Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
REVIEW

A Tasmanian devil breeding program to support wild recovery*

C. E. Grueber https://orcid.org/0000-0002-8179-1822 A B , E. Peel A , B. Wright A , C. J. Hogg https://orcid.org/0000-0002-6328-398X A and K. Belov https://orcid.org/0000-0002-9762-5554 A C
+ Author Affiliations
- Author Affiliations

A The University of Sydney, School of Life and Environmental Sciences, Faculty of Science, Sydney, NSW 2006, Australia.

B San Diego Zoo Global, PO Box 120551, San Diego, CA 92112, USA.

C Corresponding author. Email: kathy.belov@sydney.edu.au

Reproduction, Fertility and Development 31(7) 1296-1304 https://doi.org/10.1071/RD18152
Submitted: 20 April 2018  Accepted: 1 October 2018   Published: 7 November 2018

Abstract

Tasmanian devils are threatened in the wild by devil facial tumour disease: a transmissible cancer with a high fatality rate. In response, the Save the Tasmanian Devil Program (STDP) established an ‘insurance population’ to enable the preservation of genetic diversity and natural behaviours of devils. This breeding program includes a range of institutions and facilities, from zoo-based intensive enclosures to larger, more natural environments, and a strategic approach has been required to capture and maintain genetic diversity, natural behaviours and to ensure reproductive success. Laboratory-based research, particularly genetics, in tandem with adaptive management has helped the STDP reach its goals, and has directly contributed to the conservation of the species in the wild. Here we review this work and show that the Tasmanian devil breeding program is a powerful example of how genetic research can be used to understand and improve reproductive success in a threatened species.

Additional keywords: adaptation to captivity, conservation, insurance population, microsatellites, pedigree, reproductive success, translocation.


References

Acevedo-Whitehouse, K., and Cunningham, A. A. (2006). Is MHC enough for understanding wildlife immunogenetics? Trends Ecol. Evol. 21, 433–438.
Is MHC enough for understanding wildlife immunogenetics?Crossref | GoogleScholarGoogle Scholar |

Asa, C. S., Traylor-Holzer, K., and Lacy, R. C. (2011). Can conservation-breeding programmes be improved by incorporating mate choice? Int. Zoo Yearb. 45, 203–212.
Can conservation-breeding programmes be improved by incorporating mate choice?Crossref | GoogleScholarGoogle Scholar |

Bahrndorff, S., Alemu, T., Alemneh, T., and Nielsen, J. L. (2016). The microbiome of animals: implications for conservation biology. Int. J. Genomics 2016, 5304028.
The microbiome of animals: implications for conservation biology.Crossref | GoogleScholarGoogle Scholar |

Biggs, J., Srb, C., Schaap, D., and Hogg, C. (2017). ‘Annual Report and Recommendations for the DPIPWE-ZAA Tasmanian Devil Insurance Population.’ (Zoo and Aquarium Association: Mosman, Sydney.)

Brandies, P. A., Grueber, C. E., Hogg, C. J., and Belov, K. (2018). MHC Genes and Mate Choice. In: ‘Encyclopedia of Animal Behaviour 2 ed. (Ed J Choe) (Elsevier: Massachusetts, USA). (In press.)

Conservation Breeding Specialist Group (CBSG) (2008). ‘Tasmanian Devil PHVA Final Report.’ (IUCN/SSC Conservation Breeding Specialist Group: Apple Valley, MN.)

Conservation Breeding Specialist Group (2017). IUCN Red List captive breeding recommendations. Available at http://www.cpsg.org/iucn-red-list-captive-breeding-recommendations [verified 1 September 2018].

CBSG, Department of Primary Industries, Parks, Water and Environment (DPIPWE), ARAZPA (2009). ‘The Save the Tasmanian Devil Program: Strategic Framework for an Insurance Meta-population.’ (DPIPWE: Hobart.)

