Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Molecular characterisation of oestrogen receptor ERα and the effects of bisphenol A on its expression during sexual development in the Chinese giant salamander (Andrias davidianus)

Yao Gao A , Chenhao Yang A , Huihui Gao A , Liqing Wang A , Changming Yang B , Hong Ji A and Wuzi Dong orcid.org/0000-0002-5253-9556 A C
+ Author Affiliations
- Author Affiliations

A College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, China.

B Animal Husbandry and Veterinary Station of Chenggu County, Wenhua Road, Hanzhong, Shaanxi, 723200, China.

C Corresponding author. Email: dongwuzi@nwsuaf.edu.cn

Reproduction, Fertility and Development 31(2) 261-271 https://doi.org/10.1071/RD18107
Submitted: 18 March 2018  Accepted: 26 June 2018   Published: 10 August 2018

Abstract

The aim of this study was to characterise the molecular structure of the oestrogen receptor ERα and to evaluate the effect of bisphenol A (BPA) on ERα expression during sexual development of the Chinese giant salamander (Andrias davidianus). The ERα cDNA of A. davidianus includes an open reading frame of 1755 bp (encoding 584 amino acids), a 219-bp 5′ untranslated region (UTR) and a 611-bp 3′UTR. A polyadenylation signal was not found in the 3′UTR. Amino acid sequence analysis showed high homology between ERα of A. davidianus and that of other amphibians, such as Andrias japonicas (99.66% identity) and Rana rugose (81.06% identity). In 3-year-old A. davidianus, highest ERα expression was observed in the liver and gonads. During different developmental stages in A. davidianus (from 1 to 3 years of age), ERα expression in the testes increased gradually. ERα was localised in the epithelial cells of seminiferous lobules and in interstitial cells. ERα-positive cells were more abundant in the interstitial tissue during testicular development. ERα was located in the nucleus of oocytes during ovary development. We found that the sex of 6-month-old A. davidianus larvae could not be distinguished anatomically. The sex ratio did not change after larvae were treated with 10 μM BPA for 1 month. However, BPA treatment reduced bodyweight and ERα expression in the gonads in male larvae.

Additional keywords: gonad development, sexual differentiation.


References

Almadhidi, J., Seralini, G. E., Fresnel, J., Silberzahn, P., and Gaillard, J. L. (1995). Immunohistochemical localization of cytochrome P450 aromatase in equine gonads. J. Histochem. Cytochem. 43, 571–577.
Immunohistochemical localization of cytochrome P450 aromatase in equine gonads.Crossref | GoogleScholarGoogle Scholar |

An, K. W., Nelson, E. R., Jo, P. G., Habibi, H. R., Shin, H. S., and Choi, C. Y. (2008). Characterization of estrogen receptor beta2 and expression of the estrogen receptor subtypes alpha, beta1, and beta2 in the protandrous black porgy (Acanthopagrus schlegeli) during the sex change process. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 150, 284–291.
Characterization of estrogen receptor beta2 and expression of the estrogen receptor subtypes alpha, beta1, and beta2 in the protandrous black porgy (Acanthopagrus schlegeli) during the sex change process.Crossref | GoogleScholarGoogle Scholar |

Atanassova, N., McKinnell, C., Turner, K. J., Walker, M., Fisher, J. S., Morley, M., Millar, M. R., Groome, N. P., and Sharpe, R. M. (2000). Comparative effects of neonatal exposure of male rats to potent and weak (environmental) estrogens on spermatogenesis at puberty and the relationship to adult testis size and fertility: evidence for stimulatory effects of low estrogen levels. Endocrinology 141, 3898–3907.
Comparative effects of neonatal exposure of male rats to potent and weak (environmental) estrogens on spermatogenesis at puberty and the relationship to adult testis size and fertility: evidence for stimulatory effects of low estrogen levels.Crossref | GoogleScholarGoogle Scholar |

Berg, C., Holm, L., Brandt, I., Brunstrom, B., and Ridderstrale, Y. (2004). Embryonic exposure to oestrogen causes eggshell thinning and altered shell gland carbonic anhydrase expression in the domestic hen. Reproduction 128, 455–461.
Embryonic exposure to oestrogen causes eggshell thinning and altered shell gland carbonic anhydrase expression in the domestic hen.Crossref | GoogleScholarGoogle Scholar |

