Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
The Rangeland Journal The Rangeland Journal Society
Journal of the Australian Rangeland Society
RESEARCH ARTICLE

Livestock water productivity in the Blue Nile Basin: assessment of farm scale heterogeneity

A. Haileslassie A C , D. Peden A , S. Gebreselassie A , T. Amede A B , A. Wagnew A and G. Taddesse A
+ Author Affiliations
- Author Affiliations

A International Livestock Research Institute (ILRI), PO Box 5689 Addis Ababa, Ethiopia.

B International Water Management Institute (IWMI), PO Box 5689 Addis Ababa, Ethiopia.

C Corresponding author. Email: a.haileselassie@cgiar.org

The Rangeland Journal 31(2) 213-222 https://doi.org/10.1071/RJ09006
Submitted: 14 January 2009  Accepted: 14 April 2009   Published: 19 June 2009

Abstract

A recent study of the livestock water productivity (LWP), at higher spatial scales in the Blue Nile Basin, indicated strong variability across regions. To get an insight into the causes of this variability, we examined the effect of farm households’ access to productive resources (e.g. land, livestock) on LWP in potato–barley, barley–wheat, teff–millet and rice farming systems of the Gumera watershed (in the Blue Nile Basin, Ethiopia). We randomly selected 180 farm households. The sizes of the samples, in each system, were proportional to the respective system’s area. Then we grouped the samples, using a participatory wealth ranking method, into three wealth groups (rich, medium and poor) and used structured and pre-tested questionnaires to collect data on crops and livestock management and applied reference evapotranspiration (ET0) and crop coefficient (Kc) approaches to estimate depleted (evapotranspiration) water in producing animal feed and food crops. Then, we estimated LWP as a ratio of livestock’s beneficial outputs to water depleted. Our results suggest strong variability of LWP across the different systems: ranging between 0.3 and 0.6 US$ m−3 year−1. The tendency across different farming systems was comparable with results from previous studies at higher spatial scales. The range among different wealth groups was wider (0.1 to 0.6 US$ m−3 year−1) than among the farming systems. This implies that aggregating water productivity (to a system scale) masks hotspots and bright spots. Our result also revealed a positive trend between water productivity (LWP and crop water productivity, CWP) and farm households’ access to resources. Thus, we discuss our findings in relation to poverty alleviation and integrated land and water management to combat unsustainable water management practices in the Blue Nile Basin.

Additional keywords: animal feed, Ethiopia, farming systems, land use, poverty, water depletion.


Acknowledgments

The authors are grateful to the Challenge Program Water and Food (CPWF) for financing the field survey work and to sample farm households for unreserved willingness to provide information. Our gratitude also goes to Shirley Tarawali and Katrien Descheemaeker for valuable suggestions on the draft manuscript. Paulo van Breugel and the anonymous reviewer for their invaluable inputs


References


Abegaz A., Van Keulen H., Oosting S. J. (2007) Feed resources, livestock production and soil carbon dynamics in Teghane, northern highlands of Ethiopia. Agricultural Systems 94, 391–404.
Crossref | GoogleScholarGoogle Scholar | open url image1

Allen R. G. , Pereira L. S. , Raes D. , and Smith M. (1998). ‘Crop Evapotranspiration. Guidelines for Computing Crop Water Requirements. FAO Irrigation and Drainage Paper 56.’ (FAO: Rome.)

Bekure S. , and de Leeuw P. N. (1991). The potential for improving the livestock production and welfare of the pastoral Maasai. In: ‘Maasai Herding: An Analysis of the Livestock Production System of Maasai Pastoralists in Eastern Kajiado Dsitrict, Kenya, ILCA Systems Study 4’. (Eds S. Bekure, P. N. de Leeuw, B. E. Grandin and P. J. H. Neate.) pp. 141–154. (International Livestock Center for Africa: Addis Ababa, Ethiopia.)

Bessembinder J. J. E., Leffelaar P. A., Dhindwal A. S., Ponsioen T. C. (2005) Which crop and which drop, and the scope for improvement of water productivity. Agricultural Water Management 73, 113–130.
Crossref | GoogleScholarGoogle Scholar | open url image1

Blümmel M., Samad M., Singh O. P., Amede T. (2009) Opportunities and limitations of food–feed crops for livestock feeding and implications for livestock–water productivity. The Rangeland Journal 31, 207–212. open url image1

Bossio D. , William C. W. , Geheb K. , Van Lynden G. , and Mati B. (2007). Conserving land and protecting water. In: ‘Water for Food, Water for Life: a Comprehensive Assessment of Water Management in Agriculture’. (Ed. D. Molden.) pp. 551–583. (Earthscan: London.)