Cheng, Y., and Belov, K. (2012). Isolation and characterisation of 11 MHC-linked microsatellite loci in the Tasmanian devil (Sarcophilus harrisii). Conserv. Genet. Resour. 4, 463–465.
Isolation and characterisation of 11 MHC-linked microsatellite loci in the Tasmanian devil (Sarcophilus harrisii).Crossref | GoogleScholarGoogle Scholar |

Cheng, Y., Sanderson, C., Jones, M., and Belov, K. (2012). Low MHC class II diversity in the Tasmanian devil (Sarcophilus harrisii). Immunogenetics 64, 525–533.
Low MHC class II diversity in the Tasmanian devil (Sarcophilus harrisii).Crossref | GoogleScholarGoogle Scholar |

Cheng, Y., Fox, S., Pemberton, D., Hogg, C., Papenfuss, A. T., and Belov, K. (2015). The Tasmanian devil microbiome – implications for conservation and management. Microbiome 3, 76.
The Tasmanian devil microbiome – implications for conservation and management.Crossref | GoogleScholarGoogle Scholar |

Conde, D. A., Flesness, N., Colchero, F., Jones, O. R., and Scheuerlein, A. (2011). An emerging role of zoos to conserve biodiversity. Science 331, 1390–1391.
An emerging role of zoos to conserve biodiversity.Crossref | GoogleScholarGoogle Scholar |

Conway, W. G. (2011). Buying time for wild animals with zoos. Zoo Biol. 30, 1–8.

Cui, J., Cheng, Y., and Belov, K. (2015). Diversity in the Toll-like receptor genes of the Tasmanian devil (Sarcophilus harrisii). Immunogenetics 67, 195–201.
Diversity in the Toll-like receptor genes of the Tasmanian devil (Sarcophilus harrisii).Crossref | GoogleScholarGoogle Scholar |

Cutrera, A. P., Fanjul, M. S., and Zenuto, R. R. (2012). Females prefer good genes: MHC-associated mate choice in wild and captive tuco-tucos. Anim. Behav. 83, 847–856.
Females prefer good genes: MHC-associated mate choice in wild and captive tuco-tucos.Crossref | GoogleScholarGoogle Scholar |

Eizaguirre, C., Yeates, S. E., Lenz, T. L., Kalbe, M., and Milinski, M. (2009). MHC-based mate choice combines good genes and maintenance of MHC polymorphism. Mol. Ecol. 18, 3316–3329.
MHC-based mate choice combines good genes and maintenance of MHC polymorphism.Crossref | GoogleScholarGoogle Scholar |

Evans, M. L., Wilke, N. F., O’Reilly, P. T., and Fleming, I. A. (2014). Transgenerational effects of parental rearing environment influence the survivorship of captive-born offspring in the wild. Conserv. Lett. 7, 371–379.
Transgenerational effects of parental rearing environment influence the survivorship of captive-born offspring in the wild.Crossref | GoogleScholarGoogle Scholar |

Farquharson, K. A., Hogg, C. J., and Grueber, C. E. (2017). Pedigree analysis reveals a generational decline in reproductive success of captive Tasmanian devil (Sarcophilus harrisii): implications for captive management of threatened species. J. Hered. 108, 488–495.
Pedigree analysis reveals a generational decline in reproductive success of captive Tasmanian devil (Sarcophilus harrisii): implications for captive management of threatened species.Crossref | GoogleScholarGoogle Scholar |

Farquharson, K., Gooley, R. M., Fox, S., Huxtable, S. J., Belov, K., Pemberton, D., Hogg, C. J., and Grueber, C. E. (2018a). Are any populations ‘safe’? Unexpected reproductive decline in a population of Tasmanian devils free of devil facial tumour disease. Wildl. Res. 45, 31–37.