Bilińska, B., Schmalz-Frączek, B., Kotula, M., and Carreau, S. (2001). Photoperiod-dependent capability of androgen aromatization and the role of estrogens in the bank vole testis visualized by means of immunohistochemistry. Mol. Cell. Endocrinol. 178, 189–198.
Photoperiod-dependent capability of androgen aromatization and the role of estrogens in the bank vole testis visualized by means of immunohistochemistry.Crossref | GoogleScholarGoogle Scholar |

Blomqvist, A., Berg, C., Holm, L., Brandt, I., Ridderstrale, Y., and Brunstrom, B. (2006). Defective reproductive organ morphology and function in domestic rooster embryonically exposed to o,p′-DDT or ethynylestradiol. Biol. Reprod. 74, 481–486.
Defective reproductive organ morphology and function in domestic rooster embryonically exposed to o,p′-DDT or ethynylestradiol.Crossref | GoogleScholarGoogle Scholar |

Brodowska, A., Laszczynska, M., Starczewski, A., Karakiewicz, B., and Brodowski, J. (2007). The localization of estrogen receptor alpha and its function in the ovaries of postmenopausal women. Folia Histochem. Cytobiol. 45, 325–330.

Canesi, L., and Fabbri, E. (2015). Environmental effects of BPA: focus on aquatic species. Dose Response 13, 1559325815598304.
Environmental effects of BPA: focus on aquatic species.Crossref | GoogleScholarGoogle Scholar |

Chakraborty, T., Shibata, Y., Zhou, L.-Y., Katsu, Y., Iguchi, T., and Nagahama, Y. (2011). Differential expression of three estrogen receptor subtype mRNAs in gonads and liver from embryos to adults of the medaka, Oryzias latipes. Mol. Cell. Endocrinol. 333, 47–54.
Differential expression of three estrogen receptor subtype mRNAs in gonads and liver from embryos to adults of the medaka, Oryzias latipes.Crossref | GoogleScholarGoogle Scholar |

Choi, C. Y. (2007). Effects of 17beta-estradiol on estrogen receptor alpha and beta mRNA expression in tissues of the olive flounder (Paralichthys olivaceus). Zool. Sci. 24, 824–828.
Effects of 17beta-estradiol on estrogen receptor alpha and beta mRNA expression in tissues of the olive flounder (Paralichthys olivaceus).Crossref | GoogleScholarGoogle Scholar |

Clarke, B. T. (1997). The natural history of amphibian skin secretions, their normal functioning and potential medical applications. Biol. Rev. Camb. Philos. Soc. 72, 365–379.
The natural history of amphibian skin secretions, their normal functioning and potential medical applications.Crossref | GoogleScholarGoogle Scholar |

Cydzik-Kwiatkowska, A., and Zielińska, M. (2018). Microbial composition of biofilm treating wastewater rich in bisphenol A. J. Environ. Sci. Health. A Tox. Hazard. Subst. Environ. Eng. 53, 385–392.

Ding, Z. M., Jiao, X. F., Wu, D., Zhang, J. Y., Chen, F., Wang, Y. S., Huang, C. J., Zhang, S. X., Li, X., and Huo, L. J. (2017). Bisphenol AF negatively affects oocyte maturation of mouse in vitro through increasing oxidative stress and DNA damage. Chem. Biol. Interact. 278, 222–229.
Bisphenol AF negatively affects oocyte maturation of mouse in vitro through increasing oxidative stress and DNA damage.Crossref | GoogleScholarGoogle Scholar |

Doucet, D., Badami, C., Palange, D., Bonitz, R. P., Lu, Q., Xu, D.-Z., Kannan, K. B., Colorado, I., Feinman, R., and Deitch, E. A. (2010). Estrogen receptor hormone agonists limit trauma hemorrhage shock-induced gut and lung injury in rats. PLoS One 5, e9421.
Estrogen receptor hormone agonists limit trauma hemorrhage shock-induced gut and lung injury in rats.Crossref | GoogleScholarGoogle Scholar |

Ekena, K., Weis, K. E., Katzenellenbogen, J. A., and Katzenellenbogen, B. S. (1996). Identification of amino acids in the hormone binding domain of the human estrogen receptor important in estrogen binding. J. Biol. Chem. 271, 20053–20059.
Identification of amino acids in the hormone binding domain of the human estrogen receptor important in estrogen binding.Crossref | GoogleScholarGoogle Scholar |

