Cytoplasm lipids can be modulated through hormone-sensitive lipase and are related to mitochondrial function in porcine IVM oocytes
Qingrui Zhuan A * , Haojia Ma A * , Jing Chen A * , Yuxi Luo A , Yan Luo B , Lei Gao A , Yunpeng Hou B , Shien Zhu A and Xiangwei Fu A CA National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Haidian District, Beijing 100193, China.
B State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Haidian District, Beijing 100193, China.
C Corresponding author. Email: xiangweifu@126.com
Reproduction, Fertility and Development 32(7) 667-675 https://doi.org/10.1071/RD19047
Submitted: 4 February 2019 Accepted: 14 November 2019 Published: 16 March 2020
Abstract
Intracellular lipids provide energy for oocyte maturation and development. Triglycerides are the main components of cytoplasm lipid droplets, and hydrolysis of triglycerides requires several lipase-mediated steps. The aim of this study was to determine the effects of the β-adrenoceptor agonist isoproterenol (ISO) and the hormone-sensitive lipase (HSL) inhibitor CAY10499 on the IVM of porcine oocytes. ISO (5 mg L−1) and CAY10499 (20 mg L−1) had positive and negative effects respectively on in vitro oocyte maturation and subsequent embryo development. The rates of polar body extrusion, cleavage and blastocyst formation were significantly higher in the ISO-treated group than the control and CAY10499-treated groups. ISO treatment also upregulated intracellular cAMP levels in comparison with the control group, while CAY10499 significantly increased the triglyceride content of matured oocytes when compared with other groups, consistent with the observed decrease in LIPE (HSL) mRNA levels. Furthermore, the inhibitory effects of CAY10499 included decreases in mitochondrial membrane potential and mitochondrial temperature. These results indicate that ISO has a positive effect on the IVM of porcine oocytes, and that intracellular lipid metabolism can be modulated by CAY10499 through inhibition of HSL and is closely related to mitochondrial function.
Additional keywords: lipid content, mitochondria, triglyceride.
References
Arai, S., Suzuki, M., Park, S. J., Yoo, J. S., Wang, L., Kang, N. Y., Ha, H. H., and Chang, Y. T. (2015). Mitochondria-targeted fluorescent thermometer monitors intracellular temperature gradient. Chem. Commun. (Camb.) 51, 8044–8047.| Mitochondria-targeted fluorescent thermometer monitors intracellular temperature gradient.Crossref | GoogleScholarGoogle Scholar | 25865069PubMed |
Babayev, E., and Seli, E. (2015). Oocyte mitochondrial function and reproduction. Curr. Opin. Obstet. Gynecol. 27, 175–181.
| Oocyte mitochondrial function and reproduction.Crossref | GoogleScholarGoogle Scholar | 25719756PubMed |
Barceló-Fimbres, M., and Seidel, G. E. (2007). Effects of fetal calf serum, phenazine ethosulfate and either glucose or fructose during in vitro culture of bovine embryos on embryonic development after cryopreservation. Mol. Reprod. Dev. 74, 1395–1405.
| Effects of fetal calf serum, phenazine ethosulfate and either glucose or fructose during in vitro culture of bovine embryos on embryonic development after cryopreservation.Crossref | GoogleScholarGoogle Scholar | 17342731PubMed |
Bickel, P. E., Tansey, J. T., and Welte, M. A. (2009). PAT proteins, an ancient family of lipid droplet proteins that regulate cellular lipid stores. BBA – Mol. Cell. Biol. Lipids 1791, 419–440.
| PAT proteins, an ancient family of lipid droplet proteins that regulate cellular lipid stores.Crossref | GoogleScholarGoogle Scholar |
Chrétien, D., Bénit, P., Ha, H. H., Keipert, S., El-Khoury, R., Chang, Y. T., Jastroch, M., Jacobs, H. T., Rustin, P., and Rak, M. (2018). Mitochondria are physiologically maintained at close to 50°C. PLoS Biol. 16, e2003992.
