Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

The effect of elevated non-esterified fatty acid concentrations on bovine spermatozoa and on oocyte in vitro fertilisation

K. L. J. Desmet A D , W. F. A. Marei A B , I. Pintelon C , P. E. J. Bols A and J. L. M. R. Leroy A
+ Author Affiliations
- Author Affiliations

A Laboratory of Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.

B Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza square, 12211 Giza, Egypt.

C Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.

D Corresponding author. Email: karolien.desmet@uantwerpen.be

Reproduction, Fertility and Development 30(11) 1553-1565 https://doi.org/10.1071/RD17507
Submitted: 1 December 2017  Accepted: 25 April 2018   Published: 30 May 2018

Abstract

Elevated non-esterified fatty acid (NEFA) concentrations, present in follicular and oviductal fluid, have been postulated as a causative link between metabolic disorders and subfertility. High NEFA conditions can directly disrupt oocyte maturation and developmental capacity after fertilisation. However, their influence on sperm function and the fertilisation process is not known. This study investigated the fertilisation process under high NEFA conditions. To differentiate between effects on both spermatozoa and oocytes or on spermatozoa only, different experiments were conducted. In the first experiment both gametes were simultaneously incubated during IVF under different conditions: (1) NEFA-free, solvent-free control conditions, (2) solvent control, (3) physiological concentrations of oleic (OA), palmitic (PA) and stearic (SA) acids or (4) pathophysiological concentrations of OA, PA and SA. In the second experiment spermatozoa were incubated (4 h) under the same treatment conditions prior to routine IVF. Gamete co-incubation resulted in reduced fertilisation and cleavage rates and increased prevalence of polyspermy. In the second experiment embryo developmental capacity and quality were not affected, although sperm motility and plasma membrane integrity were decreased. In conclusion, lipolytic conditions affected the fertilisation process mainly through an effect on the oocyte. Spermatozoa were still able to fertilise even though these conditions reduced sperm function.

Additional keywords: embryo, fertility, free fatty acids, maternal metabolism.


References

Aardema, H., Vos, P. L. A. M., Lolicato, F., Roelen, B. A. J., Knijn, H. M., Vaandrager, A. B., Helms, J. B., and Gadella, B. M. (2011). Oleic acid prevents detrimental effects of saturated fatty acids on bovine oocyte developmental competence. Biol. Reprod. 85, 62–69.
Oleic acid prevents detrimental effects of saturated fatty acids on bovine oocyte developmental competence.Crossref | GoogleScholarGoogle Scholar |

Aksoy, Y., Aksoy, H., Altınkaynak, K., Aydın, H. R., and Özkan, A. (2006). Sperm fatty acid composition in subfertile men. Prostaglandins Leukot. Essent. Fatty Acids 75, 75–79.
Sperm fatty acid composition in subfertile men.Crossref | GoogleScholarGoogle Scholar |

Alvarez, J. G., and Storey, B. T. (1995). Differential incorporation of fatty acids into and peroxidative loss of fatty acids from phospholipids of human spermatozoa. Mol. Reprod. Dev. 42, 334–346.
Differential incorporation of fatty acids into and peroxidative loss of fatty acids from phospholipids of human spermatozoa.Crossref | GoogleScholarGoogle Scholar |

Am-in, N., Kirkwood, R. N., Techakumphu, M., and Tantasuparuk, W. (2011). Lipid profiles of sperm and seminal plasma from boars having normal or low sperm motility. Theriogenology 75, 897–903.
Lipid profiles of sperm and seminal plasma from boars having normal or low sperm motility.Crossref | GoogleScholarGoogle Scholar |

Bedford, J. M., and Kim, H. H. (1993). Cumulus oophorus as a sperm sequestering device, in vivo. J. Exp. Zool. 265, 321–328.
Cumulus oophorus as a sperm sequestering device, in vivo.Crossref | GoogleScholarGoogle Scholar |

Binder, N. K., Hannan, N. J., and Gardner, D. K. (2012). Paternal diet-induced obesity retards early mouse embryo development, mitochondrial activity and pregnancy health. PLoS One 7, e52304.
Paternal diet-induced obesity retards early mouse embryo development, mitochondrial activity and pregnancy health.Crossref | GoogleScholarGoogle Scholar |

