Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE (Open Access)

Dry storage of mammalian spermatozoa and cells: state-of-the-art and possible future directions

P. Loi A F , D. A. Anzalone A , L. Palazzese A , A. Dinnyés B C D , J. Saragusty A and M. Czernik A E
+ Author Affiliations
- Author Affiliations

A Laboratory of Embryology, Faculty of Veterinary Medicine, University of Teramo, Teramo, TE 64100, Italy.

B BioTalentum Ltd, Gödöllő, 2100 Gödöllő, Hungary.

C HCEMM-USZ, StemCell Research Group, University of Szeged, Szeged, Hungary.

D Sichuan University, College of Life Sciences, Chengdu, China.

E Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, Poland.

F Corresponding author. Email: ploi@unite.it

Reproduction, Fertility and Development 33(2) 82-90 https://doi.org/10.1071/RD20264
Published: 8 January 2021

Journal Compilation © IETS 2021 Open Access CC BY-NC-ND

Abstract

This review provides a snapshot of the current state-of-the-art of drying cells and spermatozoa. The major successes and pitfalls of the most relevant literature are described separately for spermatozoa and cells. Overall, the data published so far indicate that we are closer to success in spermatozoa, whereas the situation is far more complex with cells. Critical for success is the presence of xeroprotectants inside the spermatozoa and, even more so, inside cells to protect subcellular compartments, primarily DNA. We highlight workable strategies to endow gametes and cells with the right combination of xeroprotectants, mostly sugars, and late embryogenesis abundant (LEA) or similar ‘intrinsically disordered’ proteins to help them withstand reversible desiccation. We focus on the biological aspects of water stress, and in particular cellular and DNA damage, but also touch on other still unexplored issues, such as the choice of both dehydration and rehydration methods or approaches, because, in our view, they play a primary role in reducing desiccation damage. We conclude by highlighting the need to exhaustively explore desiccation strategies other than lyophilisation, such as air drying, spin drying or spray drying, ideally with new prototypes, other than the food and pharmaceutical drying strategies currently used, tailored for the unique needs of cells and spermatozoa.

Keywords: biobanks, cells, reversible desiccation, spermatozoa.


References

Abazari, A., Meimetis, L. G., Budin, G., Bale, S. S., Weissleder, R., and Toner, M. (2015). Engineered trehalose permeable to mammalian cells. PLoS One 10, e0130323.
Engineered trehalose permeable to mammalian cells.Crossref | GoogleScholarGoogle Scholar | 26115179PubMed |

Anzalone, D. A., Palazzese, L., Iuso, D., Martino, G., and Loi, P. (2019). Corrigendum to ‘Freeze-dried spermatozoa: an alternative biobanking option for endangered species’ [Anim. Reprod. Sci. 190C (2018) 85–93]. Anim. Reprod. Sci. 202, 96.
Corrigendum to ‘Freeze-dried spermatozoa: an alternative biobanking option for endangered species’ [Anim. Reprod. Sci. 190C (2018) 85–93].Crossref | GoogleScholarGoogle Scholar | 30683430PubMed |

Arav, A., and Natan, D. (2012). Freeze drying of red blood cells: the use of directional freezing and a new radio frequency lyophilization device. Biopreserv. Biobank. 10, 386–394.
Freeze drying of red blood cells: the use of directional freezing and a new radio frequency lyophilization device.Crossref | GoogleScholarGoogle Scholar | 24849889PubMed |

Arpagaus, C., Collenberg, A., Rütti, D., Assadpour, E., and Jafari, S. M. (2018). Nano spray drying for encapsulation of pharmaceuticals. Int. J. Pharm. 546, 194–214.
Nano spray drying for encapsulation of pharmaceuticals.Crossref | GoogleScholarGoogle Scholar | 29778825PubMed |

Boothby, T. C., Tapia, H., Brozena, A. H., Piszkiewicz, S., Smith, A. E., Giovannini, I., Rebecchi, L., Pielak, G. J., Koshland, D., and Goldstein, B. (2017). Tardigrades use intrinsically disordered proteins to survive desiccation. Mol. Cell 65, 975–984.e5.
Tardigrades use intrinsically disordered proteins to survive desiccation.Crossref | GoogleScholarGoogle Scholar | 28306513PubMed |

