richness. Plant Ecology 194, 85–98.
Impact of flooding on potential and realized grassland species richness.Crossref | GoogleScholarGoogle Scholar |

Herrera, L., Nabinger, C., Weyland, F., and Parera, A. (2014). Caracterización de los Pastizales del Cono Sur, servicios ecosistémicos y problemática actual de conservación. In: ‘Índice de contribución a la conservación de pastizales naturales del Cono Sur. Una herramienta para incentivar a los productores rurales’. (Eds A. Parera, I. Paullier and F. Weyland.) pp. 21–39. (Aves Uruguay: Buenos Aires.)

Holberg, H., and Bischoff, H. M. (1980). Flooding tolerante yield and feed quality of some grasses in a model experimental with simulated flood. Archiv für Acker - und Pflanzenbau und Bodenkunde 244, 513–521.

Imbellone, P., Eloy Giménez, J., and Panigatti, J. L. (2010). ‘Suelos de la Región Pampeana. Procesos de formación.’ (INTA: Buenos Aires.) 288 pp.

Insausti, P. (1996). Respuestas estructurales y funcionales a las inundaciones de un pastizal de la Depresión del Salado (prov. de Buenos Aires). Post-graduate Thesis, Escuela para Graduados, Facultad de Agronomía, Universidad de Buenos Aires.

Insausti, P., and Soriano, A. (1987). Efecto del anegamiento prolongado en un pastizal de la Depresión del Salado (provincia de Buenos Aires - Argentina): dinámica del pastizal en conjunto y de Ambrosia tenuifolia. Darwiniana 28, 397–403.

Insausti, P., Soriano, A., and Sánchez, R. A. (1995). Effect of flood-induced factors on seed germination of Ambrosia tenuifolia. Oecologia 103, 127–132.
Effect of flood-induced factors on seed germination of Ambrosia tenuifolia.Crossref | GoogleScholarGoogle Scholar |

Insausti, P., Chaneton, E. J., and Soriano, A. (1999). Flooding reverted grazing effects on plant community structure in mesocosms of lowland grassland. Oikos 84, 266–276.
Flooding reverted grazing effects on plant community structure in mesocosms of lowland grassland.Crossref | GoogleScholarGoogle Scholar |

Insausti, P., Chaneton, E. J., and Grimaldi, A. A. (2005). Las inundaciones modifican la estructura y dinámica de la vegetación en los pastizales de la Pampa Deprimida. In: ‘La heterogeneidad de la vegetación de los agroecosistemas’. (Eds M. Oesterheld, M. R. Aguiar, C. M. Ghersa and J. M. Paruelo.) pp. 253–269. (Editorial Facultad de Agronomía, Universidad de Buenos Aires: Buenos Aires.)

Jackson, M. B., and Drew, M. (1984). Effects of flooding on growth and metabolism of herbaceous plants. In: ‘Flooding and Plant Growth’. (Ed. T. T. Kozlowski.) pp. 10–42. (Academic Press: Boca Raton, FL.)

Kovács, G. (1983). General principles of flat-land hydrology. In: ‘Hidrología de las Grandes Llanuras’. Vol. 1. (Ed. M. C. Fuschini Mejía.) pp. 297–357. (UNESCO-Secretaría Nacional de Recursos Hídricos: Buenos Aires.)

Kuppel, S., Houspanossian, J., Nosetto, M. D., and Jobbágy, E. G. (2015). What does it take to flood the Pampas? Lessons from a decade of strong hydrological fluctuations. Water Resources Research 51, 2937–2950.
What does it take to flood the Pampas? Lessons from a decade of strong hydrological fluctuations.Crossref | GoogleScholarGoogle Scholar |

Leauthaud, C., Musila, W., Kergoat, L., Hiernaux, P., Manuela, G., and Duvail, S. (2014). Water and productivity of floodplain grasslands: Exploring linkages through experimentations and models in the Tana River Delta, Kenya. American Geophysical Union Fall Meeting 2014, #H31G–0694. (AGU: San Francisco, CA.)

León, R. J. C., and Burkart, S. E. (1998). El pastizal de la Pampa Deprimida: estados alternativos. Ecotropicos 11, 121–130.