Carrell, D. T., Middleton, R. G., Peterson, C. M., Jones, K. P., and Urry, R. L. (1993). Role of the cumulus in the selection of morphologically normal sperm and induction of the acrosome reaction during human in vitro fertilization. Arch. Androl. 31, 133–137.
Role of the cumulus in the selection of morphologically normal sperm and induction of the acrosome reaction during human in vitro fertilization.Crossref | GoogleScholarGoogle Scholar |

Celeghini, E. C. C., De Arruda, R. P., De Andrade, A. F. C., Nascimento, J., and Raphael, C. F. (2007). Practical techniques for bovine sperm simultaneous fluorimetric assessment of plasma, acrosomal and mitochondrial membranes. Reprod. Domest. Anim. 42, 479–488.
Practical techniques for bovine sperm simultaneous fluorimetric assessment of plasma, acrosomal and mitochondrial membranes.Crossref | GoogleScholarGoogle Scholar |

Chappel, S. (2013). The role of mitochondria from mature oocyte to viable blastocyst. Obstet. Gynecol. Int. 2013, 183024.
The role of mitochondria from mature oocyte to viable blastocyst.Crossref | GoogleScholarGoogle Scholar |

Coy, P., Garcia-Vazquez, F. A., Visconti, P. E., and Aviles, M. (2012). Roles of the oviduct in mammalian fertilization. Reproduction 144, 649–660.
Roles of the oviduct in mammalian fertilization.Crossref | GoogleScholarGoogle Scholar |

De Bie, J., Marei, W. F. A., Maillo, V., Jordaens, L., Gutierrez-Adan, A., Bols, P. E. J., and Leroy, J. L. M. R. (2017). Differential effects of high and low glucose concentrations during lipolysis-like conditions on bovine in vitro oocyte quality, metabolism and subsequent embryo development. Reprod. Fertil. Dev. 29, 2284–2300.

Desmet, K. L. J., Van Hoeck, V., Gagné, D., Fournier, E., Thakur, A., O’Doherty, A. M., Walsh, C. P., Sirard, M. A., Bols, P. E. J., and Leroy, J. L. M. R. (2016). Exposure of bovine oocytes and embryos to elevated non-esterified fatty acid concentrations: integration of epigenetic and transcriptomic signatures in resultant blastocysts. BMC Genomics 17, 1004.
Exposure of bovine oocytes and embryos to elevated non-esterified fatty acid concentrations: integration of epigenetic and transcriptomic signatures in resultant blastocysts.Crossref | GoogleScholarGoogle Scholar |

Dumollard, R., Marangos, P., Fitzharris, G., Swann, K., Duchen, M., and Carroll, J. (2004). Sperm-triggered [Ca2+] oscillations and Ca2+ homeostasis in the mouse egg have an absolute requirement for mitochondrial ATP production. Development 131, 3057–3067.
Sperm-triggered [Ca2+] oscillations and Ca2+ homeostasis in the mouse egg have an absolute requirement for mitochondrial ATP production.Crossref | GoogleScholarGoogle Scholar |

Eckert, J. J., Porter, R., Watkins, A. J., Burt, E., Brooks, S., Leese, H. J., Humpherson, P. G., Cameron, I. T., and Fleming, T. P. (2012). Metabolic induction and early responses of mouse blastocyst developmental programming following maternal low protein diet affecting life-long health. PLoS One 7, e52791.
Metabolic induction and early responses of mouse blastocyst developmental programming following maternal low protein diet affecting life-long health.Crossref | GoogleScholarGoogle Scholar |

Eisenbach, M. (1999). Sperm chemotaxis. Rev. Reprod. 4, 56–66.
Sperm chemotaxis.Crossref | GoogleScholarGoogle Scholar |

Ferguson, E. M., and Leese, H. J. (1999). Triglyceride content of bovine oocytes and early embryos. J. Reprod. Fertil. 116, 373–378.
Triglyceride content of bovine oocytes and early embryos.Crossref | GoogleScholarGoogle Scholar |