Bragg, J. T., D’Ambrosio, H. K., Smith, T. J., Gorka, C. A., Khan, F. A., Rose, J. T., Rouff, A. J., Fu, T. S., Bisnett, B. J., Boyce, M., Khetan, S., and Paulick, M. G. (2017). Esterified trehalose analogues protect mammalian cells from heat shock. ChemBioChem 18, 1863–1870.
Esterified trehalose analogues protect mammalian cells from heat shock.Crossref | GoogleScholarGoogle Scholar | 28722776PubMed |

Buchanan, S. S., Pyatt, D. W., and Carpenter, J. F. (2010). Preservation of differentiation and clonogenic potential of human hematopoietic stem and progenitor cells during lyophilization and ambient storage. PLoS One 5, e12518.
Preservation of differentiation and clonogenic potential of human hematopoietic stem and progenitor cells during lyophilization and ambient storage.Crossref | GoogleScholarGoogle Scholar | 20824143PubMed |

Carpenter, L. (2015). Biobanks for induced pluripotent stem cells and reprogrammed tissues. In ‘Cord Blood Stem Cells and Regenerative Medicine’ (Eds C. Stavropoulus-Giokas, D. Charron, and C. Navarret.) pp. 179–194. (Academic Press: Oxford, UK.)

Chakraborty, N. (2011). Cryopreservation of spin-dried mammalian cells. PLoS One 6, e24916.
Cryopreservation of spin-dried mammalian cells.Crossref | GoogleScholarGoogle Scholar | 21966385PubMed |

Choi, Y. H., Varner, D. D., Love, C. C., Hartman, D. L., and Hinrichs, K. (2011). Production of live foals via intracytoplasmic injection of lyophilized sperm and sperm extract in the horse. Reproduction 142, 529–538.
Production of live foals via intracytoplasmic injection of lyophilized sperm and sperm extract in the horse.Crossref | GoogleScholarGoogle Scholar | 21846810PubMed |

Clegg, J. S. (1965). The origin of trehalose and its significance during emergence of encysted dormant embryos of Artemia salina. Comp. Biochem. Physiol. 14, 135–143.
The origin of trehalose and its significance during emergence of encysted dormant embryos of Artemia salina.Crossref | GoogleScholarGoogle Scholar | 14288194PubMed |

Comizzoli, P. (2015). Biobanking efforts and new advances in male fertility preservation for rare and endangered species. Asian J. Androl. 17, 640–645.
Biobanking efforts and new advances in male fertility preservation for rare and endangered species.Crossref | GoogleScholarGoogle Scholar | 25966625PubMed |

Comizzoli, P., and Holt, W. V. (2016). Implications of the Nagoya Protocol for genome resource banks composed of biomaterials from rare and endangered species. Reprod. Fertil. Dev. 28, 1145–1160.
Implications of the Nagoya Protocol for genome resource banks composed of biomaterials from rare and endangered species.Crossref | GoogleScholarGoogle Scholar |

Crowe, J. H., and Crowe, L. M. (2000). Preservation of mammalian cells – learning nature’s tricks. Nat. Biotechnol. 18, 145–146.
Preservation of mammalian cells – learning nature’s tricks.Crossref | GoogleScholarGoogle Scholar | 10657114PubMed |

Czernik, M., Fidanza, A., Luongo, F. P., Valbonetti, L., Scapolo, P. A., Patrizio, P., and Loi, P. (2020). Late embryogenesis abundant (LEA) proteins confer water stress tolerance to mammalian somatic cells. Cryobiology 92, 189–196.
Late embryogenesis abundant (LEA) proteins confer water stress tolerance to mammalian somatic cells.Crossref | GoogleScholarGoogle Scholar | 31952948PubMed |

Das, Z. C., Gupta, M. K., Uhm, S. J., and Lee, H. T. (2010). Lyophilized somatic cells direct embryonic development after whole cell intracytoplasmic injection into pig oocytes. Cryobiology 61, 220–224.
Lyophilized somatic cells direct embryonic development after whole cell intracytoplasmic injection into pig oocytes.Crossref | GoogleScholarGoogle Scholar | 20691649PubMed |

