Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Long non-coding RNA LOC105611671 modulates fibroblast growth factor 9 (FGF9) expression by targeting oar-miR-26a to promote testosterone biosynthesis in Hu sheep

Xiaoxiao Gao A , Ming Zhu A , Shiyu An A , Yaxu Liang A , Hua Yang A , Jing Pang A , Zifei Liu A , Guomin Zhang https://orcid.org/0000-0002-4729-518X A and Feng Wang https://orcid.org/0000-0002-4965-836X A B
+ Author Affiliations
- Author Affiliations

A Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang, Nanjing 210095, China.

B Corresponding author. Email: caeet@njau.edu.cn

Reproduction, Fertility and Development 32(4) 373-382 https://doi.org/10.1071/RD19116
Submitted: 28 March 2019  Accepted: 15 July 2019   Published: 21 November 2019

Abstract

Fibroblast growth factors (FGFs) play crucial roles in early gonadal development and germ cell maturation of mammals; FGF9 is involved in mammalian testis steroidogenesis. However, the upstream regulators of FGF9 in ovine testosterone biosynthesis remain unknown. Long non-coding RNAs (lncRNAs) are crucial regulators of multiple biological functions that act by altering gene expression. In the present study, we analysed the role of LOC105611671, a lncRNA upstream of FGF9, in Hu sheep steroidogenesis. We found that LOC105611671 expression increased significantly in Hu sheep testes during sexual maturation (P < 0.05). Moreover, levels of FGF9 and testosterone were decreased by LOC105611671 knockdown in Hu sheep Leydig cells (LCs). Results of transient transfection and luciferase assays revealed that FGF9 is a functional target gene of oar-miR-26a in ovine LCs. Further functional validation experiments revealed that LOC105611671 regulates testosterone biosynthesis by targeting oar-miR-26a. Overall, the present study describes the expression profile of LOC105611671 during sexual maturation and demonstrates that LOC105611671 modulates FGF9 expression by targeting oar-miR-26a to promote testis steroidogenesis in Hu sheep. Our research provides a new theoretical basis for genetic and molecular research on testosterone biosynthesis in sheep.

Additional keywords: lncRNA, microRNA, steroidogenesis, Leydig cells.


References

Cesana, M., Cacchiarelli, D., Legnini, I., Santini, T., Sthandier, O., Chinappi, M., Tramontano, A., and Bozzoni, I. (2011). A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell 147, 358–369.
A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA.Crossref | GoogleScholarGoogle Scholar | 22000014PubMed |

Chaves, R. N., de Matos, M. H., Buratini, J., and de Figueiredo, J. R. (2012). The fibroblast growth factor family: involvement in the regulation of folliculogenesis. Reprod. Fertil. Dev. 24, 905–915.
The fibroblast growth factor family: involvement in the regulation of folliculogenesis.Crossref | GoogleScholarGoogle Scholar | 22935151PubMed |

Chen, T. M., Kuo, P. L., Hsu, C. H., Tsai, S. J., Chen, M. J., Lin, C. W., and Sun, H. S. (2007). Microsatellite in the 3′ untranslated region of human fibroblast growth factor 9 (FGF9) gene exhibits pleiotropic effect on modulating FGF9 protein expression. Hum. Mutat. 28, 98.
Microsatellite in the 3′ untranslated region of human fibroblast growth factor 9 (FGF9) gene exhibits pleiotropic effect on modulating FGF9 protein expression.Crossref | GoogleScholarGoogle Scholar | 17154280PubMed |

Chuang, J. I., Huang, J. Y., Tsai, S. J., Sun, H. S., Yang, S. H., Chuang, P. C., Huang, B. M., and Ching, C. H. (2015). FGF9-induced changes in cellular redox status and HO-1 upregulation are FGFR-dependent and proceed through both ERK and AKT to induce CREB and Nrf2 activation. Free Radic. Biol. Med. 89, 274–286.
FGF9-induced changes in cellular redox status and HO-1 upregulation are FGFR-dependent and proceed through both ERK and AKT to induce CREB and Nrf2 activation.Crossref | GoogleScholarGoogle Scholar | 26424114PubMed |

Chung, C. L., Lu, C. W., Cheng, Y. S., Lin, C. Y., Sun, H. S., and Lin, Y. M. (2013). Association of aberrant expression of sex-determining gene fibroblast growth factor 9 with Sertoli cell-only syndrome. Fertil. Steril. 100, 1547–1554.e4.
Association of aberrant expression of sex-determining gene fibroblast growth factor 9 with Sertoli cell-only syndrome.Crossref | GoogleScholarGoogle Scholar | 24011613PubMed |