Farquharson, K. A., Hogg, C. J., and Grueber, C. E. (2018b). A meta-analysis of birth-origin effects on reproduction in diverse captive environments. Nat. Commun. 9, 1055.
A meta-analysis of birth-origin effects on reproduction in diverse captive environments.Crossref | GoogleScholarGoogle Scholar |

Frankham, R. (2008). Genetic adaptation to captivity in species conservation programs. Mol. Ecol. 17, 325–333.
Genetic adaptation to captivity in species conservation programs.Crossref | GoogleScholarGoogle Scholar |

Gooley, R., Hogg, C. J., Belov, K., and Grueber, C. E. (2017). No evidence of inbreeding depression in a Tasmanian devil insurance population despite significant variation in inbreeding. Sci. Rep. 7, 1830.
No evidence of inbreeding depression in a Tasmanian devil insurance population despite significant variation in inbreeding.Crossref | GoogleScholarGoogle Scholar |

Gooley, R. M., Hogg, C. J., Belov, K., and Grueber, C. E. (2018). The effects of group versus intensive housing on the retention of genetic diversity in insurance populations. BMC Zool. 3, 2.
The effects of group versus intensive housing on the retention of genetic diversity in insurance populations.Crossref | GoogleScholarGoogle Scholar |

Grice, E. A., and Segre, J. A. (2012). The human microbiome: our second genome. Annu. Rev. Genomics Hum. Genet. 13, 151–170.
The human microbiome: our second genome.Crossref | GoogleScholarGoogle Scholar |

Grueber, C. E., Hogg, C. J., Ivy, J. A., and Belov, K. (2015a). Impacts of early viability selection on management of inbreeding and genetic diversity in conservation. Mol. Ecol. 24, 1645–1653.
Impacts of early viability selection on management of inbreeding and genetic diversity in conservation.Crossref | GoogleScholarGoogle Scholar |

Grueber, C. E., Peel, E., Gooley, R., and Belov, K. (2015b). Genomic insights into a contagious cancer in Tasmanian devils. Trends Genet. 31, 528–535.
Genomic insights into a contagious cancer in Tasmanian devils.Crossref | GoogleScholarGoogle Scholar |

Grueber, C. E., Reid-Wainscoat, E. E., Fox, S., Belov, K., Shier, D. M., Hogg, C. J., and Pemberton, D. (2017). Increasing generations in captivity is associated with increased vulnerability of Tasmanian devils to vehicle strike following release to the wild. Sci. Rep. 7, 2161.
Increasing generations in captivity is associated with increased vulnerability of Tasmanian devils to vehicle strike following release to the wild.Crossref | GoogleScholarGoogle Scholar |

Grueber, C. E., Fox, S., Belov, K., Pemberton, D., and Hogg, C. J. (2018a). Landscape level field data reveals broad-scale effects of a fatal, transmissible cancer on population ecology of Tasmanian devil. Mammal. Biol. 91, 41–45.

Grueber, C. E., Fox, S., McLennan, E. A., Gooley, R. M., Pemberton, D., Hogg, C. J., and Belov, K. (2018b). Complex problems need detailed solutions: harnessing multiple data types to inform genetic rescue in the wild. Evol. Appl., , .
Complex problems need detailed solutions: harnessing multiple data types to inform genetic rescue in the wild.Crossref | GoogleScholarGoogle Scholar |

Guiler, E. (1970). Observations on the Tasmanian devil, Sarcophilus harrisii (Marsupialia: Dasyuridae) II. Reproduction, breeding and growth of pouch young. Aust. J. Zool. 18, 63–70.
Observations on the Tasmanian devil, Sarcophilus harrisii (Marsupialia: Dasyuridae) II. Reproduction, breeding and growth of pouch young.Crossref | GoogleScholarGoogle Scholar |

Harley, D., Mawson, P. R., Olds, L., McFadden, M., and Hogg, C. J. (2018). The contribution of captive breeding in zoos to the conservation of Australia’s threatened fauna. In ‘Recovering Australian Threatened Species: A Book of Hope.’ (Eds S. Garnett, J. Woinarski, D. Lindenmayer, and P. Latch.) pp. 281–294. (CSIRO Publishing: Melbourne.)