Maltchik, L., Rolon, A. S., and Schott, P. (2007). Effects of hydrological variation on the aquatic plant community in a floodplain palustrine wetland of southern Brazil. Limnology 8, 23–28.
Effects of hydrological variation on the aquatic plant community in a floodplain palustrine wetland of southern Brazil.Crossref | GoogleScholarGoogle Scholar |

Manuel-Navarrete, D., Gallopín, G. C., Blanco, M., Díaz-Zorita, M., Ferraro, D. O., Herzer, H., Laterra, P., Murmis, M. R., Podestá, G. P., Rabinovich, J., Satorre, E. H., Torres, F., and Viglizzo, E. F. (2009). Multi-causal and integrated assessment of sustainability: the case of agriculturization in the Argentine Pampas. Environment, Development and Sustainability 11, 621–638.
Multi-causal and integrated assessment of sustainability: the case of agriculturization in the Argentine Pampas.Crossref | GoogleScholarGoogle Scholar |

Martín, B., Sosa, O., Montico, S., and Zerpa, G. (2007). Relación entre las unidades de vegetación y la microtopografía en un pastizal ubicado en un sector mal drenado de Argentina. Ciencia e Investigación Agraria 34, 103–113.
Relación entre las unidades de vegetación y la microtopografía en un pastizal ubicado en un sector mal drenado de Argentina.Crossref | GoogleScholarGoogle Scholar |

Matteucci, S. D., and Colma, A. (1982). ‘Metodología para el estudio de la vegetación. Secretaría General de la Organización de los Estados Americanos.’ (Programa Regional de Desarrollo Científico y Tecnológico: Washington, DC.)

Oesterheld, M., Aragón, R., Grigera, G., Oyarzábal, M., and Semmartin, M. (2005). ‘Cómo deben percibir la heterogeneidad quienes manejan la vegetación de los agroecosistemas? El caso de la Pampa Deprimida. In: ‘La heterogeneidad de la vegetación de los agroecosistemas’. (Eds M. Oesterheld, M. R. Aguiar, C. M. Ghersa and J. M. Paruelo.) pp. 131–143. (Editorial Facultad de Agronomía, Universidad de Buenos Aires: Buenos Aires.)

Perelman, S. B., León, R. J. C., and Oesterheld, M. (2001). Crossscale vegetation patterns of Flooding Pampa grasslands. Journal of Ecology 89, 562–577.
Crossscale vegetation patterns of Flooding Pampa grasslands.Crossref | GoogleScholarGoogle Scholar |

Pezeshki, S. R. (1994). Plant response to flooding. In: ‘Plant-Environment Interactions’. (Ed. R. E. Wilkinson.) pp. 289–321. (Marcel Dekker Inc.: New York.)

Rapport, D. J., Regier, H. A., and Hutchinson, T. C. (1985). Ecosystem behavior under stress. American Naturalist 125, 617–640.
Ecosystem behavior under stress.Crossref | GoogleScholarGoogle Scholar |

Reid, M. A., Ogden, R., and Thoms, M. C. (2011). The influence of flood frequency, geomorphic setting and grazing on plant communities and plant biomass on a large dryland floodplain. Journal of Arid Environments 75, 815–826.
The influence of flood frequency, geomorphic setting and grazing on plant communities and plant biomass on a large dryland floodplain.Crossref | GoogleScholarGoogle Scholar |

Rhoades, J. D. (1996). Salinity: Electrical and total dissolved solids. In: ‘Methods of Soil Analysis. Part 3. Chemical Methods’. (Ed. D. L. Sparks.) pp. 417–436. (Soil Science Society of America Inc.: Madison, WI.)

Rodríguez-Iturbe, I., Porporato, A., Laio, F., and Ridolfi, L. (2001). Plants in water-controlled ecosystems: active role in hydrologic processes and response to water stress. Advances in Water Resources 24, 695–705.
Plants in water-controlled ecosystems: active role in hydrologic processes and response to water stress.Crossref | GoogleScholarGoogle Scholar |

Siegel, S., and Castellan, N. J. (1988). ‘Nonparametric statistics for the behavioral sciences.’ 2nd edn. (McGraw-Hill: New York.)