| Mitochondria are physiologically maintained at close to 50°C.Crossref | GoogleScholarGoogle Scholar | 29370167PubMed |
Dalton, C. M., and Carroll, J. (2013). Biased inheritance of mitochondria during asymmetric cell division in the mouse oocyte. J. Cell Sci. 126, 2955–2964.
| Biased inheritance of mitochondria during asymmetric cell division in the mouse oocyte.Crossref | GoogleScholarGoogle Scholar | 23659999PubMed |
Dalton, C. M., Szabadkai, G., and Carroll, J. (2014). Measurement of ATP in single oocytes: impact of maturation and cumulus cells on levels and consumption. J. Cell. Physiol. 229, 353–361.
| Measurement of ATP in single oocytes: impact of maturation and cumulus cells on levels and consumption.Crossref | GoogleScholarGoogle Scholar | 24002908PubMed |
del Collado, M., Saraiva, N. Z., Lopes, F. L., Gaspar, R. C., Padilha, L. C., Costa, R. R., Rossi, G. F., Vantini, R., and Garcia, J. M. (2016). Influence of bovine serum albumin and fetal bovine serum supplementation during in vitro maturation on lipid and mitochondrial behaviour in oocytes and lipid accumulation in bovine embryos. Reprod. Fertil. Dev. 28, 1721–1732.
| Influence of bovine serum albumin and fetal bovine serum supplementation during in vitro maturation on lipid and mitochondrial behaviour in oocytes and lipid accumulation in bovine embryos.Crossref | GoogleScholarGoogle Scholar |
del Collado, M., da Silveira, J. C., Oliveira, M. L. F., Alves, B., Simas, R. C., Godoy, A. T., Coelho, M. B., Marques, L. A., Carriero, M. M., Nogueira, M. F. G., Eberlin, M. N., Silva, L. A., Meirelles, F. V., and Perecin, F. (2017). In vitro maturation impacts cumulus oocyte complex metabolism and stress in cattle. Reproduction 154, 881–893.
| In vitro maturation impacts cumulus oocyte complex metabolism and stress in cattle.Crossref | GoogleScholarGoogle Scholar | 28971896PubMed |
Ding, L., Zhang, F., Zhao, M. X., Ren, X. S., Chen, Q., Li, Y. H., Kang, Y. M., and Zhu, G. Q. (2016). Reduced lipolysis response to adipose afferent reflex involved in impaired activation of adrenoceptor–cAMP–PKA–hormone sensitive lipase pathway in obesity. Sci. Rep. 6, 34374.
| Reduced lipolysis response to adipose afferent reflex involved in impaired activation of adrenoceptor–cAMP–PKA–hormone sensitive lipase pathway in obesity.Crossref | GoogleScholarGoogle Scholar | 27694818PubMed |
Downs, S. M., and Utecht, A. M. (1999). Metabolism of radiolabeled glucose by mouse oocytes and oocyte–cumulus cell complexes. Biol. Reprod. 60, 1446–1452.
| Metabolism of radiolabeled glucose by mouse oocytes and oocyte–cumulus cell complexes.Crossref | GoogleScholarGoogle Scholar | 10330104PubMed |
Dunning, K. R., Russell, D. L., and Robker, R. L. (2014). Lipids and oocyte developmental competence: the role of fatty acids and β-oxidation. Reproduction 148, R15–R27.
| Lipids and oocyte developmental competence: the role of fatty acids and β-oxidation.Crossref | GoogleScholarGoogle Scholar | 24760880PubMed |
Ferguson, E. M., and Leese, H. J. (1999). Triglyceride content of bovine oocytes and early embryos. J. Reprod. Fertil. 116, 373–378.
| Triglyceride content of bovine oocytes and early embryos.Crossref | GoogleScholarGoogle Scholar | 10615263PubMed |
Ferguson, E. M., and Leese, H. J. (2006). A potential role for triglyceride as an energy source during bovine oocyte maturation and early embryo development. Mol. Reprod. Dev. 73, 1195–1201.