Cai X. , and Rosegrant M. W. (2003). World water productivity: current situation and future options. In: ‘Water Productivity in Agriculture: Limits and Opportunities for Improvements’. (Eds W. J. K. Kijne, R. Barker and D. Molden.) pp. 163–175. (CAB International: Wallingford, UK.)

De Leeuw P. N. , Semenye P. P. , Peacock C. P. , and Grandin B. E. (1991). Productivity of cattle and smallstock. In: ‘Maasai Herding: an Analysis of the Livestock Production System of Maasai Pastoralists in Eastern Kajiado Dsitrict, Kenya. ILCA, Systems Study 4’. (Eds S. Bekure, P. N. de Leeuw, B. E. Grandin and P. J. H. Neate.) pp. 83–101. (International Livestock Center for Africa: Addis Ababa, Ethiopia.)

Dijikman J. (2000). Livestock production in areas of high pressure crop livestock farming systems in the east African highlands. In: ‘Contribution of Livestock to Mountain Livelihoods: Research and Development Issues’. (Eds P. M. Tulachan, M. A. M. Saleem, J. Maki-Hokkonen and T. Partap.) pp. 135–158. (International Center for Integrated Mountain Development: Kathmandu, Nepal.)

Esser K. , Vågen T. , Tilahun Y. , and Haile M. (2002). ‘Soil Conservation in Tigray, Ethiopia. Noragric Report No. 5.’ (Agricultural University of Norway: Oslo.)

Ethiopian Mapping Agency (EMA) (1980). ‘Contour Map of Ethiopia (1:50 000).’ (Ethiopian Mapping Agency: Addis Ababa, Ethiopia.)

Evans H. E., Ngau P. (1991) Rural-urban relations, household income diversification and agricultural productivity. Development and Change 22, 519–545.
Crossref | GoogleScholarGoogle Scholar | open url image1

FAO (1982). ‘Mean Annual Rainfall Map of Ethiopia.’ (Ethiopian Mapping Agency: Addis Ababa, Ethiopia.)

FAO (1983). ‘Generalized Agroclimatic Map of Ethiopia.’ (Ethiopian Mapping Agency: Addis Ababa, Ethiopia.)

FAO (1984). ‘Provisional Soil Map of Ethiopia.’ (Ethiopian Mapping Agency: Addis Ababa, Ethiopia.)

FAO (1986). ‘Ethiopian Highlands Reclamation Studies.’ Vols 1, 2. (FAO: Rome.)

FAO (1998). ‘Crop Evapotranspiration – Guidelines for Computing Crop Water Requirements. FAO Irrigation and drainage paper 56.’ (FAO: Rome.)

FAO (1999). ‘Production Year Book.’ Vol. 44. (FAO: Rome.)

FAO (2002). ‘Cattle and Small Ruminant Production Systems in sub-Saharan Africa.’ (FAO: Rome.)

FAO (2005). ‘Local Climate Estimator (New LockClim 1.06).’ (FAO: Rome.)

Gebreselassie S., Peden D., Haileslassie A., Mpairwe D. (2009) Factors affecting livestock water productivity: animal scale analysis using previous cattle feeding trials in Ethiopia. The Rangeland Journal 31, 251–258. open url image1

Haileslassie A. , Peden D. , Negash F. , and Gidyelew T. (2006 b). Sediment sources and sinks in the Gumera watershed, Ethiopia: implications for livestock water productivity in the Nile River basin. In: ‘Proceedings of Nile Basin Development Forum’. (Nile Basin Initiative: Addis Ababa, Ethiopia.)

Haileslassie A., Priess J., Veldkamp E., Lesschen J. P. (2006a) Smallholders’ soil fertility management in the Central Highlands of Ethiopia: implications for nutrient stocks, balances and sustainability of agroecosystems. Nutrient Cycling in Agroecosystems 75, 135–146.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Haileslassie A., Priess J., Veldkamp E., Lesschen J. P. (2007) Nutrient flows and balances at the field and farm scale: exploring effects of land-use strategies and access to resources. Agricultural Systems 94, 459–470.
Crossref | GoogleScholarGoogle Scholar | open url image1

Herweg K., Ludi E. (1999) The performance of selected soil and water conservation measures – case studies from Ethiopia and Eritrea. Catena 36, 99–114.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Holden S., Shiferaw B., Pender J. (2004) Non-farm income, household welfare, and sustainable land management in a less-favored area in the Ethiopian Highlands. Food Policy 29, 369–392.
Crossref | GoogleScholarGoogle Scholar | open url image1

Kaufmann R. , and Saleem M. A. M. (2000). Animal agriculture and watershed management: reconciling public and private good. In: ‘Contribution of Livestock to Mountain Livelihoods: Research and Development Issues’. (Eds P. M. Tulachan, M. A. M. Saleem, J. Maki-Hokkonen and T. Partap.) pp. 203–219. (International Center for Integrated Mountain Development: Katmandu, Nepal.)