Fortuny, J., Marce-Nogue, J., Heiss, E., Sanchez, M., Gil, L., and Galobart, A. (2015). 3D bite modeling and feeding mechanics of the largest living amphibian, the Chinese giant salamander Andrias davidianus (Amphibia: Urodela). PLoS One 10, e0121885.
3D bite modeling and feeding mechanics of the largest living amphibian, the Chinese giant salamander Andrias davidianus (Amphibia: Urodela).Crossref | GoogleScholarGoogle Scholar |

Fu, M., Xiong, X. R., Lan, D. L., and Li, J. (2014). Molecular characterization and tissue distribution of estrogen receptor genes in domestic yak. Asian-Australas. J. Anim. Sci. 27, 1684–1690.
Molecular characterization and tissue distribution of estrogen receptor genes in domestic yak.Crossref | GoogleScholarGoogle Scholar |

Gao, J., Zhang, Y., Zhang, T., Yang, Y., Yuan, C., Jia, J., and Wang, Z. (2017). Responses of gonadal transcriptome and physiological analysis following exposure to 17alpha-ethynylestradiol in adult rare minnow Gobiocypris rarus. Ecotoxicol. Environ. Saf. 141, 209–215.
Responses of gonadal transcriptome and physiological analysis following exposure to 17alpha-ethynylestradiol in adult rare minnow Gobiocypris rarus.Crossref | GoogleScholarGoogle Scholar |

González, C. R., Muscarsel Isla, M. l., Leopardo, N. P., Willis, M. A., Dorfman, V. B., and Vitullo, A. D. (2012). Expression of androgen receptor, estrogen receptors alpha and beta and aromatase in the fetal, perinatal, prepubertal and adult testes of the South American plains vizcacha, Lagostomus maximus (Mammalia, Rodentia). J. Reprod. Dev. 58, 629–635.
Expression of androgen receptor, estrogen receptors alpha and beta and aromatase in the fetal, perinatal, prepubertal and adult testes of the South American plains vizcacha, Lagostomus maximus (Mammalia, Rodentia).Crossref | GoogleScholarGoogle Scholar |

González-Morán, M. G. (2014). Changes in the cellular localization of estrogen receptor alpha in the growing and regressing ovaries of Gallus domesticus during development. Biochem. Biophys. Res. Commun. 447, 197–204.
Changes in the cellular localization of estrogen receptor alpha in the growing and regressing ovaries of Gallus domesticus during development.Crossref | GoogleScholarGoogle Scholar |

González-Morán, M. G. (2015). Immunohistochemical localization of progesterone receptor isoforms and estrogen receptor alpha in the chicken oviduct magnum during development. Acta Histochem. 117, 681–687.
Immunohistochemical localization of progesterone receptor isoforms and estrogen receptor alpha in the chicken oviduct magnum during development.Crossref | GoogleScholarGoogle Scholar |

Gyllenhammar, I., Holm, L., Eklund, R., and Berg, C. (2009). Reproductive toxicity in Xenopus tropicalis after developmental exposure to environmental concentrations of ethynylestradiol. Aquat. Toxicol. 91, 171–178.
Reproductive toxicity in Xenopus tropicalis after developmental exposure to environmental concentrations of ethynylestradiol.Crossref | GoogleScholarGoogle Scholar |

Hamden, K., Silandre, D., Delalande, C., El Feki, A., and Carreau, S. (2008). Age-related decrease in aromatase and estrogen receptor (ERalpha and ERbeta) expression in rat testes: protective effect of low caloric diets. Asian J. Androl. 10, 177–187.
Age-related decrease in aromatase and estrogen receptor (ERalpha and ERbeta) expression in rat testes: protective effect of low caloric diets.Crossref | GoogleScholarGoogle Scholar |

Hawkins, M. B., Thornton, J. W., Crews, D., Skipper, J. K., Dotte, A., and Thomas, P. (2000). Identification of a third distinct estrogen receptor and reclassification of estrogen receptors in teleosts. Proc. Natl Acad. Sci. USA 97, 10751–10756.
Identification of a third distinct estrogen receptor and reclassification of estrogen receptors in teleosts.Crossref | GoogleScholarGoogle Scholar |