Elbadawy, M., Abugomaa, A., Yamawaki, H., Usui, T., and Sasaki, K. (2020). Development of prostate cancer organoid culture models in basic medicine and translational research. Cancers (Basel) 12, 777.
Development of prostate cancer organoid culture models in basic medicine and translational research.Crossref | GoogleScholarGoogle Scholar |

Elliott, G. D., Liu, X.-H., Cusick, J. L., Menze, M., Vincent, J., Witt, T., Hand, S., and Toner, M. (2006). Trehalose uptake through P2X7 purinergic channels provides dehydration protection. Cryobiology 52, 114–127.
Trehalose uptake through P2X7 purinergic channels provides dehydration protection.Crossref | GoogleScholarGoogle Scholar | 16338230PubMed |

Erkek, S., Hisano, M., Liang, C. Y., Gill, M., Murr, R., Dieker, J., Schübeler, D., van der Vlag, J., Stadler, M. B., and Peters, A. H. (2013). Molecular determinants of nucleosome retention at CpG-rich sequences in mouse spermatozoa. Nat. Struct. Mol. Biol. 20, 868–875.
Molecular determinants of nucleosome retention at CpG-rich sequences in mouse spermatozoa.Crossref | GoogleScholarGoogle Scholar | 23770822PubMed |

Eroglu, A., Russo, M. J., Bieganski, R., Fowler, A., Cheley, S., Bayley, H., and Toner, M. (2000). Intracellular trehalose improves the survival of cryopreserved mammalian cells. Nat. Biotechnol. 18, 163–167.
Intracellular trehalose improves the survival of cryopreserved mammalian cells.Crossref | GoogleScholarGoogle Scholar | 10657121PubMed |

Fabre, A. L., Colotte, M., Luis, A., Tuffet, S., and Bonnet, J. (2014). An efficient method for long-term room temperature storage of RNA. Eur. J. Hum. Genet. 22, 379–385.
An efficient method for long-term room temperature storage of RNA.Crossref | GoogleScholarGoogle Scholar | 23860045PubMed |

Furuki, T., and Sakurai, M. (2018). Physicochemical aspects of the biological functions of trehalose and group 3 LEA proteins as desiccation protectants. Adv. Exp. Med. Biol. 1081, 271–286.
Physicochemical aspects of the biological functions of trehalose and group 3 LEA proteins as desiccation protectants.Crossref | GoogleScholarGoogle Scholar | 30288715PubMed |

Gagné, M., Pothier, F., and Sirard, M. A. (1995). The use of electroporated bovine spermatozoa to transfer foreign DNA into oocytes. Methods Mol. Biol. 48, 161–166.
The use of electroporated bovine spermatozoa to transfer foreign DNA into oocytes.Crossref | GoogleScholarGoogle Scholar | 8528389PubMed |

Galau, G. A., and Dure, L. (1981). Developmental biochemistry of cottonseed embryogenesis and germination: changing messenger ribonucleic acid populations as shown by reciprocal heterologous complementary deoxyribonucleic acid-messenger ribonucleic acid hybridization. Biochemistry 20, 4169–4178.
Developmental biochemistry of cottonseed embryogenesis and germination: changing messenger ribonucleic acid populations as shown by reciprocal heterologous complementary deoxyribonucleic acid-messenger ribonucleic acid hybridization.Crossref | GoogleScholarGoogle Scholar | 7284318PubMed |

Graves-Herring, J. E., Wildt, D. E., and Comizzoli, P. (2013). Retention of structure and function of the cat germinal vesicle after air-drying and storage at suprazero temperature. Biol. Reprod. 88, 139.
Retention of structure and function of the cat germinal vesicle after air-drying and storage at suprazero temperature.Crossref | GoogleScholarGoogle Scholar | 23575153PubMed |

Guidetti, R., Altiero, T., and Rebecchi, L. (2011). On dormancy strategies in tardigrades. J. Insect Physiol. 57, 567–576.
On dormancy strategies in tardigrades.Crossref | GoogleScholarGoogle Scholar | 21402076PubMed |