Cohen, R. I., and Chandross, K. J. (2000). Fibroblast growth factor-9 modulates the expression of myelin related proteins and multiple fibroblast growth factor receptors in developing oligodendrocytes. J. Neurosci. Res. 61, 273–287.
Fibroblast growth factor-9 modulates the expression of myelin related proteins and multiple fibroblast growth factor receptors in developing oligodendrocytes.Crossref | GoogleScholarGoogle Scholar | 10900074PubMed |

Deng, M., Tang, H. L., Lu, X. H., Liu, M. Y., Lu, X. M., Gu, Y. X., Liu, J. F., and He, Z. M. (2013). miR-26a suppresses tumor growth and metastasis by targeting FGF9 in gastric cancer. PLoS One 8, e72662.
miR-26a suppresses tumor growth and metastasis by targeting FGF9 in gastric cancer.Crossref | GoogleScholarGoogle Scholar | 24391795PubMed |

Drummond, A. E., Tellbach, M., Dyson, M., and Findlay, J. K. (2007). Fibroblast growth factor-9, a local regulator of ovarian function. Endocrinology 148, 3711–3721.
Fibroblast growth factor-9, a local regulator of ovarian function.Crossref | GoogleScholarGoogle Scholar | 17494997PubMed |

Evans, J. R., Schreiber, N. B., Williams, J. A., and Spicer, L. J. (2014). Effects of fibroblast growth factor 9 on steroidogenesis and control of FGFR2IIIc mRNA in porcine granulosa cells. J. Anim. Sci. 92, 511–519.
Effects of fibroblast growth factor 9 on steroidogenesis and control of FGFR2IIIc mRNA in porcine granulosa cells.Crossref | GoogleScholarGoogle Scholar | 24664559PubMed |

Gao, X., Ye, J., Yang, C., Zhang, K., Li, X., Luo, L., Ding, J., Li, Y., Cao, H., Ling, Y., Zhang, X., Liu, Y., Fang, F., and Zhang, Y. (2017). Screening and evaluating of long noncoding RNAs in the puberty of goats. BMC Genomics 18, 164.
Screening and evaluating of long noncoding RNAs in the puberty of goats.Crossref | GoogleScholarGoogle Scholar | 28196477PubMed |

Gao, X., Yao, X., Yang, H., Deng, K., Guo, Y., Zhang, T., Zhang, G., and Wang, F. (2018). Role of FGF9 in sheep testis steroidogenesis during sexual maturation. Anim. Reprod. Sci. 197, 177–184.
Role of FGF9 in sheep testis steroidogenesis during sexual maturation.Crossref | GoogleScholarGoogle Scholar | 30154034PubMed |

Ghazal, S., McKinnon, B., Zhou, J., Mueller, M., Men, Y., Yang, L., Mueller, M., Flannery, C., Huang, Y., and Taylor, H. S. (2015). H19 lncRNA alters stromal cell growth via IGF signaling in the endometrium of women with endometriosis. EMBO Mol. Med. 7, 996–1003.
H19 lncRNA alters stromal cell growth via IGF signaling in the endometrium of women with endometriosis.Crossref | GoogleScholarGoogle Scholar | 26089099PubMed |

Gomez, J. A., Wapinski, O. L., Yang, Y. W., Bureau, J. F., Gopinath, S., Monack, D. M., Chang, H. Y., Brahic, M., and Kirkegaard, K. (2013). The NeST long ncRNA controls microbial susceptibility and epigenetic activation of the interferon-gamma locus. Cell 152, 743–754.
The NeST long ncRNA controls microbial susceptibility and epigenetic activation of the interferon-gamma locus.Crossref | GoogleScholarGoogle Scholar | 23415224PubMed |

Guo, Y. X., Nie, H. T., Sun, L. W., Zhang, G. M., Deng, K. P., Fan, Y. X., and Wang, F. (2017). Effects of diet and arginine treatment during the luteal phase on ovarian NO/PGC-1alpha signaling in ewes. Theriogenology 96, 76–84.
Effects of diet and arginine treatment during the luteal phase on ovarian NO/PGC-1alpha signaling in ewes.Crossref | GoogleScholarGoogle Scholar | 28532842PubMed |

He, X., Chen, S. Y., Yang, Z., Zhang, J., Wang, W., Liu, M. Y., Niu, Y., Wei, X. M., Li, H. M., Hu, W. N., and Sun, G. G. (2018). miR-4317 suppresses non-small cell lung cancer (NSCLC) by targeting fibroblast growth factor 9 (FGF9) and cyclin D2 (CCND2). J. Exp. Clin. Cancer Res. 37, 230.
miR-4317 suppresses non-small cell lung cancer (NSCLC) by targeting fibroblast growth factor 9 (FGF9) and cyclin D2 (CCND2).Crossref | GoogleScholarGoogle Scholar | 30227870PubMed |