Hartnett, C. M., Parrott, M. L., Mulder, R. A., Coulson, G., and Magrath, M. J. L. (2018). Opportunity for female mate choice improves reproductive outcomes in the conservation breeding program of the eastern barred bandicoot (Perameles gunnii). Appl. Anim. Behav. Sci. 199, 67–74.
Opportunity for female mate choice improves reproductive outcomes in the conservation breeding program of the eastern barred bandicoot (Perameles gunnii).Crossref | GoogleScholarGoogle Scholar |

Hawkins, C. E., Baars, C., Hesterman, H., Hocking, G. J., Jones, M. E., Lazenby, B., Mann, D., Mooney, N., Pemberton, D., Pyecroft, S., Restani, M., and Wiersma, J. (2006). Emerging disease and population decline of an island endemic, the Tasmanian devil Sarcophilus harrisii. Biol. Conserv. 131, 307–324.
Emerging disease and population decline of an island endemic, the Tasmanian devil Sarcophilus harrisii.Crossref | GoogleScholarGoogle Scholar |

Hendricks, S., Epstein, B., Schönfeld, B., Wiench, C., Hamede, R., Jones, M., Storfer, A., and Hohenlohe, P. (2017). Conservation implications of limited genetic diversity and population structure in Tasmanian devils (Sarcophilus harrisii). Conserv. Genet. 18, 977–982.
Conservation implications of limited genetic diversity and population structure in Tasmanian devils (Sarcophilus harrisii).Crossref | GoogleScholarGoogle Scholar |

Hogg, C. J., Ivy, J. A., Srb, C., Hockley, J., Less, C., Hibbard, C., and Jones, M. (2015). Influence of genetic provenance and birth origin on productivity of the Tasmanian devil insurance population. Conserv. Genet. 16, 1465–1473.
Influence of genetic provenance and birth origin on productivity of the Tasmanian devil insurance population.Crossref | GoogleScholarGoogle Scholar |

Hogg, C. J., Grueber, C. E., Pemberton, D., Fox, S., Lee, A. V., Ivy, J. A., and Belov, K. (2017a). ‘Devil tools & tech’: a synergy of conservation research and management practice. Conserv. Lett. 10, 133–138.
‘Devil tools & tech’: a synergy of conservation research and management practice.Crossref | GoogleScholarGoogle Scholar |

Hogg, C. J., Lee, A. V., Srb, C., and Hibbard, C. (2017b). Metapopulation management of an endangered species with limited genetic diversity in the presence of disease: the Tasmanian devil Sarcophilus harrisii. Int. Zoo Yearb. 51, 137–153.
Metapopulation management of an endangered species with limited genetic diversity in the presence of disease: the Tasmanian devil Sarcophilus harrisii.Crossref | GoogleScholarGoogle Scholar |

Hogg, C. J., Lee, A. V., and Hibbard, C. J. (in press). Managing a metapopulation: intensive to wild and all the places in between. In ‘Saving the Tasmanian Devil: Recovery Through Science Based Management’. (Eds C. J. Hogg, S. Fox, D. Pemberton, and K. Belov.) (CSIRO Publishing: Melbourne.)

Hogg, C. J., Wright, B., Morris, K., Lee, A. V., Ivy, J., Grueber, C. E., and Belov, K. (in press) Founder relationships and conservation management: empirical kinships reveal the effect on breeding programs when founders are assumed to be unrelated. Animal Conservation.

Horreo, J. L., Valiente, A. G., Ardura, A., Blanco, A., Garcia-Gonzalez, C., and Garcia-Vazquez, E. (2018). Nature versus nurture? Consequences of short captivity in early stages. Ecol. Evol. 8, 521–529.
Nature versus nurture? Consequences of short captivity in early stages.Crossref | GoogleScholarGoogle Scholar |

Howson, L. J., Morris, K. M., Kobayashi, T., Tovar, C., Kreiss, A., Papenfuss, A. T., Corcoran, L., Belov, K., and Woods, G. M. (2014). Identification of dendritic cells, B cell and T cell subsets in Tasmanian devil lymphoid tissue; evidence for poor immune cell infiltration into devil facial tumors. Anat. Rec. 297, 925–938.
Identification of dendritic cells, B cell and T cell subsets in Tasmanian devil lymphoid tissue; evidence for poor immune cell infiltration into devil facial tumors.Crossref | GoogleScholarGoogle Scholar |

