Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Testis-enriched circular RNA circ-Bbs9 plays an important role in Leydig cell proliferation by regulating a CyclinD2-dependent pathway

Minzhi Jia A * , Xiaoliang Li A * , Chuan Jiang A , Ke Wang A , Tao Zuo A , Guolin He B , Lang Qin B C C and Wenming Xu https://orcid.org/0000-0002-3686-229X A B C
+ Author Affiliations
- Author Affiliations

A Joint Laboratory of Reproductive Medicine, SCU-CUHK, Key Laboratory of Obstetric, Gynaecologic and Paediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, P. R. China.

B Department of Obstetrics and Gynaecology, West China Second University Hospital, Sichuan University, Chengdu 610041, P. R. China.

C Reproductive Medical Center, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, China.

D Corresponding authors. Email: xuwenming@scu.edu.cn; cacier@163.com

Reproduction, Fertility and Development 32(4) 355-362 https://doi.org/10.1071/RD18474
Submitted: 21 November 2018  Accepted: 1 July 2019   Published: 11 November 2019

Abstract

Circular RNAs belong to a new category of non-coding RNAs, characterised by a circular structure, conservation, stability and high expression in eukaryotes. They often show tissue- or cell-specific expression. Here, we identified a testis-enriched circular RNA (circRNA), circular Bbs9 (circ-Bbs9) that is highly expressed in mouse testis. An RNase R treatment experiment confirmed that circ-Bbs9 is indeed a circRNA. In situ hybridisation experiments showed that circ-Bbs9 is expressed in Leydig cells along seminiferous tubules and in the cytoplasm of the TM3 Leydig cell line. Knocking down the circ-Bbs9 in TM3 cells by lentivirus vectors arrested cell proliferation, whereas overexpression of circ-Bbs9 induced cell proliferation significantly. Knocking down circ-Bbs9 inhibited the protein level of cyclin D2 (Ccnd2) and RNA immunoprecipitation results showed that circ-Bbs9 interacts with Ccnd2. Our results show that use of the Hedgehog pathway Smoothened Agonist (SAG) HCl and antagonists cyclopamine and gant6 affects the expression levels of Glioma-Associated Oncogene Homolog 1 (Gli1), Ccnd2 and other genes in this pathway. Our research reveals that a Leydig cell-specific circRNA, circ-Bbs9, plays a critical role in Leydig cell proliferation through regulating the levels of cell cycle-related Ccnd2. Thus, our results emphasise the important role of circRNA in the male reproductive system.

Additional keywords: cell cycle, cyclin D2, Leydig cell, proliferation.


References

Avasthi, P., Maser, R. L., and Tran, P. V. (2017). Primary cilia in cystic kidney disease. Results Probl. Cell Differ. 60, 281–321.
Primary cilia in cystic kidney disease.Crossref | GoogleScholarGoogle Scholar | 28409350PubMed |

Chen, W., and Schuman, E. (2016). Circular RNAs in brain and other tissues: a functional enigma. Trends Neurosci. 39, 597–604.
Circular RNAs in brain and other tissues: a functional enigma.Crossref | GoogleScholarGoogle Scholar | 27445124PubMed |

Chen, H., Wang, Y., Ge, R., and Zirkin, B. R. (2017). Leydig cell stem cells: identification, proliferation and differentiation. Mol. Cell. Endocrinol. 445, 65–73.
Leydig cell stem cells: identification, proliferation and differentiation.Crossref | GoogleScholarGoogle Scholar | 27743991PubMed |

Chittela, R. K., Gupta, G. D., and Ballal, A. (2014). Characterization of a plant (rice) translin and its comparative analysis with human translin. Planta 240, 357–368.
Characterization of a plant (rice) translin and its comparative analysis with human translin.Crossref | GoogleScholarGoogle Scholar | 24863060PubMed |

Daniel, C., Behm, M., and Ohman, M. (2015). The role of Alu elements in the cis-regulation of RNA processing. Cell. Mol. Life Sci. 72, 4063–4076.
The role of Alu elements in the cis-regulation of RNA processing.Crossref | GoogleScholarGoogle Scholar | 26223268PubMed |

Dong, W. W., Li, H. M., Qing, X. R., Huang, D. H., and Li, H. G. (2016). Identification and characterization of human testis derived circular RNAs and their existence in seminal plasma. Sci. Rep. 6, 39080.
Identification and characterization of human testis derived circular RNAs and their existence in seminal plasma.Crossref | GoogleScholarGoogle Scholar | 27958373PubMed |

Du, W. W., Yang, W., Liu, E., Yang, Z., Dhaliwal, P., and Yang, B. B. (2016). Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res. 44, 2846–2858.
Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2.Crossref | GoogleScholarGoogle Scholar | 26861625PubMed |

Du, W. W., Zhang, C., Yang, W., Yong, T., Awan, F. M., and Yang, B. B. (2017). Identifying and characterizing circRNA–protein interaction. Theranostics 7, 4183–4191.
Identifying and characterizing circRNA–protein interaction.Crossref | GoogleScholarGoogle Scholar | 29158818PubMed |

Han, B., Chao, J., and Yao, H. (2018). Circular RNA and its mechanisms in disease: from the bench to the clinic. Pharmacol. Ther. 187, 31–44.
Circular RNA and its mechanisms in disease: from the bench to the clinic.Crossref | GoogleScholarGoogle Scholar | 29406246PubMed |

Hansen, T. B., Jensen, T. I., Clausen, B. H., Bramsen, J. B., Finsen, B., Damgaard, C. K., and Kjems, J. (2013). Natural RNA circles function as efficient microRNA sponges. Nature 495, 384–388.
Natural RNA circles function as efficient microRNA sponges.Crossref | GoogleScholarGoogle Scholar | 23446346PubMed |