Hand, S. C., Menze, M. A., Toner, M., Boswell, L., and Moore, D. (2011). LEA proteins during water stress: not just for plants anymore. Annu. Rev. Physiol. 73, 115–134.
LEA proteins during water stress: not just for plants anymore.Crossref | GoogleScholarGoogle Scholar | 21034219PubMed |

Hengherr, S., Heyer, A. G., Köhler, H. R., and Schill, R. O. (2008). Trehalose and anhydrobiosis in tardigrades – evidence for divergence in responses to dehydration. FEBS J. 275, 281–288.
Trehalose and anhydrobiosis in tardigrades – evidence for divergence in responses to dehydration.Crossref | GoogleScholarGoogle Scholar | 18070104PubMed |

Hirabayashi, M., Kato, M., Ito, J., and Hochi, S. (2005). Viable rat offspring derived from oocytes intracytoplasmically injected with freeze-dried sperm heads. Zygote 13, 79–85.
Viable rat offspring derived from oocytes intracytoplasmically injected with freeze-dried sperm heads.Crossref | GoogleScholarGoogle Scholar | 15984166PubMed |

Ito, D., Wakayama, S., Kamada, Y., Shibasaki, I., Kamimura, S., Ooga, M., and Wakayama, T. (2019). Effect of trehalose on the preservation of freeze-dried mice spermatozoa at room temperature. J. Reprod. Dev. 65, 353–359.
Effect of trehalose on the preservation of freeze-dried mice spermatozoa at room temperature.Crossref | GoogleScholarGoogle Scholar | 31118350PubMed |

Iuso, D., Czernik, M., Di Egidio, F., Sampino, S., Zacchini, F., Bochenek, M., Smorag, Z., Modlinski, J. A., Ptak, G., and Loi, P. (2013). Genomic stability of lyophilized sheep somatic cells before and after nuclear transfer. PLoS One 8, e51317.
Genomic stability of lyophilized sheep somatic cells before and after nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 23308098PubMed |

Janis, B., Belott, C., and Menze, M. A. (2018). Role of intrinsic disorder in animal desiccation tolerance. Proteomics 18, 1800067.
Role of intrinsic disorder in animal desiccation tolerance.Crossref | GoogleScholarGoogle Scholar | 30144288PubMed |

Kawase, Y., and Suzuki, H. (2011). A study on freeze-drying as a method of preserving mouse sperm. J. Reprod. Dev. 57, 176–182.
A study on freeze-drying as a method of preserving mouse sperm.Crossref | GoogleScholarGoogle Scholar | 21551975PubMed |

Keskintepe, L., Pacholczyke, G., Machnicka, A., Norris, K., Curuk, M. A., Khan, I., and Brackett, B. G. (2002). Bovine blastocyst development from oocytes injected with freeze-dried spermatozoa. Biol. Reprod. 67, 409–415.
Bovine blastocyst development from oocytes injected with freeze-dried spermatozoa.Crossref | GoogleScholarGoogle Scholar | 12135874PubMed |

Kikuta, S., Watanabe, S. J., Sato, R., Gusev, O., Nesmelov, A., Sogame, Y., Cornette, R., and Kikawada, T. (2017). Towards water-free biobanks: long-term dry-preservation at room temperature of desiccation-sensitive enzyme luciferase in air-dried insect cells. Sci. Rep. 7, 6540.
Towards water-free biobanks: long-term dry-preservation at room temperature of desiccation-sensitive enzyme luciferase in air-dried insect cells.Crossref | GoogleScholarGoogle Scholar | 28747745PubMed |

Kwon, I. K., Park, K. E., and Niwa, K. (2004). Activation, pronuclear formation, and development in vitro of pig oocytes following intracytoplasmic injection of freeze-dried spermatozoa. Biol. Reprod. 71, 1430–1436.
Activation, pronuclear formation, and development in vitro of pig oocytes following intracytoplasmic injection of freeze-dried spermatozoa.Crossref | GoogleScholarGoogle Scholar | 15215192PubMed |