Hill, R. L., and Janz, D. M. (2003). Developmental estrogenic exposure in zebrafish (Danio rerio): I. Effects on sex ratio and breeding success. Aquat. Toxicol. 63, 417–429.
Developmental estrogenic exposure in zebrafish (Danio rerio): I. Effects on sex ratio and breeding success.Crossref | GoogleScholarGoogle Scholar |

Huang, Y., Gao, X. C., Xiong, J. L., Ren, H. T., and Sun, X. H. (2017a). Sequencing and de novo transcriptome assembly of the Chinese giant salamander (Andrias davidianus). Genom. Data 12, 109–110.
Sequencing and de novo transcriptome assembly of the Chinese giant salamander (Andrias davidianus).Crossref | GoogleScholarGoogle Scholar |

Huang, Y., Ren, H. T., Xiong, J. L., Gao, X. C., and Sun, X. H. (2017b). Identification and characterization of known and novel microRNAs in three tissues of Chinese giant salamander base on deep sequencing approach. Genomics 109, 258–264.
Identification and characterization of known and novel microRNAs in three tissues of Chinese giant salamander base on deep sequencing approach.Crossref | GoogleScholarGoogle Scholar |

Hutler Wolkowicz, I., Svartz, G. V., Aronzon, C. M., and Perez Coll, C. (2016). Developmental toxicity of bisphenol A diglycidyl ether (epoxide resin badge) during the early life cycle of a native amphibian species. Environ. Toxicol. Chem. 35, 3031–3038.
Developmental toxicity of bisphenol A diglycidyl ether (epoxide resin badge) during the early life cycle of a native amphibian species.Crossref | GoogleScholarGoogle Scholar |

Inamdar, L. S., Khodnapur, B. S., Nindi, R. S., Dasari, S., and Seshagiri, P. B. (2015). Differential expression of estrogen receptor alpha in the embryonic adrenal–kidney–gonadal complex of the oviparous lizard, Calotes versicolor (Daud.). Gen. Comp. Endocrinol. 220, 55–60.
Differential expression of estrogen receptor alpha in the embryonic adrenal–kidney–gonadal complex of the oviparous lizard, Calotes versicolor (Daud.).Crossref | GoogleScholarGoogle Scholar |

Jarque, S., Quiros, L., Grimalt, J. O., Gallego, E., Catalan, J., Lackner, R., and Pina, B. (2015). Background fish feminization effects in European remote sites. Sci. Rep. 5, 11292.
Background fish feminization effects in European remote sites.Crossref | GoogleScholarGoogle Scholar |

Jie, D., Wang, Q., Hu, Z., Wei, J., Zhang, K., Fei, K., and Zhang, H. (2016). Study on the correlationship between weight or gender development and water temperature in artificial feeding Chinese giant salamander (Andrias davidianus). Genomics and Applied Biology 35, 2342–2346.

Katsu, Y., Taniguchi, E., Urushitani, H., Miyagawa, S., Takase, M., Kubokawa, K., Tooi, O., Oka, T., Santo, N., Myburgh, J., Matsuno, A., and Iguchi, T. (2010). Molecular cloning and characterization of ligand- and species-specificity of amphibian estrogen receptors. Gen. Comp. Endocrinol. 168, 220–230.
Molecular cloning and characterization of ligand- and species-specificity of amphibian estrogen receptors.Crossref | GoogleScholarGoogle Scholar |

Keiter, S., Baumann, L., Farber, H., Holbech, H., Skutlarek, D., Engwall, M., and Braunbeck, T. (2012). Long-term effects of a binary mixture of perfluorooctane sulfonate (PFOS) and bisphenol A (BPA) in zebrafish (Danio rerio). Aquat. Toxicol. 118–119, 116–129.
Long-term effects of a binary mixture of perfluorooctane sulfonate (PFOS) and bisphenol A (BPA) in zebrafish (Danio rerio).Crossref | GoogleScholarGoogle Scholar |

Kvarnryd, M., Grabic, R., Brandt, I., and Berg, C. (2011). Early life progestin exposure causes arrested oocyte development, oviductal agenesis and sterility in adult Xenopus tropicalis frogs. Aquat. Toxicol. 103, 18–24.
Early life progestin exposure causes arrested oocyte development, oviductal agenesis and sterility in adult Xenopus tropicalis frogs.Crossref | GoogleScholarGoogle Scholar |