| A potential role for triglyceride as an energy source during bovine oocyte maturation and early embryo development.Crossref | GoogleScholarGoogle Scholar | 16804881PubMed |
Fu, X. W., Wu, G. Q., Li, J. J., Hou, Y. P., Zhou, G. B., Lun-Suo, , Wang, Y. P., and Zhu, S. E. (2011). Positive effects of forskolin (stimulator of lipolysis) treatment on cryosurvival of in vitro matured porcine oocytes. Theriogenology 75, 268–275.
| Positive effects of forskolin (stimulator of lipolysis) treatment on cryosurvival of in vitro matured porcine oocytes.Crossref | GoogleScholarGoogle Scholar | 21187280PubMed |
Galluzzi, L., Kepp, O., Trojel-Hansen, C., and Kroemer, G. (2012). Mitochondrial control of cellular life, stress, and death. Circ. Res. 111, 1198–1207.
| Mitochondrial control of cellular life, stress, and death.Crossref | GoogleScholarGoogle Scholar | 23065343PubMed |
Granneman, J. G., Moore, H. P., Krishnamoorthy, R., and Rathod, M. (2009). Perilipin controls lipolysis by regulating the interactions of AB-hydrolase containing 5 (Abhd5) and adipose triglyceride lipase (Atgl). J. Biol. Chem. 284, 34538–34544.
| Perilipin controls lipolysis by regulating the interactions of AB-hydrolase containing 5 (Abhd5) and adipose triglyceride lipase (Atgl).Crossref | GoogleScholarGoogle Scholar | 19850935PubMed |
Grisouard, J., Bouillet, E., Timper, K., Radimerski, T., Dembinski, K., Frey, D. M., Peterli, R., Zulewski, H., Keller, U., and Müller, B. (2012). Both inflammatory and classical lipolytic pathways are involved in lipopolysaccharide-induced lipolysis in human adipocytes. Innate Immun. 18, 25–34.
| Both inflammatory and classical lipolytic pathways are involved in lipopolysaccharide-induced lipolysis in human adipocytes.Crossref | GoogleScholarGoogle Scholar | 21088047PubMed |
He, B., Yin, C., Gong, Y., Liu, J., Guo, H., and Zhao, R. (2018). Melatonin-induced increase of lipid droplets accumulation and in vitro maturation in porcine oocytes is mediated by mitochondrial quiescence. J. Cell. Physiol. 233, 302–312.
| Melatonin-induced increase of lipid droplets accumulation and in vitro maturation in porcine oocytes is mediated by mitochondrial quiescence.Crossref | GoogleScholarGoogle Scholar | 28240360PubMed |
Homa, S. T., Racowsky, C., and McGaughey, R. W. (1986). Lipid analysis of immature pig oocytes. J. Reprod. Fertil. 77, 425–434.
| Lipid analysis of immature pig oocytes.Crossref | GoogleScholarGoogle Scholar | 3735242PubMed |
Ježek, P., Holendová, B., Garlid, K. D., and Jabůrek, M. (2018). Mitochondrial uncoupling proteins: subtle regulators of cellular redox signaling. Antioxid. Redox Signal. 29, 667–714.
| 29351723PubMed |
Jin, J. X., Lee, S., Taweechaipaisankul, A., Kim, G. A., and Lee, B. C. (2017). Melatonin regulates lipid metabolism in porcine oocytes. J. Pineal Res. 62, e12388.
| Melatonin regulates lipid metabolism in porcine oocytes.Crossref | GoogleScholarGoogle Scholar | 28095627PubMed |
Kimmel, A. R., Brasaemle, D. L., Mcandrewshill, M., Sztalryd, C., and Londos, C. (2010). Adoption of PERILIPIN as a unifying nomenclature for the mammalian PAT-family of intracellular lipid storage droplet proteins. J. Lipid Res. 51, 468–471.
| Adoption of PERILIPIN as a unifying nomenclature for the mammalian PAT-family of intracellular lipid storage droplet proteins.Crossref | GoogleScholarGoogle Scholar | 19638644PubMed |
Krintel, C., Osmark, P., Larsen, M. R., Resjö, S., Logan, D. T., and Holm, C. (2008). Ser649 and Ser650 are the major determinants of protein kinase A-mediated activation of human hormone-sensitive lipase against lipid substrates. PLoS One 3, e3756.