Hiramatsu, R., Matoba, S., Kanai-Azuma, M., Tsunekawa, N., Katoh-Fukui, Y., Kurohmaru, M., Morohashi, K. I., Wilhelm, D., Koopman, P., and Kanai, Y. (2009). A critical time window of Sry action in gonadal sex determination in mice. Development 136, 129–138.
A critical time window of Sry action in gonadal sex determination in mice.Crossref | GoogleScholarGoogle Scholar | 19036799PubMed |

Hiramatsu, R., Harikae, K., Tsunekawa, N., Kurohmaru, M., Matsuo, I., and Kanai, Y. (2010). FGF signaling directs a center-to-pole expansion of tubulogenesis in mouse testis differentiation. Development 137, 303–312.
FGF signaling directs a center-to-pole expansion of tubulogenesis in mouse testis differentiation.Crossref | GoogleScholarGoogle Scholar | 20040496PubMed |

Hotta, Y., Nakamura, H., Konishi, M., Murata, Y., Takagi, H., Matsumura, S., Inoue, K., Fushiki, T., and Itoh, N. (2009). Fibroblast growth factor 21 regulates lipolysis in white adipose tissue but is not required for ketogenesis and triglyceride clearance in liver. Endocrinology 150, 4625–4633.
Fibroblast growth factor 21 regulates lipolysis in white adipose tissue but is not required for ketogenesis and triglyceride clearance in liver.Crossref | GoogleScholarGoogle Scholar | 19589869PubMed |

Hu, K., Zhang, J., and Liang, M. (2017). LncRNA AK015322 promotes proliferation of spermatogonial stem cell C18–4 by acting as a decoy for microRNA-19b-3p. In Vitro Cell. Dev. Biol. Anim. 53, 277–284.
LncRNA AK015322 promotes proliferation of spermatogonial stem cell C18–4 by acting as a decoy for microRNA-19b-3p.Crossref | GoogleScholarGoogle Scholar | 27822884PubMed |

Huang, J. K., Ma, L., Song, W. H., Lu, B. Y., Huang, Y. B., Dong, H. M., Ma, X. K., Zhu, Z. Z., and Zhou, R. (2017). LncRNA-MALAT1 promotes angiogenesis of thyroid cancer by modulating tumor-associated macrophage FGF2 protein secretion. J. Cell. Biochem. 118, 4821–4830.
LncRNA-MALAT1 promotes angiogenesis of thyroid cancer by modulating tumor-associated macrophage FGF2 protein secretion.Crossref | GoogleScholarGoogle Scholar | 28543663PubMed |

Hwang, H. W., Wentzel, E. A., and Mendell, J. T. (2007). A hexanucleotide element directs microRNA nuclear import. Science 315, 97–100.
A hexanucleotide element directs microRNA nuclear import.Crossref | GoogleScholarGoogle Scholar | 17204650PubMed |

Itoh, N., and Ornitz, D. M. (2011). Fibroblast growth factors: from molecular evolution to roles in development, metabolism and disease. J. Biochem. 149, 121–130.
Fibroblast growth factors: from molecular evolution to roles in development, metabolism and disease.Crossref | GoogleScholarGoogle Scholar | 20940169PubMed |

Jiang, X., Cao, X., Huang, Y., Chen, J., Yao, X., Zhao, M., Liu, Y., Meng, J., Li, P., Li, Z., Yao, J., Smith, G. W., and Lv, L. (2015). Effects of treatment with Astragalus membranaceus on function of rat Leydig cells. BMC Complement. Altern. Med. 15, 261.
Effects of treatment with Astragalus membranaceus on function of rat Leydig cells.Crossref | GoogleScholarGoogle Scholar | 26231491PubMed |

Lai, F., Orom, U. A., Cesaroni, M., Beringer, M., Taatjes, D. J., Blobel, G. A., and Shiekhattar, R. (2013). Activating RNAs associate with Mediator to enhance chromatin architecture and transcription. Nature 494, 497–501.
Activating RNAs associate with Mediator to enhance chromatin architecture and transcription.Crossref | GoogleScholarGoogle Scholar | 23417068PubMed |