Lee, P. C., Adams, D. M., Amelkina, O., White, K. K., Amoretti, L. A., Whitaker, M. G., and Comizzoli, P. (2019). Influence of microwave-assisted dehydration on morphological integrity and viability of cat ovarian tissues: first steps toward long-term preservation of complex biomaterials at supra-zero temperatures. PLoS One 14, e0225440.
Influence of microwave-assisted dehydration on morphological integrity and viability of cat ovarian tissues: first steps toward long-term preservation of complex biomaterials at supra-zero temperatures.Crossref | GoogleScholarGoogle Scholar | 31800613PubMed |

Li, S., Chakraborty, N., Borcar, A., Menze, M. A., Toner, M., and Hand, S. C. (2012). Late embryogenesis abundant proteins protect human hepatoma cells during acute desiccation. Proc. Natl Acad. Sci. USA 109, 20859–20864.
Late embryogenesis abundant proteins protect human hepatoma cells during acute desiccation.Crossref | GoogleScholarGoogle Scholar | 23185012PubMed |

Liu, J. L., Kusakabe, H., Chang, C. C., Suzuki, H., Schmidt, D. W., Julian, M., Pfeffer, R., Bormann, C. L., Tian, X. C., Yanagimachi, R., and Yang, X. (2004). Freeze-dried sperm fertilization leads to full-term development in rabbits. Biol. Reprod. 70, 1776–1781.
Freeze-dried sperm fertilization leads to full-term development in rabbits.Crossref | GoogleScholarGoogle Scholar | 14960482PubMed |

Loi, P., Matsukawa, K., Ptak, G., Clinton, M., Fulka, J., Nathan, Y., and Arav, A. (2008). Freeze-dried somatic cells direct embryonic development after nuclear transfer. PLoS One 3, e2978.
Freeze-dried somatic cells direct embryonic development after nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 18714340PubMed |

Loi, P., Iuso, D., Czernik, M., Zacchini, F., and Ptak, G. (2013). Towards storage of cells and gametes in dry form. Trends Biotechnol. 31, 688–695.
Towards storage of cells and gametes in dry form.Crossref | GoogleScholarGoogle Scholar | 24169600PubMed |

Madin, K. A. C., and Crowe, J. H. (1975). Anhydrobiosis in nematodes: carbohydrate and lipid metabolism during dehydration. J. Exp. Zool. 193, 335–342.
Anhydrobiosis in nematodes: carbohydrate and lipid metabolism during dehydration.Crossref | GoogleScholarGoogle Scholar |

Marunde, M. R., Samarajeewa, D. A., Anderson, J., Li, S., Hand, S. C., and Menze, M. A. (2013). Improved tolerance to salt and water stress in Drosophila melanogaster cells conferred by late embryogenesis abundant protein. J. Insect Physiol. 59, 377–386.
Improved tolerance to salt and water stress in Drosophila melanogaster cells conferred by late embryogenesis abundant protein.Crossref | GoogleScholarGoogle Scholar | 23376561PubMed |

McCubbin, W. D., Kay, C. M., and Lane, B. (1985). Hydrodynamic and optical properties of the wheat germ Em protein. Can. J. Biochem. Cell Biol. 63, 803–811.
Hydrodynamic and optical properties of the wheat germ Em protein.Crossref | GoogleScholarGoogle Scholar |

Mercati, F., Domingo, P., Pasquariello, R., Dall’Aglio, C., Di Michele, A., Forti, K., Cocci, P., Boiti, C., Gil, L., Zerani, M., and Maranesi, M. (2020). Effect of chelating and antioxidant agents on morphology and DNA methylation in freeze-drying in rabbit (Oryctolagus cuniculus) spermatozoa. Reprod. Domest. Anim. 55, 29–37.
Effect of chelating and antioxidant agents on morphology and DNA methylation in freeze-drying in rabbit (Oryctolagus cuniculus) spermatozoa.Crossref | GoogleScholarGoogle Scholar | 31626708PubMed |