Kurz I., O’Reilly C. D., Tunney H. (2006) Impact of cattle on soil physical properties and nutrient concentrations in overland flow from pasture in Ireland. Agriculture, Ecosystems & Environment 113, 378–390.
Crossref | GoogleScholarGoogle Scholar | CAS | open url image1

Lupwayi N. Z., Girma M., Haque I. (2000) Plant nutrient contents of cattle manures from small-scale farms and experimental stations in Ethiopian highlands. Agriculture, Ecosystems & Environment 78, 57–63.
Crossref | GoogleScholarGoogle Scholar | open url image1

Mason S. A. (2003). From conflict to cooperation in the Nile Basin. Interaction between water availability, water management in Egypt and Sudan, and international relations in the Eastern Nile Basin. PhD Thesis, Swiss Federal Institute of Technology, Zurich, Switzerland.

Molden D. (1997). ‘Accounting for Water Use and Productivity. SWIM Paper 1.’ (International Irrigation Management Institute: Colombo, Sri Lanka.)

Molden D. , Murray-Rust H. , Sakthivadivel R. , and Makin I. (2003). A water-productivity framework for understanding and action. In: ‘Water Productivity in Agriculture: Limits and Opportunities for Improvement’. (Eds J. W. Kijne, R. Barker and D. Molden.) pp. 1–18. (CAB International: Wallingford, UK.)

Molden D. , Oweis T. Y. , Steduto P. , Kijne J. W. , Hanjara M. A. , and Bindrban P. S. (2007). Pathways for increasing agricultural water productivity. In: ‘Water for Food, Water for Life: a Comprehensive Assessment of Water Management in Agriculture’. (Ed. D. Molden.) pp. 280–310. (Earthscan: London.)

Mwendera E. J., Saleem M. A. M., Dibabe A. (1997) Effects of livestock grazing on surface runoff and soil erosion from sloping pasture lands in the Ethiopian highlands. Australian Journal of Experimental Agriculture 37, 421–430.
Crossref | GoogleScholarGoogle Scholar | open url image1

Nyssen J., Poesen J., Moeyersons J., Deckers J., Haile M., Lang A. (2004) Human impact on the environment in the Ethiopian and Eritrean highlands – a state of the art. Earth-Science Reviews 64, 273–320.
Crossref | GoogleScholarGoogle Scholar | open url image1

Peden D. , Freeman A. , Astatke A. , and Notenbaert A. (2006). ‘Investment Options for Integrated Water–livestock–crop Production in sub-Saharan Africa. ILRI Research Paper No 1.’ (International Livestock Research Institute: Nairobi, Kenya.)

Peden D. , Taddesse G. , and Misra A. K. (2007). Water and livestock for human development. In: ‘Water for Food, Water for Life: A Comprehensive Assessment of Water Management in Agriculture’. (Ed. D. Molden.) pp. 485–514. (Earthscan: London.)

Reardon T., Delgado C., Matlon P. (1992) Determinants and effects of income diversification amongst farm households in Burkina Faso. Journal of Development Studies 28, 264–296.
Crossref | GoogleScholarGoogle Scholar | open url image1

Renault D., Wallender W. W. (2000) Nutritional water productivity and diets. Agricultural Water Management 45, 275–296.
Crossref | GoogleScholarGoogle Scholar | open url image1

Rockström J. , Barron J. , and Fox P. (2002). Water productivity in rain fed agriculture: challenges and opportunities for smallholder farmers in drought-prone tropical agro-ecosystems. In: ‘Water Productivity in Agriculture: Limits and Opportunities for Improvement’. (Ed. J. W. Kijine.) pp. 145–162. (CAB International: Wallingford, UK.)

Rosegrant M. K. , Ximing C. , and Cline S. A. (2002). ‘Global Water Outlook to 2025: Averting an Impending Crisis.’ (IFPRI: Colombo, Sri Lanka.)

Steinfeld H. (2002). ‘Animal Source Foods to Improve Micronutrient Nutrition and Human Function in Developing Countries.’ (FAO: Rome.)

Steinfeld H. , Gerbe P. , Wassenaar T. , Castel V. , Rosales M. , and De Kann C. (2006). ‘Livestock’s Long Shadows: Environmental Issues and Options.’ (FAO: Rome.)

Tittonell P., Vanlauwe B., Leffelaar P. A., Rowe E. C., Giller K. E. (2005) Exploring diversity in soil fertility management of smallholder farms in western Kenya. I. Heterogeneity at region and farm scale. Agriculture, Ecosystems & Environment 110, 149–165.
Crossref | GoogleScholarGoogle Scholar | open url image1

Tuong T. P. (1999) Productive water use in rice production: opportunities and limitations. Journal of Crop Production 2, 241–264.
Crossref |
open url image1