Ferramosca, A., and Zara, V. (2014). Bioenergetics of mammalian sperm capacitation. BioMed Res. Int. 2014, 902953.
Bioenergetics of mammalian sperm capacitation.Crossref | GoogleScholarGoogle Scholar |

Fleming, W. N., and Saacke, R. G. (1972). Fine structure of the bovine oocyte from the mature Graafian follicle. J. Reprod. Fertil. 29, 203–213.
Fine structure of the bovine oocyte from the mature Graafian follicle.Crossref | GoogleScholarGoogle Scholar |

Gardner, D. K. (1998). Changes in requirements and utilization of nutrients during mammalian preimplantation embryo development and their significance in embryo culture. Theriogenology 49, 83–102.
Changes in requirements and utilization of nutrients during mammalian preimplantation embryo development and their significance in embryo culture.Crossref | GoogleScholarGoogle Scholar |

Gardner, D. K., and Harvey, A. J. (2015). Blastocyst metabolism. Reprod. Fertil. Dev. 27, 638–654.
Blastocyst metabolism.Crossref | GoogleScholarGoogle Scholar |

Ghersevich, S., Massa, E., and Zumoffen, C. (2015). Oviductal secretion and gamete interaction. Reproduction 149, R1–R14.
Oviductal secretion and gamete interaction.Crossref | GoogleScholarGoogle Scholar |

Gonda, M. A., and Hsu, Y.-C. (1980). Correlative scanning electron, transmission electron, and light microscopic studies of the in vitro development of mouse embryos on a plastic substrate at the implantation stage. J. Embryol. Exp. Morphol. 56, 23–39.

Goovaerts, I. G. F., Hoflack, G. G., Van Soom, A., Dewulf, J., Nichi, M., de Kruif, A., and Bols, P. E. J. (2006). Evaluation of epididymal semen quality using the Hamilton–Thorne analyser indicates variation between the two caudae epididymides of the same bull. Theriogenology 66, 323–330.
Evaluation of epididymal semen quality using the Hamilton–Thorne analyser indicates variation between the two caudae epididymides of the same bull.Crossref | GoogleScholarGoogle Scholar |

Guerif, F., McKeegan, P., Leese, H. J., and Sturmey, R. G. (2013). A simple approach for COnsumption and RElease (CORE) analysis of metabolic activity in single mammalian embryos. PLoS One 8, e67834.
A simple approach for COnsumption and RElease (CORE) analysis of metabolic activity in single mammalian embryos.Crossref | GoogleScholarGoogle Scholar |

Guthrie, H. D., Liu, J., and Critser, J. K. (2002). Osmotic tolerance limits and effects of cryoprotectants on motility of bovine spermatozoa. Biol. Reprod. 67, 1811–1816.
Osmotic tolerance limits and effects of cryoprotectants on motility of bovine spermatozoa.Crossref | GoogleScholarGoogle Scholar |

Hawk, H. W. (1987). Transport and fate of spermatozoa after insemination of cattle. J. Dairy Sci. 70, 1487–1503.
Transport and fate of spermatozoa after insemination of cattle.Crossref | GoogleScholarGoogle Scholar |

Holt, W. V., and Fazeli, A. (2010). The oviduct as a complex mediator of mammalian sperm function and selection. Mol. Reprod. Dev. 77, 934–943.
The oviduct as a complex mediator of mammalian sperm function and selection.Crossref | GoogleScholarGoogle Scholar |

Hossain, M. S., Tareq, K. M. A., Hammano, K.-I., and Tsujii, H. (2007). Effect of fatty acids on boar sperm motility, viability and acrosome reaction. Reprod. Med. Biol. 6, 235–239.
Effect of fatty acids on boar sperm motility, viability and acrosome reaction.Crossref | GoogleScholarGoogle Scholar |

Jenkins, T. G., and Carrell, D. T. (2011). The paternal epigenome and embryogenesis: poising mechanisms for development. Asian J. Androl. 13, 76–80.
The paternal epigenome and embryogenesis: poising mechanisms for development.Crossref | GoogleScholarGoogle Scholar |