Miyata, Y., Tokumoto, S., Sogame, Y., Deviatiiarov, R., Okada, J., Cornette, R., Gusev, O., Shagimardanova, E., Sakurai, M., and Kikawada, T. (2019). Identification of a novel strong promoter from the anhydrobiotic midge, Polypedilum vanderplanki, with conserved function in various insect cell lines. Sci. Rep. 9, 7004.
Identification of a novel strong promoter from the anhydrobiotic midge, Polypedilum vanderplanki, with conserved function in various insect cell lines.Crossref | GoogleScholarGoogle Scholar | 31065019PubMed |

Mouradian, R., Womersley, C., Crowe, L. M., and Crowe, J. H. (1985). Degradation of functional integrity during long-term storage of a freeze-dried biological membrane. Cryobiology 22, 119–127.
Degradation of functional integrity during long-term storage of a freeze-dried biological membrane.Crossref | GoogleScholarGoogle Scholar | 3979081PubMed |

Muneto, N., and Horiuchi, T. (2011). Full-term development of hamster embryos produced by injecting freeze-dried spermatozoa into oocytes. J. Mamm. Ova Res. 28, 32–39.
Full-term development of hamster embryos produced by injecting freeze-dried spermatozoa into oocytes.Crossref | GoogleScholarGoogle Scholar |

Natan, D., Nagler, A., and Arav, A. (2009). Freeze-drying of mononuclear cells derived from umbilical cord blood followed by colony formation. PLoS One 4, e5240.
Freeze-drying of mononuclear cells derived from umbilical cord blood followed by colony formation.Crossref | GoogleScholarGoogle Scholar | 19381290PubMed |

Olaciregui, M., Luño, V., Domingo, P., González, N., and Gil, L. (2017). In vitro developmental ability of ovine oocytes following intracytoplasmic injection with freeze-dried spermatozoa. Sci. Rep. 7, 1096.
In vitro developmental ability of ovine oocytes following intracytoplasmic injection with freeze-dried spermatozoa.Crossref | GoogleScholarGoogle Scholar | 28439073PubMed |

Oldenhof, H., Zhang, M., Narten, K., Bigalk, J., Sydykov, B., Wolkers, W. F., and Sieme, H. (2017). Freezing-induced uptake of disaccharides for preservation of chromatin in freeze-dried stallion sperm during accelerated aging. Biol. Reprod. 97, 892–901.
Freezing-induced uptake of disaccharides for preservation of chromatin in freeze-dried stallion sperm during accelerated aging.Crossref | GoogleScholarGoogle Scholar | 29121172PubMed |

Ono, T., Mizutani, E., Li, C., and Wakayama, T. (2008). Nuclear transfer preserves the nuclear genome of freeze-dried mouse cells. J. Reprod. Dev. 54, 486–491.
Nuclear transfer preserves the nuclear genome of freeze-dried mouse cells.Crossref | GoogleScholarGoogle Scholar | 18854641PubMed |

Ortuño-Costela, M. D. C., Cerrada, V., García-López, M., and Gallardo, M. E. (2019). The challenge of bringing iPSCs to the patient. Int. J. Mol. Sci. 20, 6305.
The challenge of bringing iPSCs to the patient.Crossref | GoogleScholarGoogle Scholar |

Palazzese, L., Gosálvez, J., Anzalone, D. A., Loi, P., and Saragusty, J. (2018). DNA fragmentation in epididymal freeze-dried ram spermatozoa impairs embryo development. J. Reprod. Dev. 64, 393–400.
DNA fragmentation in epididymal freeze-dried ram spermatozoa impairs embryo development.Crossref | GoogleScholarGoogle Scholar | 29973438PubMed |

Palazzese, L., Anzalone, D. A., Turri, F., Faieta, M., Donnadio, A., Pizzi, F., Matsukawa, K., and Loi, P. (2020). Whole genome integrity and enhanced developmental potential in ram freeze-dried spermatozoa at mild sub-zero temperature. Sci. Rep. 10, 18873.
Whole genome integrity and enhanced developmental potential in ram freeze-dried spermatozoa at mild sub-zero temperature.Crossref | GoogleScholarGoogle Scholar | 33139842PubMed |