Ihle, M., Kempenaers, B., and Forstmeier, W. (2015). Fitness benefits of mate choice for compatibility in a socially monogamous species. PLoS Biol. 13, e1002248.
Fitness benefits of mate choice for compatibility in a socially monogamous species.Crossref | GoogleScholarGoogle Scholar |

Isles, A. R., Baum, M. J., Ma, D., Keverne, E. B., and Allen, N. D. (2001). Urinary odour preferences in mice. Nature 409, 783.
Urinary odour preferences in mice.Crossref | GoogleScholarGoogle Scholar |

International Union for Conservation of Nature (IUCN) (2017) IUCN Red List. Available at http://www.iucnredlist.org [verified 1 September 2018].

Jones, M. E., Paetkau, D., Geffen, E., and Moritz, C. (2003). Microsatellites for the Tasmanian devil (Sarcophilus laniarius). Mol. Ecol. Notes 3, 277–279.
Microsatellites for the Tasmanian devil (Sarcophilus laniarius).Crossref | GoogleScholarGoogle Scholar |

Jones, M. E., Paetkau, D., Geffen, E. L. I., and Moritz, C. (2004). Genetic diversity and population structure of Tasmanian devils, the largest marsupial carnivore. Mol. Ecol. 13, 2197–2209.
Genetic diversity and population structure of Tasmanian devils, the largest marsupial carnivore.Crossref | GoogleScholarGoogle Scholar |

Jones, M. E., Cockburn, A., Hamede, R., Hawkins, C., Hesterman, H., Lachish, S., Mann, D., McCallum, H., and Pemberton, D. (2008). Life-history change in disease-ravaged Tasmanian devil populations. Proc. Natl Acad. Sci. USA 105, 10023.
Life-history change in disease-ravaged Tasmanian devil populations.Crossref | GoogleScholarGoogle Scholar |

Jordan, W. C., and Bruford, M. W. (1998). New perspectives on mate choice and the MHC. Heredity 81, 127–133.
New perspectives on mate choice and the MHC.Crossref | GoogleScholarGoogle Scholar |

Kamiya, T., O’Dwyer, K., Westerdahl, H., Senior, A., and Nakagawa, S. (2014). A quantitative review of MHC-based mating preference: the role of diversity and dissimilarity. Mol. Ecol. 23, 5151–5163.
A quantitative review of MHC-based mating preference: the role of diversity and dissimilarity.Crossref | GoogleScholarGoogle Scholar |

Keeley, T., O’Brien, J. K., Fanson, B. G., Masters, K., and McGreevy, P. D. (2012). The reproductive cycle of the Tasmanian devil (Sarcophilus harrisii) and factors associated with reproductive success in captivity. Gen. Comp. Endocrinol. 176, 182–191.
The reproductive cycle of the Tasmanian devil (Sarcophilus harrisii) and factors associated with reproductive success in captivity.Crossref | GoogleScholarGoogle Scholar |

Lachish, S., McCallum, H., and Jones, M. (2009). Demography, disease and the devil: life-history changes in a disease-affected population of Tasmanian devils (Sarcophilus harrisii). J. Anim. Ecol. 78, 427–436.
Demography, disease and the devil: life-history changes in a disease-affected population of Tasmanian devils (Sarcophilus harrisii).Crossref | GoogleScholarGoogle Scholar |

Lacy, R. C., Ballou, J. D., and Pollak, J. P. (2012). PMx: software package for demographic and genetic analysis and management of pedigreed populations. Methods Ecol. Evol. 3, 433–437.
PMx: software package for demographic and genetic analysis and management of pedigreed populations.Crossref | GoogleScholarGoogle Scholar |

Lazenby, B. T., Tobler, M. W., Brown, W. E., Hawkins, C. E., Hocking, G. J., Hume, F., Huxtable, S., Iles, P., Jones, M. E., Lawrence, C., Thalmann, S., Wise, P., Williams, H., Fox, S., and Pemberton, D. (2018). Density trends and demographic signals uncover the long-term impact of transmissible cancer in Tasmanian devils. J. Appl. Ecol. 55, 1368–1379.
Density trends and demographic signals uncover the long-term impact of transmissible cancer in Tasmanian devils.Crossref | GoogleScholarGoogle Scholar |