Li, W., Zhang, J., Mu, W., and Wen, H. (2013). Cloning, characterization and expression of estrogen receptor beta in the male half-smooth tongue sole, Cynoglossus semilaevis. Fish Physiol. Biochem. 39, 671–682.
Cloning, characterization and expression of estrogen receptor beta in the male half-smooth tongue sole, Cynoglossus semilaevis.Crossref | GoogleScholarGoogle Scholar |

Lin, Z. L., Ni, H. M., Liu, Y. H., Sheng, X. H., Cui, X. S., Kim, N. H., and Guo, Y. (2015). Effect of anti-PMSG on distribution of estrogen receptor alpha and progesterone receptor in mouse ovary, oviduct and uterus. Zygote 23, 695–703.
Effect of anti-PMSG on distribution of estrogen receptor alpha and progesterone receptor in mouse ovary, oviduct and uterus.Crossref | GoogleScholarGoogle Scholar |

Lucas, T. F., Lazari, M. f., and Porto, C. S. (2014). Differential role of the estrogen receptors ESR1 and ESR2 on the regulation of proteins involved with proliferation and differentiation of Sertoli cells from 15-day-old rats. Mol. Cell. Endocrinol. 382, 84–96.
Differential role of the estrogen receptors ESR1 and ESR2 on the regulation of proteins involved with proliferation and differentiation of Sertoli cells from 15-day-old rats.Crossref | GoogleScholarGoogle Scholar |

MacKay, H., and Abizaid, A. (2018). A plurality of molecular targets: the receptor ecosystem for bisphenol-A (BPA). Horm. Behav. 101, 59–67.
A plurality of molecular targets: the receptor ecosystem for bisphenol-A (BPA).Crossref | GoogleScholarGoogle Scholar |

Man, Y. B., Chow, K. L., Tsang, Y. F., Lau, F. T. K., Fung, W. C., and Wong, M. H. (2018). Fate of bisphenol A, perfluorooctanoic acid and perfluorooctanesulfonate in two different types of sewage treatment works in Hong Kong. Chemosphere 190, 358–367.
Fate of bisphenol A, perfluorooctanoic acid and perfluorooctanesulfonate in two different types of sewage treatment works in Hong Kong.Crossref | GoogleScholarGoogle Scholar |

Marquez, E. C., Traylor-Knowles, N., Novillo-Villajos, A., and Callard, I. P. (2011). Cloning of estrogen receptor alpha and aromatase cDNAs and gene expression in turtles (Chrysemys picta and Pseudemys scripta) exposed to different environments. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 154, 213–225.
Cloning of estrogen receptor alpha and aromatase cDNAs and gene expression in turtles (Chrysemys picta and Pseudemys scripta) exposed to different environments.Crossref | GoogleScholarGoogle Scholar |

Mattsson, A., and Olsson Ja Brunstrom, B. (2008). Selective estrogen receptor alpha activation disrupts sex organ differentiation and induces expression of vitellogenin II and very low-density apolipoprotein II in Japanese quail embryos. Reproduction 136, 175–186.
Selective estrogen receptor alpha activation disrupts sex organ differentiation and induces expression of vitellogenin II and very low-density apolipoprotein II in Japanese quail embryos.Crossref | GoogleScholarGoogle Scholar |

Maunder, R. J., Matthiessen, P., Sumpter, J. P., and Pottinger, T. G. (2007). Impaired reproduction in three-spined sticklebacks exposed to ethinyl estradiol as juveniles. Biol. Reprod. 77, 999–1006.
Impaired reproduction in three-spined sticklebacks exposed to ethinyl estradiol as juveniles.Crossref | GoogleScholarGoogle Scholar |

Montano, M. M., Ekena, K., Krueger, K. D., Keller, A. L., and Katzenellenbogen, B. S. (1996). Human estrogen receptor ligand activity inversion mutants: receptors that interpret antiestrogens as estrogens and estrogens as antiestrogens and discriminate among different antiestrogens. Mol. Endocrinol. 10, 230–242.