| Ser649 and Ser650 are the major determinants of protein kinase A-mediated activation of human hormone-sensitive lipase against lipid substrates.Crossref | GoogleScholarGoogle Scholar | 19018281PubMed |
Krishnamoorthy, L., Cotruvo, J. A., Chan, J., Kaluarachchi, H., Muchenditsi, A., Pendyala, V. S., Jia, S., Aron, A. T., Ackerman, C. M., Wal, M. N., Guan, T., Smaga, L. P., Farhi, S. L., New, E. J., Lutsenko, S., and Chang, C. J. (2016). Copper regulates cyclic-AMP-dependent lipolysis. Nat. Chem. Biol. 12, 586–592.
| Copper regulates cyclic-AMP-dependent lipolysis.Crossref | GoogleScholarGoogle Scholar | 27272565PubMed |
Kuo, A., Lee, M. Y., and Sessa, W. C. (2017). Lipid droplet biogenesis and function in the endothelium. Circ. Res. 120, 1289–1297.
| Lipid droplet biogenesis and function in the endothelium.Crossref | GoogleScholarGoogle Scholar | 28119423PubMed |
Leal, G. R., Monteiro, C. A. S., Souza-Fabjan, J. M. G., de Paula Vasconcelos, C. O., Nogueira, L. A. G., Ferreira, A. M. R., and Serapião, R. V. (2018). Role of cAMP modulator supplementations during oocyte in vitro maturation in domestic animals. Anim. Repro. Sci. 199, 1–14.
| Role of cAMP modulator supplementations during oocyte in vitro maturation in domestic animals.Crossref | GoogleScholarGoogle Scholar |
Li, Y., Fromme, T., Schweizer, S., Schöttl, T., and Klingenspor, M. (2014). Taking control over intracellular fatty acid levels is essential for the analysis of thermogenic function in cultured primary brown and brite/beige adipocytes. EMBO Rep. 15, 1069–1076.
| Taking control over intracellular fatty acid levels is essential for the analysis of thermogenic function in cultured primary brown and brite/beige adipocytes.Crossref | GoogleScholarGoogle Scholar | 25135951PubMed |
Loewenstein, J. E., and Cohen, A. I. (1964). Dry mass, lipid content and protein content of the intact and zona-free mouse ovum. J. Embryol. Exp. Morphol. 12, 113–121.
| 14155399PubMed |
Lowe, J. L., Bathgate, R., and Grupen, C. G. (2019). Effect of carbohydrates on lipid metabolism during porcine oocyte IVM. Reprod. Fertil. Dev. 31, 557–569.
| Effect of carbohydrates on lipid metabolism during porcine oocyte IVM.Crossref | GoogleScholarGoogle Scholar | 31039975PubMed |
MacKenzie, K. F., Wallace, D. A., Hill, E. V., Anthony, D. F., Henderson, D. J., Houslay, D. M., Arthur, J. S., Baillie, G. S., and Houslay, M. D. (2011). Phosphorylation of cAMP-specific PDE4A5 (phosphodiesterase-4A5) by MK2 (MAPKAPK2) attenuates its activation through protein kinase A phosphorylation. Biochem. J. 435, 755–769.
| Phosphorylation of cAMP-specific PDE4A5 (phosphodiesterase-4A5) by MK2 (MAPKAPK2) attenuates its activation through protein kinase A phosphorylation.Crossref | GoogleScholarGoogle Scholar | 21323643PubMed |
McEvoy, T. G., Coull, G. D., Broadbent, P. J., Hutchinson, J. S. M., and Speake, B. K. (2000). Fatty acid composition of lipids in immature cattle, pig and sheep oocytes with intact zona pellucida. J. Reprod. Fertil. 118, 163–170.
| Fatty acid composition of lipids in immature cattle, pig and sheep oocytes with intact zona pellucida.Crossref | GoogleScholarGoogle Scholar | 10793638PubMed |
McGarry, J. D., and Brown, N. F. (1997). The mitochondrial carnitine palmitoyltransferase system – from concept to molecular analysis. European Journal of Biochemistry 244, 1–14.