Le Luyer, J., Laporte, M., Beacham, T. D., Kaukinen, K. H., Withler, R. E., Leong, J. S., Rondeau, E. B., Koop, B. F., and Bernatchez, L. (2017). Parallel epigenetic modifications induced by hatchery rearing in a Pacific salmon. Proc. Natl Acad. Sci. USA 114, 12964–12969.
Parallel epigenetic modifications induced by hatchery rearing in a Pacific salmon.Crossref | GoogleScholarGoogle Scholar |

Martin-Wintle, M. S., Shepherdson, D., Zhang, G., Zhang, H., Li, D., Zhou, X., Li, R., and Swaisgood, R. R. (2015). Free mate choice enhances conservation breeding in the endangered giant panda. Nat. Commun. 6, 10125.
Free mate choice enhances conservation breeding in the endangered giant panda.Crossref | GoogleScholarGoogle Scholar |

McCallum, H., Tompkins, D., Jones, M., Lachish, S., and Marvanek, S. (2007). Distribution and impacts of Tasmanian devil facial tumor disease. EcoHealth 4, 318–325.
Distribution and impacts of Tasmanian devil facial tumor disease.Crossref | GoogleScholarGoogle Scholar |

McLennan, E. A., Gooley, R. M., Wise, P., Belov, K., Hogg, C. J., and Grueber, C. E. (2018). Pedigree reconstruction using molecular data reveals an early warning sign of gene diversity loss in an island population of Tasmanian devils (Sarcophilus harrisii). Conserv. Genet. 19, 439–450.
Pedigree reconstruction using molecular data reveals an early warning sign of gene diversity loss in an island population of Tasmanian devils (Sarcophilus harrisii).Crossref | GoogleScholarGoogle Scholar |

Miller, W., Hayes, V. M., Ratan, A., Petersen, D. C., Wittekindt, N. E., Miller, J., Walenz, B., Knight, J., Qi, J., Zhao, F., Wang, Q., et al. (2011). Genetic diversity and population structure of the endangered marsupial Sarcophilus harrisii (Tasmanian devil). Proc. Natl Acad. Sci. USA 108, 12348–12353.
Genetic diversity and population structure of the endangered marsupial Sarcophilus harrisii (Tasmanian devil).Crossref | GoogleScholarGoogle Scholar |

Montgomery, M. E., Ballou, J. D., Nurthen, R. K., England, P. R., Briscoe, D. A., and Frankham, R. (1997). Minimizing kinship in captive breeding programs. Zoo Biol. 16, 377–389.
Minimizing kinship in captive breeding programs.Crossref | GoogleScholarGoogle Scholar |

Morris, K. M., Wright, B., Grueber, C. E., Hogg, C. J., and Belov, K. (2015). Lack of genetic diversity across diverse immune genes in an endangered mammal, the Tasmanian devil (Sarcophilus harrisii). Mol. Ecol. 24, 3860–3872.
Lack of genetic diversity across diverse immune genes in an endangered mammal, the Tasmanian devil (Sarcophilus harrisii).Crossref | GoogleScholarGoogle Scholar |

Murchison, E. P., Schulz-Trieglaff Ole, B., Ning, Z., Alexandrov Ludmil, B., Bauer Markus, J., Fu, B., Hims, M., Ding, Z., Ivakhno, S., Stewart, C., et al. (2012). Genome sequencing and analysis of the Tasmanian devil and its transmissible cancer. Cell 148, 780–791.
Genome sequencing and analysis of the Tasmanian devil and its transmissible cancer.Crossref | GoogleScholarGoogle Scholar |

Owen, D., and Pemberton, D. (2005). ‘Tasmanian Devil: A Unique and Threatened Animal.’ (Allen & Unwin: Sydney.)