Mori, T., Sumiya, S., and Yokota, H. (2000). Electrostatic interactions of androgens and progesterone derivatives with rainbow trout estrogen receptor. J. Steroid Biochem. Mol. Biol. 75, 129–137.
Electrostatic interactions of androgens and progesterone derivatives with rainbow trout estrogen receptor.Crossref | GoogleScholarGoogle Scholar |

Myers, J. P., vom Saal, F. S., Akingbemi, B. T., Arizono, K., Belcher, S., Colborn, T., Chahoud, I., Crain, D. A., Farabollini, F., Guillette, L. J., et al. (2009). Why public health agencies cannot depend on good laboratory practices as a criterion for selecting data: the case of bisphenol A. Environ. Health Perspect. 117, 309–315.
Why public health agencies cannot depend on good laboratory practices as a criterion for selecting data: the case of bisphenol A.Crossref | GoogleScholarGoogle Scholar |

Olsvik, P. A., Skjaerven, K. H., and Softeland, L. (2017). Metabolic signatures of bisphenol A and genistein in Atlantic salmon liver cells. Chemosphere 189, 730–743.
Metabolic signatures of bisphenol A and genistein in Atlantic salmon liver cells.Crossref | GoogleScholarGoogle Scholar |

Pajarillo, E., Johnson, J., Kim, J., Karki, P., Son, D. S., Aschner, M., and Lee, E. (2018). 17β-Estradiol and tamoxifen protect mice from manganese-induced dopaminergic neurotoxicity. Neurotoxicology 65, 280–288.
17β-Estradiol and tamoxifen protect mice from manganese-induced dopaminergic neurotoxicity.Crossref | GoogleScholarGoogle Scholar |

Pelletier, G. (2000). Localization of androgen and estrogen receptors in rat and primate tissues. Histol. Histopathol. 15, 1261–1270.

Phuge, S. K., and Gramapurohit, N. P. (2015). Sex hormones alter sex ratios in the Indian skipper frog, Euphlyctis cyanophlyctis: determining sensitive stages for gonadal sex reversal. Gen. Comp. Endocrinol. 220, 70–77.
Sex hormones alter sex ratios in the Indian skipper frog, Euphlyctis cyanophlyctis: determining sensitive stages for gonadal sex reversal.Crossref | GoogleScholarGoogle Scholar |

Ramakrishnan, S., and Wayne, N. L. (2008). Impact of bisphenol-A on early embryonic development and reproductive maturation. Reprod. Toxicol. 25, 177–183.
Impact of bisphenol-A on early embryonic development and reproductive maturation.Crossref | GoogleScholarGoogle Scholar |

Reilly, S. (1996). The metamorphosis of feeding kinematics in Salamandra salamandra and the evolution of terrestrial feeding behavior. J. Exp. Biol. 199, 1219–1227.

Seemann, F., Knigge, T., Duflot, A., Marie, S., Olivier, S., Minier, C., and Monsinjon, T. (2016). Sensitive periods for 17beta-estradiol exposure during immune system development in sea bass head kidney. J. Appl. Toxicol. 36, 815–826.
Sensitive periods for 17beta-estradiol exposure during immune system development in sea bass head kidney.Crossref | GoogleScholarGoogle Scholar |

Segner, H., Caroll, K., Fenske, M., Janssen, C. R., Maack, G., Pascoe, D., Schafers, C., Vandenbergh, G. F., Watts, M., and Wenzel, A. (2003). Identification of endocrine-disrupting effects in aquatic vertebrates and invertebrates: report from the European IDEA project. Ecotoxicol. Environ. Saf. 54, 302–314.
Identification of endocrine-disrupting effects in aquatic vertebrates and invertebrates: report from the European IDEA project.Crossref | GoogleScholarGoogle Scholar |

Sun, J., Geng, X., Guo, J., Zang, X., Li, P., Li, D., and Xu, C. (2016). Proteomic analysis of the skin from Chinese fire-bellied newt and comparison to Chinese giant salamander. Comp. Biochem. Physiol. Part D Genomics Proteomics 19, 71–77.
Proteomic analysis of the skin from Chinese fire-bellied newt and comparison to Chinese giant salamander.Crossref | GoogleScholarGoogle Scholar |

Szwejser, E., Maciuszek, M., Casanova-Nakayama, A., Segner, H., Verburg-van Kemenade, B. M. L., and Chadzinska, M. (2017). A role for multiple estrogen receptors in immune regulation of common carp. Dev. Comp. Immunol. 66, 61–72.
A role for multiple estrogen receptors in immune regulation of common carp.Crossref | GoogleScholarGoogle Scholar |

Takase, M., Shinto, H., Takao, Y., and Iguchi, T. (2012). Accumulation and pharmacokinetics of estrogenic chemicals in the pre- and post-hatch embryos of the frog Rana rugosa. In Vivo 26, 913–920.