| 9063439PubMed |
Men, H., Agca, Y., Riley, L. K., and Critser, J. K. (2006). Improved survival of vitrified porcine embryos after partial delipation through chemically stimulated lipolysis and inhibition of apoptosis. Theriogenology 66, 2008–2016.
| Improved survival of vitrified porcine embryos after partial delipation through chemically stimulated lipolysis and inhibition of apoptosis.Crossref | GoogleScholarGoogle Scholar | 16870242PubMed |
Menendez, J. A. (2010). Fine-tuning the lipogenic/lipolytic balance to optimize the metabolic requirements of cancer cell growth: molecular mechanisms and therapeutic perspectives. Biochim. Biophys. Acta 1801, 381–391.
| Fine-tuning the lipogenic/lipolytic balance to optimize the metabolic requirements of cancer cell growth: molecular mechanisms and therapeutic perspectives.Crossref | GoogleScholarGoogle Scholar | 19782152PubMed |
Miyoshi, H., Souza, S. C., Zhang, H. H., Strissel, K. J., Christoffolete, M. A., Kovsan, J., Rudich, A., Kraemer, F. B., Bianco, A. C., and Obin, M. S. (2006). Perilipin promotes hormone-sensitive lipase-mediated adipocyte lipolysis via phosphorylation-dependent and -independent mechanisms. J. Biol. Chem. 281, 15837–15844.
| Perilipin promotes hormone-sensitive lipase-mediated adipocyte lipolysis via phosphorylation-dependent and -independent mechanisms.Crossref | GoogleScholarGoogle Scholar | 16595669PubMed |
Moussa, M., Li, M. Q., Zheng, H. Y., Yang, C. Y., Yan, S. F., Yu, N. Q., Huang, J. X., and Shang, J. H. (2018). Developmental competence of buffalo (Bubalus bubalis) denuded oocytes cocultured with cumulus cells: protective role of cumulus cells. Theriogenology 120, 40–46.
| Developmental competence of buffalo (Bubalus bubalis) denuded oocytes cocultured with cumulus cells: protective role of cumulus cells.Crossref | GoogleScholarGoogle Scholar | 30092373PubMed |
Paczkowski, M., Silva, E., Schoolcraft, W. B., and Krisher, R. L. (2013). Comparative importance of fatty acid beta-oxidation to nuclear maturation, gene expression, and glucose metabolism in mouse, bovine, and porcine cumulus oocyte complexes. Biol. Reprod. 88, 111.
| Comparative importance of fatty acid beta-oxidation to nuclear maturation, gene expression, and glucose metabolism in mouse, bovine, and porcine cumulus oocyte complexes.Crossref | GoogleScholarGoogle Scholar | 23536372PubMed |
Prates, E. G., Marques, C. C., Baptista, M. C., Vasques, M. I., Carolino, N., Horta, A. E., Charneca, R., Nunes, J. T., and Pereira, R. M. (2013). Fat area and lipid droplet morphology of porcine oocytes during in vitro maturation with trans-10, cis-12 conjugated linoleic acid and forskolin. Animal 7, 602–609.
| Fat area and lipid droplet morphology of porcine oocytes during in vitro maturation with trans-10, cis-12 conjugated linoleic acid and forskolin.Crossref | GoogleScholarGoogle Scholar | 23098362PubMed |
Saponaro, C., Gaggini, M., Carli, F., and Gastaldelli, A. (2015). The subtle balance between lipolysis and lipogenesis: a critical point in metabolic homeostasis. Nutrients 7, 9453–9474.
| The subtle balance between lipolysis and lipogenesis: a critical point in metabolic homeostasis.Crossref | GoogleScholarGoogle Scholar | 26580649PubMed |
Savinainen, J. R., Yoshino, M., Minkkilä, A., Nevalainen, T., and Laitinen, J. T. (2010). Characterization of binding properties of monoglyceride lipase inhibitors by a versatile fluorescence-based technique. Anal. Biochem. 399, 132–134.