Lai, M. S., Cheng, Y. S., Chen, P. R., Tsai, S. J., and Huang, B. M. (2014). Fibroblast growth factor 9 activates AKT and MAPK pathways to stimulate steroidogenesis in mouse Leydig cells. PLoS One 9, e90243.
Fibroblast growth factor 9 activates AKT and MAPK pathways to stimulate steroidogenesis in mouse Leydig cells.Crossref | GoogleScholarGoogle Scholar | 25464005PubMed |

Liang, H., Luo, R., Chen, X., Zhao, Y., and Tan, A. (2017). miR-187 inhibits the growth of cervical cancer cells by targeting FGF9. Oncol. Rep. 38, 1977–1984.
miR-187 inhibits the growth of cervical cancer cells by targeting FGF9.Crossref | GoogleScholarGoogle Scholar | 28849071PubMed |

Lin, Y. M., Tsai, C. C., Chung, C. L., Chen, P. R., Sun, H. S., Tsai, S. J., and Huang, B. M. (2010). Fibroblast growth factor 9 stimulates steroidogenesis in postnatal Leydig cells. Int. J. Androl. 33, 545–553.
Fibroblast growth factor 9 stimulates steroidogenesis in postnatal Leydig cells.Crossref | GoogleScholarGoogle Scholar | 19508331PubMed |

Lovicu, F. J., and Overbeek, P. A. (1998). Overlapping effects of different members of the FGF family on lens fiber differentiation in transgenic mice. Development 125, 3365–3377.
| 9693140PubMed |

Lu, W., Huang, S. Y., Su, L., Zhao, B. X., and Miao, J. Y. (2016). Long noncoding RNA LOC100129973 suppresses apoptosis by targeting miR-4707–5p and miR-4767 in vascular endothelial cells. Sci. Rep. 6, 21620.
Long noncoding RNA LOC100129973 suppresses apoptosis by targeting miR-4707–5p and miR-4767 in vascular endothelial cells.Crossref | GoogleScholarGoogle Scholar | 26887505PubMed |

Miyamoto, M., Naruo, K., Seko, C., Matsumoto, S., Kondo, T., and Kurokawa, T. (1993). Molecular cloning of a novel cytokine cDNA encoding the ninth member of the fibroblast growth factor family, which has a unique secretion property. Mol. Cell. Biol. 13, 4251–4259.
Molecular cloning of a novel cytokine cDNA encoding the ninth member of the fibroblast growth factor family, which has a unique secretion property.Crossref | GoogleScholarGoogle Scholar | 8321227PubMed |

Ni, M. J., Hu, Z. H., Liu, Q., Liu, M. F., Lu, M. H., Zhang, J. S., Zhang, L., and Zhang, Y. L. (2011). Identification and characterization of a novel non-coding RNA involved in sperm maturation. PLoS One 6, e26053.
Identification and characterization of a novel non-coding RNA involved in sperm maturation.Crossref | GoogleScholarGoogle Scholar | 22022505PubMed |

Nishant, K. T., Ravishankar, H., and Rao, M. R. (2004). Characterization of a mouse recombination hot spot locus encoding a novel non-protein-coding RNA. Mol. Cell. Biol. 24, 5620–5634.
Characterization of a mouse recombination hot spot locus encoding a novel non-protein-coding RNA.Crossref | GoogleScholarGoogle Scholar | 15169920PubMed |

Ostrer, H., Huang, H. Y., Masch, R. J., and Shapiro, E. (2007). A cellular study of human testis development. Sex Dev. 1, 286–292.
A cellular study of human testis development.Crossref | GoogleScholarGoogle Scholar | 18391539PubMed |

Pui, H. P., and Saga, Y. (2017). Gonocytes-to-spermatogonia transition initiates prior to birth in murine testes and it requires FGF signaling. Mech Dev 144, 125–139.
Gonocytes-to-spermatogonia transition initiates prior to birth in murine testes and it requires FGF signaling.Crossref | GoogleScholarGoogle Scholar | 28341395PubMed |

Sanders, E. J., and Harvey, S. (2008). Peptide hormones as developmental growth and differentiation factors. Dev. Dyn. 237, 1537–1552.
Peptide hormones as developmental growth and differentiation factors.Crossref | GoogleScholarGoogle Scholar | 18498096PubMed |

Schütz, L. F., Schreiber, N. B., Gilliam, J. N., Cortinovis, C., Totty, M. L., Caloni, F., Evans, J. R., and Spicer, L. J. (2016). Changes in fibroblast growth factor 9 mRNA in granulosa and theca cells during ovarian follicular growth in dairy cattle. J. Dairy Sci. 99, 9143–9151.
Changes in fibroblast growth factor 9 mRNA in granulosa and theca cells during ovarian follicular growth in dairy cattle.Crossref | GoogleScholarGoogle Scholar | 27614836PubMed |