Patrick, J. L., Elliott, G. D., and Comizzoli, P. (2017). Structural integrity and developmental potential of spermatozoa following microwave-assisted drying in the domestic cat model. Theriogenology 103, 36–43.
Structural integrity and developmental potential of spermatozoa following microwave-assisted drying in the domestic cat model.Crossref | GoogleScholarGoogle Scholar | 28772113PubMed |

Podhorecka, M., Skladanowski, A., and Bozko, P. (2010). H2AX phosphorylation: its role in DNA damage response and cancer therapy. J. Nucleic Acids 2010, 920161.
H2AX phosphorylation: its role in DNA damage response and cancer therapy.Crossref | GoogleScholarGoogle Scholar | 20811597PubMed |

Polge, C., Smith, A., and Parkes, A. (1949). Revival of spermatozoa after vitrification and dehydration at low temperatures. Nature 164, 666.
Revival of spermatozoa after vitrification and dehydration at low temperatures.Crossref | GoogleScholarGoogle Scholar | 18143360PubMed |

Poozesh, S., and Bilgili, E. (2019). Scale-up of pharmaceutical spray drying using scale-up rules: a review. Int. J. Pharm. 562, 271–292.
Scale-up of pharmaceutical spray drying using scale-up rules: a review.Crossref | GoogleScholarGoogle Scholar | 30910632PubMed |

Restrepo, G., Varela, E., Duque, J. E., Gómez, J. E., and Rojas, M. (2019). Freezing, vitrification, and freeze-drying of equine spermatozoa: impact on mitochondrial membrane potential, lipid peroxidation, and DNA integrity. J. Equine Vet. Sci. 72, 8–15.
Freezing, vitrification, and freeze-drying of equine spermatozoa: impact on mitochondrial membrane potential, lipid peroxidation, and DNA integrity.Crossref | GoogleScholarGoogle Scholar | 30929788PubMed |

Saitou, M., and Kurimoto, K. (2014). Paternal nucleosomes: are they retained in developmental promoters or gene deserts? Dev. Cell 30, 6–8.
Paternal nucleosomes: are they retained in developmental promoters or gene deserts?Crossref | GoogleScholarGoogle Scholar | 25026032PubMed |

Samans, B., Yang, Y., Krebs, S., Sarode, G. V., Blum, H., Reichenbach, M., Wolf, E., Steger, K., Dansranjavin, T., and Schagdarsurengin, U. (2014). Uniformity of nucleosome preservation pattern in mammalian sperm and its connection to repetitive DNA elements. Dev. Cell 30, 23–35.
Uniformity of nucleosome preservation pattern in mammalian sperm and its connection to repetitive DNA elements.Crossref | GoogleScholarGoogle Scholar | 24998597PubMed |

Saragusty, J., and Loi, P. (2019). Exploring dry storage as an alternative biobanking strategy inspired by nature. Theriogenology 126, 17–27.
Exploring dry storage as an alternative biobanking strategy inspired by nature.Crossref | GoogleScholarGoogle Scholar | 30508788PubMed |

Saragusty, J., Anzalone, D. A., Palazzese, L., Arav, A., Patrizio, P., Gosálvez, J., and Loi, P. (2020). Dry biobanking as a conservation tool in the Anthropocene. Theriogenology 150, 130–138.
Dry biobanking as a conservation tool in the Anthropocene.Crossref | GoogleScholarGoogle Scholar | 31980207PubMed |

Satpathy, G. R., Török, Z., Bali, R., Dwyre, D. M., Little, E., Walker, N. J., Tablin, F., Crowe, J. H., and Tsvetkova, N. M. (2004). Loading red blood cells with trehalose: a step towards biostabilization. Cryobiology 49, 123–136.
Loading red blood cells with trehalose: a step towards biostabilization.Crossref | GoogleScholarGoogle Scholar | 15351684PubMed |

Shih, M. D., Hoekstra, F. A., and Hsing, Y. I. C. (2008). Late embryogenesis abundant proteins. In ‘Advances in Botanical Research’, Vol. 48. (Eds K. Jean-Claude and D. Michel.) pp. 212–255. (Elsevier: Amsterdam.)