Pearse, A.-M., and Swift, K. (2006). Allograft theory: transmission of devil facial-tumour disease. Nature 439, 549.
Allograft theory: transmission of devil facial-tumour disease.Crossref | GoogleScholarGoogle Scholar |

Pemberton, D. (1990). Social organisation and behaviour of the Tasmanian devil, Sarcophilus harrisii. Ph.D. Thesis, University of Tasmania, Hobart.

Pye, R. J., Pemberton, D., Tovar, C., Tubio, J. M. C., Dun, K. A., Fox, S., Darby, J., Hayes, D., Knowles, G. W., Kreiss, A., Siddle, H. V. T., Swift, K., Lyons, A. B., Murchison, E. P., and Woods, G. M. (2016). A second transmissible cancer in Tasmanian devils. Proc. Natl Acad. Sci. USA 113, 374–379.
A second transmissible cancer in Tasmanian devils.Crossref | GoogleScholarGoogle Scholar |

Pye, R., Patchett, A., McLennan, E., Thomson, R., Carver, S., Fox, S., Pemberton, D., Kreiss, A., Baz Morelli, A., Silva, A., Pearse, M. J., Corcoran, L. M., Belov, K., Hogg, C. J., Woods, G. M., and Lyons, A. B. (2018). Immunization strategies producing a humoral IgG immune response against devil facial tumor disease in the majority of Tasmanian devils destined for wild release. Front. Immunol. 9, 259.
Immunization strategies producing a humoral IgG immune response against devil facial tumor disease in the majority of Tasmanian devils destined for wild release.Crossref | GoogleScholarGoogle Scholar |

Rogers, T., Fox, S., Pemberton, D., and Wise, P. (2016). Sympathy for the devil: captive-management style did not influence survival, body-mass change or diet of Tasmanian devils 1 year after wild release. Wildl. Res. 43, 544–552.
Sympathy for the devil: captive-management style did not influence survival, body-mass change or diet of Tasmanian devils 1 year after wild release.Crossref | GoogleScholarGoogle Scholar |

Russell, T., Lisovski, S., Olsson, M., Brown, G., Spindler, R., Lane, A., Keeley, T., Hibbard, C., Hogg, C. J., Thomas, F., Belov, K., Ujvari, B., and Madsen, T. (2018). MHC diversity and female age underpin reproductive success in an Australian icon; the Tasmanian Devil. Sci. Rep. 8, 4175.
MHC diversity and female age underpin reproductive success in an Australian icon; the Tasmanian Devil.Crossref | GoogleScholarGoogle Scholar |

Save the Tasmanian Devil Program (2014). ‘Business Plan 2014–2019.’ (Department of Primary Industries, Parks, Water and Environment: Hobart.)

Siddle, H. V., Sanderson, C., and Belov, K. (2007a). Characterization of major histocompatibility complex class I and class II genes from the Tasmanian devil (Sarcophilus harrisii). Immunogenetics 59, 753.
Characterization of major histocompatibility complex class I and class II genes from the Tasmanian devil (Sarcophilus harrisii).Crossref | GoogleScholarGoogle Scholar |

Siddle, H. V., Kreiss, A., Eldridge, M. D. B., Noonan, E., Clarke, C. J., Pyecroft, S., Woods, G. M., and Belov, K. (2007b). Transmission of a fatal clonal tumor by biting occurs due to depleted MHC diversity in a threatened carnivorous marsupial. Proc. Natl. Acad. Sci. USA 104, 16221–16226.
Transmission of a fatal clonal tumor by biting occurs due to depleted MHC diversity in a threatened carnivorous marsupial.Crossref | GoogleScholarGoogle Scholar |

Srb C (2017). ‘Tasmanian Devil Studbook.’ (Healesville Sanctuary on behalf of the Zoo and Aquarium Association: Mosman, Sydney.)