Shi, L., Song, R., Yao, X., and Ren, Y. (2017). Effects of selenium on the proliferation, apoptosis and testosterone production of sheep Leydig cells in vitro. Theriogenology 93, 24–32.
Effects of selenium on the proliferation, apoptosis and testosterone production of sheep Leydig cells in vitro.Crossref | GoogleScholarGoogle Scholar | 28257863PubMed |

Song, Y. X., Sun, J. X., Zhao, J. H., Yang, Y. C., Shi, J. X., Wu, Z. H., Chen, X. W., Gao, P., Miao, Z. F., and Wang, Z. N. (2017). Non-coding RNAs participate in the regulatory network of CLDN4 via ceRNA mediated miRNA evasion. Nat. Commun. 8, 289.
Non-coding RNAs participate in the regulatory network of CLDN4 via ceRNA mediated miRNA evasion.Crossref | GoogleScholarGoogle Scholar | 28819095PubMed |

Sun, C., Fukui, H., Hara, K., Zhang, X. X., Kitayama, Y., Eda, H., Tomita, T., Oshima, T., Kikuchi, S., Watari, J., Sasako, M., and Miwa, H. (2015). FGF9 from cancer-associated fibroblasts is a possible mediator of invasion and anti-apoptosis of gastric cancer cells. BMC Cancer 15, 333.
FGF9 from cancer-associated fibroblasts is a possible mediator of invasion and anti-apoptosis of gastric cancer cells.Crossref | GoogleScholarGoogle Scholar | 25925261PubMed |

Tian, R., Yao, C., Yang, C., Zhu, Z., Li, C., Zhi, E., Wang, J., Li, P., Chen, H., Yuan, Q., He, Z., and Li, Z. (2019). Fibroblast growth factor-5 promotes spermatogonial stem cell proliferation via ERK and AKT activation. Stem Cell Res. Ther. 10, 40.
Fibroblast growth factor-5 promotes spermatogonial stem cell proliferation via ERK and AKT activation.Crossref | GoogleScholarGoogle Scholar | 30670081PubMed |

Vernon, R. K., and Spicer, L. J. (1994). Effects of basic fibroblast growth factor and heparin on follicle-stimulating hormone-induced steroidogenesis by bovine granulosa cells. J. Anim. Sci. 72, 2696–2702.
Effects of basic fibroblast growth factor and heparin on follicle-stimulating hormone-induced steroidogenesis by bovine granulosa cells.Crossref | GoogleScholarGoogle Scholar | 7883629PubMed |

Wang, K. C., and Chang, H. Y. (2011). Molecular mechanisms of long noncoding RNAs. Mol. Cell 43, 904–914.
Molecular mechanisms of long noncoding RNAs.Crossref | GoogleScholarGoogle Scholar | 21925379PubMed |

White, K. E., Evans, W. E., O’Riordan, J. L. H., Speer, M. C., Econs, M. J., Lorenz-Depiereux, B., Grabowski, M., Meitinger, T., and Strom, T. M. (2000). Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23. Nat. Genet. 26, 345–348.
Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23.Crossref | GoogleScholarGoogle Scholar |

Willerton, L., Smith, R. A., Russell, D., and Mackay, S. (2004). Effects of FGF9 on embryonic Sertoli cell proliferation and testicular cord formation in the mouse. Int. J. Dev. Biol. 48, 637–643.
Effects of FGF9 on embryonic Sertoli cell proliferation and testicular cord formation in the mouse.Crossref | GoogleScholarGoogle Scholar | 15470636PubMed |

Williams, A. H., Valdez, G., Moresi, V., Qi, X., McAnally, J., Elliott, J. L., Bassel-Duby, R., Sanes, J. R., and Olson, E. N. (2009). MicroRNA-206 delays ALS progression and promotes regeneration of neuromuscular synapses in mice. Science 326, 1549–1554.
MicroRNA-206 delays ALS progression and promotes regeneration of neuromuscular synapses in mice.Crossref | GoogleScholarGoogle Scholar | 20007902PubMed |

Zhang, L., Lu, H., Xin, D., Cheng, H., and Zhou, R. (2010). A novel ncRNA gene from mouse Chromosome 5 trans-splices with Dmrt1 on Chromosome 19. Biochem. Biophys. Res. Commun. 400, 696–700.
A novel ncRNA gene from mouse Chromosome 5 trans-splices with Dmrt1 on Chromosome 19.Crossref | GoogleScholarGoogle Scholar | 20816665PubMed |