Khan, M. A., Mohan, S., Zubair, M., and Windpassinger, C. (2016). Homozygosity mapping identified a novel protein truncating mutation (p.Ser100Leufs*24) of the BBS9 gene in a consanguineous Pakistani family with Bardet–Biedl syndrome. BMC Med. Genet. 17, 10.
Homozygosity mapping identified a novel protein truncating mutation (p.Ser100Leufs*24) of the BBS9 gene in a consanguineous Pakistani family with Bardet–Biedl syndrome.Crossref | GoogleScholarGoogle Scholar | 26846096PubMed |

Kristensen, L. S., Hansen, T. B., Veno, M. T., and Kjems, J. (2018). Circular RNAs in cancer: opportunities and challenges in the field. Oncogene 37, 555–565.
Circular RNAs in cancer: opportunities and challenges in the field.Crossref | GoogleScholarGoogle Scholar | 28991235PubMed |

Li, Z., Huang, C., Bao, C., Chen, L., Lin, M., Wang, X., Zhong, G., Yu, B., Hu, W., Dai, L., Zhu, P., Chang, Z., Wu, Q., Zhao, Y., Jia, Y., Xu, P., Liu, H., and Shan, G. (2015). Exon–intron circular RNAs regulate transcription in the nucleus. Nat. Struct. Mol. Biol. 22, 256–264.
Exon–intron circular RNAs regulate transcription in the nucleus.Crossref | GoogleScholarGoogle Scholar | 25664725PubMed |

Li, X., Wang, Z., Jiang, Z., Guo, J., Zhang, Y., Li, C., Chung, J., Folmer, J., Liu, J., Lian, Q., Ge, R., Zirkin, B. R., and Chen, H. (2016). Regulation of seminiferous tubule-associated stem Leydig cells in adult rat testes. Proc. Natl. Acad. Sci. USA 113, 2666–2671.
Regulation of seminiferous tubule-associated stem Leydig cells in adult rat testes.Crossref | GoogleScholarGoogle Scholar | 26929346PubMed |

Li, P., Chen, H., Chen, S., Mo, X., Li, T., Xiao, B., Yu, R., and Guo, J. (2017). Circular RNA 0000096 affects cell growth and migration in gastric cancer. Br. J. Cancer 116, 626–633.
Circular RNA 0000096 affects cell growth and migration in gastric cancer.Crossref | GoogleScholarGoogle Scholar | 28081541PubMed |

Liang, G., Yang, Y., Niu, G., Tang, Z., and Li, K. (2017). Genome-wide profiling of Sus scrofa circular RNAs across nine organs and three developmental stages. DNA Res. 24, 523–535.
Genome-wide profiling of Sus scrofa circular RNAs across nine organs and three developmental stages.Crossref | GoogleScholarGoogle Scholar | 28575165PubMed |

Luo, Y. H., Zhu, X. Z., Huang, K. W., Zhang, Q., Fan, Y. X., Yan, P. W., and Wen, J. (2017). Emerging roles of circular RNA hsa_circ_0000064 in the proliferation and metastasis of lung cancer. Biomed. Pharmacother. 96, 892–898.
Emerging roles of circular RNA hsa_circ_0000064 in the proliferation and metastasis of lung cancer.Crossref | GoogleScholarGoogle Scholar | 29223555PubMed |

Nishimura, D. Y., Swiderski, R. E., Searby, C. C., Berg, E. M., Ferguson, A. L., Hennekam, R., Merin, S., Weleber, R. G., Biesecker, L. G., Stone, E. M., and Sheffield, V. C. (2005). Comparative genomics and gene expression analysis identifies BBS9, a new Bardet–Biedl syndrome gene. Am. J. Hum. Genet. 77, 1021–1033.
Comparative genomics and gene expression analysis identifies BBS9, a new Bardet–Biedl syndrome gene.Crossref | GoogleScholarGoogle Scholar | 16380913PubMed |

Rasmussen, K. D., and Helin, K. (2016). Role of TET enzymes in DNA methylation, development, and cancer. Genes Dev. 30, 733–750.
Role of TET enzymes in DNA methylation, development, and cancer.Crossref | GoogleScholarGoogle Scholar | 27036965PubMed |

Wilusz, J. E. (2018). A 360 degrees view of circular RNAs: from biogenesis to functions. Wiley Interdiscip. Rev. RNA 9, e1478.
A 360 degrees view of circular RNAs: from biogenesis to functions.Crossref | GoogleScholarGoogle Scholar | 29655315PubMed |

Wu, X., Guo, X., Wang, H., Zhou, S., Li, L., Chen, X., Wang, G., Liu, J., Ge, H. S., and Ge, R. S. (2017). A brief exposure to cadmium impairs Leydig cell regeneration in the adult rat testis. Sci. Rep. 7, 6337.
A brief exposure to cadmium impairs Leydig cell regeneration in the adult rat testis.Crossref | GoogleScholarGoogle Scholar | 28740105PubMed |

Yamamura, S., Imai-Sumida, M., Tanaka, Y., and Dahiya, R. (2018). Interaction and cross-talk between non-coding RNAs. Cell. Mol. Life Sci. 75, 467–484.
Interaction and cross-talk between non-coding RNAs.Crossref | GoogleScholarGoogle Scholar | 28840253PubMed |

You, X., Vlatkovic, I., Babic, A., Will, T., Epstein, I., Tushev, G., Akbalik, G., Wang, M., Glock, C., Quedenau, C., Wang, X., Hou, J., Liu, H., Sun, W., Sambandan, S., Chen, T., Schuman, E. M., and Chen, W. (2015). Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity. Nat. Neurosci. 18, 603–610.
Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity.Crossref | GoogleScholarGoogle Scholar | 25714049PubMed |