Stumpf, R. M., Gomez, A., Amato, K. R., Yeoman, C. J., Polk, J. D., Wilson, B. A., Nelson, K. E., White, B. A., and Leigh, S. R. (2016). Microbiomes, metagenomics, and primate conservation: new strategies, tools, and applications. Biol. Conserv. 199, 56–66.
Microbiomes, metagenomics, and primate conservation: new strategies, tools, and applications.Crossref | GoogleScholarGoogle Scholar |

Thalmann, S., Peck, S., Wise, P., Potts, J. M., Clarke, J., and Richley, J. (2016). Translocation of a top-order carnivore: tracking the initial survival, spatial movement, home-range establishment and habitat use of Tasmanian devils on Maria Island. Aust. Mammal. 38, 68–79.
Translocation of a top-order carnivore: tracking the initial survival, spatial movement, home-range establishment and habitat use of Tasmanian devils on Maria Island.Crossref | GoogleScholarGoogle Scholar |

Ujvari, B., Pearse, A.-M., Taylor, R., Pyecroft, S., Flanagan, C., Gombert, S., Papenfuss, A. T., Madsen, T., and Belov, K. (2012). Telomere dynamics and homeostasis in a transmissible cancer. PLoS One 7, e44085.
Telomere dynamics and homeostasis in a transmissible cancer.Crossref | GoogleScholarGoogle Scholar |

Ujvari, B., Pearse, A.-M., Peck, S., Harmsen, C., Taylor, R., Pyecroft, S., Madsen, T., Papenfuss, A. T., and Belov, K. (2013). Evolution of a contagious cancer: epigenetic variation in devil facial tumour disease. Proc. Biol. Sci. 280, 20121720.
Evolution of a contagious cancer: epigenetic variation in devil facial tumour disease.Crossref | GoogleScholarGoogle Scholar |

Westneat, D. F., and Birkhead, T. R. (1998). Alternative hypotheses linking the immune system and mate choice for good genes. Proc. R. Soc. Lond. B Biol. Sci. 265, 1065–1073.
Alternative hypotheses linking the immune system and mate choice for good genes.Crossref | GoogleScholarGoogle Scholar |

Williams, S. E., and Hoffman, E. A. (2009). Minimizing genetic adaptation in captive breeding programs: a review. Biol. Conserv. 142, 2388–2400.
Minimizing genetic adaptation in captive breeding programs: a review.Crossref | GoogleScholarGoogle Scholar |

Willoughby, J. R., Ivy, J. A., Lacy, R. C., Doyle, J. M., and DeWoody, J. A. (2017). Inbreeding and selection shape genomic diversity in captive populations: implications for the conservation of endangered species. PLoS One 12, e0175996.
Inbreeding and selection shape genomic diversity in captive populations: implications for the conservation of endangered species.Crossref | GoogleScholarGoogle Scholar |

Wise, P., Lee, D., Peck, S., Clarke, J., Thalmann, S., Hockley, J., Schaap, D., and Pemberton, D. (2016). The conservation introduction of Tasmanian devils to Maria Island National Park: a response to devil facial tumor disease (DFTD). In ‘Global Re-introduction Perspectives: 2016. Case-Studies From Around the Globe’. (Ed. P. S. Soorae.) pp. 166–171. (IUCN/SSC Re-introduction Specialist Group: Gland; Environment Agency: Abu Dhabi.)

Woods, G., Kreiss, A., Belov, K., Siddle, H., Obendorf, D., and Muller, H. (2007). The immune response of the Tasmanian devil (Sarcophilus harrisii) and devil facial tumour disease. EcoHealth 4, 338–345.
The immune response of the Tasmanian devil (Sarcophilus harrisii) and devil facial tumour disease.Crossref | GoogleScholarGoogle Scholar |

Wright, B., Morris, K., Grueber, C. E., Willet, C., Gooley, R., Hogg, C. J., O’Meally, D., Hamede, R., Jones, M., Wade, C., and Belov, K. (2015). Development of a SNP-based assay for measuring genetic diversity in the Tasmanian devil insurance population. BMC Genomics 16, 791.
Development of a SNP-based assay for measuring genetic diversity in the Tasmanian devil insurance population.Crossref | GoogleScholarGoogle Scholar |