Sogame, Y., and Kikawada, T. (2017). Current findings on the molecular mechanisms underlying anhydrobiosis in Polypedilum vanderplanki. Curr. Opin. Insect Sci. 19, 16–21.
Current findings on the molecular mechanisms underlying anhydrobiosis in Polypedilum vanderplanki.Crossref | GoogleScholarGoogle Scholar | 28521938PubMed |

Wakayama, T., and Yanagimachi, R. (1998). Development of normal mice from oocytes injected with freeze-dried spermatozoa. Nat. Biotechnol. 16, 639–641.
Development of normal mice from oocytes injected with freeze-dried spermatozoa.Crossref | GoogleScholarGoogle Scholar | 9661196PubMed |

Wakayama, S., Ito, D., Kamada, Y., Yonemura, S., Ooga, M., Kishigami, S., and Wakayama, T. (2019). Tolerance of the freeze-dried mouse sperm nucleus to temperatures ranging from –196°C to 150°C. Sci. Rep. 9, 5719.
Tolerance of the freeze-dried mouse sperm nucleus to temperatures ranging from –196°C to 150°C.Crossref | GoogleScholarGoogle Scholar | 30952922PubMed |

Walters, R. H., Bhatnagar, B., Tchessalov, S., Izutsu, K. I., Tsumoto, K., and Ohtake, S. (2014). Next generation drying technologies for pharmaceutical applications. J. Pharm. Sci. 103, 2673–2695.
Next generation drying technologies for pharmaceutical applications.Crossref | GoogleScholarGoogle Scholar | 24916125PubMed |

Wełnicz, W., Grohme, M. A., Kaczmarek, Ł., Schill, R. O., and Frohme, M. (2011). Anhydrobiosis in tardigrades – the last decade. J. Insect Physiol. 57, 577–583.
Anhydrobiosis in tardigrades – the last decade.Crossref | GoogleScholarGoogle Scholar | 21440551PubMed |

Wolkers, W. F., Walker, N. J., Tablin, F., and Crowe, J. H. (2001). Human platelets loaded with trehalose survive freeze-drying. Cryobiology 42, 79–87.
Human platelets loaded with trehalose survive freeze-drying.Crossref | GoogleScholarGoogle Scholar | 11448110PubMed |

Yamada, T. G., Hiki, Y., Hiroi, N. F., Shagimardanova, E., Gusev, O., Cornette, R., Kikawada, T., and Funahashi, A. (2020). Identification of a master transcription factor and a regulatory mechanism for desiccation tolerance in the anhydrobiotic cell line Pv11. PLoS One 15, e0230218.
Identification of a master transcription factor and a regulatory mechanism for desiccation tolerance in the anhydrobiotic cell line Pv11.Crossref | GoogleScholarGoogle Scholar | 32191739PubMed |

Zhang, M., Oldenhof, H., Sieme, H., and Wolkers, W. F. (2016). Freezing-induced uptake of trehalose into mammalian cells facilitates cryopreservation. Biochim. Biophys. Acta 1858, 1400–1409.
Freezing-induced uptake of trehalose into mammalian cells facilitates cryopreservation.Crossref | GoogleScholarGoogle Scholar | 27003129PubMed |

Zhang, M., Oldenhof, H., Sydykov, B., Bigalk, J., Sieme, H., and Wolkers, W. F. (2017). Freeze-drying of mammalian cells using trehalose: preservation of DNA integrity. Sci. Rep. 7, 6198.
Freeze-drying of mammalian cells using trehalose: preservation of DNA integrity.Crossref | GoogleScholarGoogle Scholar | 28740099PubMed |

Zhao, C., and Ikeya, M. (2018). Generation and applications of induced pluripotent stem cell-derived mesenchymal stem cells. Stem Cells Int. 2018, 9601623.
Generation and applications of induced pluripotent stem cell-derived mesenchymal stem cells.Crossref | GoogleScholarGoogle Scholar | 30405724PubMed |

Zhou, X., Yuan, J., Liu, J., and Liu, B. (2010). Loading trehalose into red blood cells by electroporation and its application in freeze-drying. Cryo Letters 31, 147–156.
| 20687457PubMed |