| Characterization of binding properties of monoglyceride lipase inhibitors by a versatile fluorescence-based technique.Crossref | GoogleScholarGoogle Scholar | 20005861PubMed |
Somfai, T., Kaneda, M., Akagi, S., Watanabe, S., Haraguchi, S., Mizutani, E., Dang-Nguyen, T. Q., Geshi, M., Kikuchi, K., and Nagai, T. (2011). Enhancement of lipid metabolism with l-carnitine during in vitro maturation improves nuclear maturation and cleavage ability of follicular porcine oocytes. Reprod. Fertil. Dev. 23, 912–920.
| Enhancement of lipid metabolism with l-carnitine during in vitro maturation improves nuclear maturation and cleavage ability of follicular porcine oocytes.Crossref | GoogleScholarGoogle Scholar | 21871210PubMed |
Sturmey, R. G., and Leese, H. J. (2003). Energy metabolism in pig oocytes and early embryos. Reproduction 126, 197.
| Energy metabolism in pig oocytes and early embryos.Crossref | GoogleScholarGoogle Scholar | 12887276PubMed |
Sturmey, R. G., O’Toole, P. J., and Leese, H. J. (2006). Fluorescence resonance energy transfer analysis of mitochondrial:lipid association in the porcine oocyte. Reproduction 132, 829–837.
| Fluorescence resonance energy transfer analysis of mitochondrial:lipid association in the porcine oocyte.Crossref | GoogleScholarGoogle Scholar | 17127743PubMed |
Sturmey, R. G., Reis, A., Leese, H. J., and Mcevoy, T. G. (2009). Role of fatty acids in energy provision during oocyte maturation and early embryo development. Reprod. Domest. Anim. 44, 50–58.
| Role of fatty acids in energy provision during oocyte maturation and early embryo development.Crossref | GoogleScholarGoogle Scholar | 19660080PubMed |
Tseng, Y. H., Cypess, A. M., and Kahn, C. R. (2010). Cellular bioenergetics as a target for obesity therapy. Nat. Rev. Drug Discov. 9, 465–482.
| Cellular bioenergetics as a target for obesity therapy.Crossref | GoogleScholarGoogle Scholar | 20514071PubMed |
van der Kolk, J. H., Gross, J. J., Gerber, V., and Bruckmaier, R. M. (2017). Disturbed bovine mitochondrial lipid metabolism: a review. Veterinary Quarterly 37, 262–273.
| Disturbed bovine mitochondrial lipid metabolism: a review.Crossref | GoogleScholarGoogle Scholar |
Wang, C., Niu, Y., Chi, D., Zeng, Y., Liu, H., Dai, Y., and Li, J. (2015). Influence of delipation on the energy metabolism in pig parthenogenetically activated embryos. Reprod. Domest. Anim. 50, 826–833.
| Influence of delipation on the energy metabolism in pig parthenogenetically activated embryos.Crossref | GoogleScholarGoogle Scholar | 26303295PubMed |
Wang, H., Sreenivasan, U., Hu, H., Saladino, A., Polster, B. M., Lund, L. M., Gong, D. W., Stanley, W. C., and Sztalryd, C. (2011). Perilipin 5, a lipid droplet-associated protein, provides physical and metabolic linkage to mitochondria. J. Lipid Res. 52, 2159–2168.
| 21885430PubMed |
Yamaguchi, T., Omatsu, N., Matsushita, S., and Osumi, T. (2004). CGI-58 interacts with perilipin and is localized to lipid droplets. Possible involvement of CGI-58 mislocalization in Chanarin–Dorfman syndrome. J. Biol. Chem. 279, 30490–30497.
| CGI-58 interacts with perilipin and is localized to lipid droplets. Possible involvement of CGI-58 mislocalization in Chanarin–Dorfman syndrome.Crossref | GoogleScholarGoogle Scholar | 15136565PubMed |
Zhang, R. N., Fu, X. W., Jia, B. Y., Liu, C., Cheng, K. R., and Zhu, S. E. (2014). Expression of perilipin 2 (PLIN2) in porcine oocytes during maturation. Reprod. Domest. Anim. 49, 875–880.
| Expression of perilipin 2 (PLIN2) in porcine oocytes during maturation.Crossref | GoogleScholarGoogle Scholar | 25131988PubMed |