Tamura, K., Dudley, J., Nei, M., and Kumar, S. (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24, 1596–1599.
MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0.Crossref | GoogleScholarGoogle Scholar |

Tanida, T., Matsuda, K. I., Yamada, S., Kawata, M., and Tanaka, M. (2017). Immunohistochemical profiling of estrogen-related receptor gamma in rat brain and colocalization with estrogen receptor alpha in the preoptic area. Brain Res. 1659, 71–80.
Immunohistochemical profiling of estrogen-related receptor gamma in rat brain and colocalization with estrogen receptor alpha in the preoptic area.Crossref | GoogleScholarGoogle Scholar |

Terasaki, M., Shiraishi, F., Nishikawa, T., Edmonds, J. S., Morita, M., and Makino, M. (2005). Estrogenic activity of impurities in industrial grade bisphenol A. Environ. Sci. Technol. 39, 3703–3707.
Estrogenic activity of impurities in industrial grade bisphenol A.Crossref | GoogleScholarGoogle Scholar |

Wang, Y., Wang, L., Gao, H., Gao, Y., Yang, C., Ji, H., and Dong, W. (2017). UCHL1 expression and localization on testicular development and spermatogenesis of Chinese giant salamanders. Oncotarget 8, 86043–86055.

Weis, K. E., Ekena, K., Thomas, J. A., Lazennec, G., and Katzenellenbogen, B. S. (1996). Constitutively active human estrogen receptors containing amino acid substitutions for tyrosine 537 in the receptor protein. Mol. Endocrinol. 10, 1388–1398.

Wu, X. X., Dong, R. R., Tang, L., and Nie, F. S. (2016). Analysis on water quality from original habitat of giant salamander Guizhou Agricultural Sciences 12, 111–113.

Xu, B. Z., Lin, S. l., Li, M., Zhu, J.-Q., Li, S., Ouyang, Y.-C., Chen, D.-Y., and Sun, Q.-Y. (2009). Changes in estrogen receptor-alpha variant (ER-alpha36) expression during mouse ovary development and oocyte meiotic maturation. Histochem. Cell Biol. 131, 347–354.
Changes in estrogen receptor-alpha variant (ER-alpha36) expression during mouse ovary development and oocyte meiotic maturation.Crossref | GoogleScholarGoogle Scholar |

Yan, Y., Yu, L., Castro, L., and Dixon, D. (2017). ERalpha36, a variant of estrogen receptor alpha, is predominantly localized in mitochondria of human uterine smooth muscle and leiomyoma cells. PLoS One 12, e0186078.
ERalpha36, a variant of estrogen receptor alpha, is predominantly localized in mitochondria of human uterine smooth muscle and leiomyoma cells.Crossref | GoogleScholarGoogle Scholar |

Zhang, R., Hu, Y., Wang, H., Yan, P., Zhou, Y., Wu, R., and Wu, X. (2016). Molecular cloning, characterization, tissue distribution and mRNA expression changes during the hibernation and reproductive periods of estrogen receptor alpha (ESR1) in Chinese alligator, Alligator sinensis. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 200, 28–35.
Molecular cloning, characterization, tissue distribution and mRNA expression changes during the hibernation and reproductive periods of estrogen receptor alpha (ESR1) in Chinese alligator, Alligator sinensis.Crossref | GoogleScholarGoogle Scholar |

Zhang, Y., Wei, F., Zhang, J., Hao, L., Jiang, J., Dang, L., Mei, D., Fan, S., Yu, Y., and Jiang, L. (2017). Bisphenol A and estrogen induce proliferation of human thyroid tumor cells via an estrogen-receptor-dependent pathway. Arch. Biochem. Biophys. 633, 29–39.
Bisphenol A and estrogen induce proliferation of human thyroid tumor cells via an estrogen-receptor-dependent pathway.Crossref | GoogleScholarGoogle Scholar |

Zhang, Y., Guan, Y., Zhang, T., Yuan, C., Liu, Y., and Wang, Z. (2018). Adult exposure to bisphenol A in rare minnow Gobiocypris rarus reduces sperm quality with disruption of testicular aquaporins. Chemosphere 193, 365–375.
Adult exposure to bisphenol A in rare minnow Gobiocypris rarus reduces sperm quality with disruption of testicular aquaporins.Crossref | GoogleScholarGoogle Scholar |