Sørensen, T. (1957). A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its application to analyses of the vegetation on Danish commons. Kongelige Danske Videnskabernes Selskab 5, 1–34.

Striker, G. G., Mollard, F. P. O., Grimoldi, A. A., León, R. J. C., and Insausti, P. (2011). Trampling enhances the dominance of graminoids over forbs in flooded grassland mesocosms. Applied Vegetation Science 14, 95–106.
Trampling enhances the dominance of graminoids over forbs in flooded grassland mesocosms.Crossref | GoogleScholarGoogle Scholar |

Taguchi, Y. H., and Oono, Y. (2005). Relational patterns of gene expression via non-metric multidimensional scaling analysis. Bioinformatics 21, 730–740.
Relational patterns of gene expression via non-metric multidimensional scaling analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXit1Kntrk%3D&md5=bc434cb65ef1cf7eaa1816d3f481a944CAS |

Thomas, G. W. (1996). Soil pH and soil acidity. In: ‘Methods of Soil Analysis. Part 3. Chemical Methods’. (Ed. D. L. Sparks.) pp. 475–490. (Soil Science Society of America Inc.: Madison, WI.)

Tricart, J. L. (1973). ‘Geomorfología de la Pampa Deprimida. Base para los estudios edafológicos y agronómicos.’ 202 pp. (INTA: Buenos Aires.)

Usunoff, E., Varni, M., Weinzettel, P., and Rivas, R. (1999). Hidrogeología de grandes llanuras: la Pampa Húmeda argentina. Boletín Geológico y Minero 110, 391–406.

Varni, M., and Usunoff, E. (1999). Simulation of regional-scale groundwater flow in the Azul River basin, Buenos Aires Province, Argentina. Hydrogeology Journal 7, 180–187.
Simulation of regional-scale groundwater flow in the Azul River basin, Buenos Aires Province, Argentina.Crossref | GoogleScholarGoogle Scholar |

Varni, M., Usunoff, E., Weinzettel, P., and Rivas, R. (1999). Groundwater recharge in the Azul aquifer, central Buenos Aires Province, Argentina. Physics and Chemistry of the Earth 24, 349–352.
Groundwater recharge in the Azul aquifer, central Buenos Aires Province, Argentina.Crossref | GoogleScholarGoogle Scholar |

Vogl, R. J. (1980). The ecological factors that produce perturbation-dependent ecosystems. In: ‘The Recovery Process in Damaged Ecosystems’. (Ed. J. Cairns.) (Ann Arbor Science: Ann Arbor, MI.)

White, P. S. (1979). Pattern, process, and natural disturbance in vegetation. Botanical Review 45, 229–299.
Pattern, process, and natural disturbance in vegetation.Crossref | GoogleScholarGoogle Scholar |

Zuloaga, F., and Morrone, O. (1996). ‘Catálogo de las plantas vasculares de la República Argentina I. Monographs in Systematic Botany from The Missouri Botanical Garden.’ Vol. 60. (MBG Press: St Louis, MO, USA.)

Zuloaga, F., and Morrone, O. (1999). ‘Catálogo de las plantas vasculares de la República Argentina II. Monographs in Systematic Botany from The Missouri Botanical Garden.’ Vol. 74. (MBG Press: St Louis, MO, USA.)

Zuloaga, F., Nicora, E., Rúgolo de Agrásar, A. E., Morrone, O., Pensiero, J., and Cialdella, A. M. (1994). ‘Catálogo de la familia Poaceae de la República Argentina. Monographs in Systematic Botany from The Missouri Botanical Garden.’ Vol. 47. (MBG Press: St Louis, MO, USA.)

Zuloaga, F., Morrone, O., and Belgrano, M. J. (2008). ‘Catálogo de plantas vasculares del Cono Sur (Argentina, Sur de Brasil, Chile, Paraguay y Uruguay). Monographs in Systematic Botany from The Missouri Botanical Garden.’ Vol. 1–3. (MBG Press: St Louis, MO, USA.)