Jiao, G.-Z., Cao, X.-Y., Cui, W., Lian, H.-Y., Miao, Y.-L., Wu, X.-F., Han, D., and Tan, J.-H. (2013). Developmental potential of prepubertal mouse oocytes is compromised due mainly to their impaired synthesis of glutathione. PLoS One 8, e58018.
Developmental potential of prepubertal mouse oocytes is compromised due mainly to their impaired synthesis of glutathione.Crossref | GoogleScholarGoogle Scholar |

Jordaens, L., Van Hoeck, V., De Bie, J., Berth, M., Marei, W. F. A., Desmet, K. L. J., Bols, P. E. J., and Leroy, J. (2017a). Non-esterified fatty acids in early luteal bovine oviduct fluid mirror plasma concentrations: an ex vivo approach. Reprod. Biol. 17, 281–284.
Non-esterified fatty acids in early luteal bovine oviduct fluid mirror plasma concentrations: an ex vivo approach.Crossref | GoogleScholarGoogle Scholar |

Jordaens, L., Van Hoeck, V., Maillo, V., Gutierrez-Adan, A., Marei, W. F. A., Vlaeminck, B., Thys, S., Sturmey, R. G., Bols, P. E. J., and Leroy, J. L. M. R. (2017b). Maternal metabolic stress may affect oviduct gatekeeper function. Reproduction 153, 759–773.
Maternal metabolic stress may affect oviduct gatekeeper function.Crossref | GoogleScholarGoogle Scholar |

Kölle, S. (2015). Transport, distribution and elimination of mammalian sperm following natural mating and insemination. Reprod. Domest. Anim. 50, 2–6.
Transport, distribution and elimination of mammalian sperm following natural mating and insemination.Crossref | GoogleScholarGoogle Scholar |

Kumar, M., Kumar, K., Jain, S., Hassan, T., and Dada, R. (2013). Novel insights into the genetic and epigenetic paternal contribution to the human embryo. Clinics 68, 5–14.
Novel insights into the genetic and epigenetic paternal contribution to the human embryo.Crossref | GoogleScholarGoogle Scholar |

Lee, Y. S., Thouas, G. A., and Gardner, D. K. (2015). Developmental kinetics of cleavage stage mouse embryos are related to their subsequent carbohydrate and amino acid utilization at the blastocyst stage. Hum. Reprod. 30, 543–552.
Developmental kinetics of cleavage stage mouse embryos are related to their subsequent carbohydrate and amino acid utilization at the blastocyst stage.Crossref | GoogleScholarGoogle Scholar |

Leese, H. J., Hugentobler, S. A., Gray, S. M., Morris, D. G., Sturmey, R. G., Whitear, S. L., and Sreenan, J. M. (2008). Female reproductive tract fluids: composition, mechanism of formation and potential role in the developmental origins of health and disease. Reprod. Fertil. Dev. 20, 1–8.
Female reproductive tract fluids: composition, mechanism of formation and potential role in the developmental origins of health and disease.Crossref | GoogleScholarGoogle Scholar |

Leroy, J. L. M. R., Vanholder, T., Mateusen, B., Christophe, A., Opsomer, G., de Kruif, A., Genicot, G., and Van Soom, A. (2005). Non-esterified fatty acids in follicular fluid of dairy cows and their effect on developmental capacity of bovine oocytes in vitro. Reproduction 130, 485–495.
Non-esterified fatty acids in follicular fluid of dairy cows and their effect on developmental capacity of bovine oocytes in vitro.Crossref | GoogleScholarGoogle Scholar |

Leroy, J. L. M. R., Valckx, S. D. M., Jordaens, L., De Bie, J., Desmet, K. L. J., Van Hoeck, V., Britt, J. H., Marei, W. F., and Bols, P. E. J. (2015). Nutrition and maternal metabolic health in relation to oocyte and embryo quality: critical views on what we learned from the dairy cow model. Reprod. Fertil. Dev. 27, 693–703.
Nutrition and maternal metabolic health in relation to oocyte and embryo quality: critical views on what we learned from the dairy cow model.Crossref | GoogleScholarGoogle Scholar |

Lolicato, F., Brouwers, J. F., Lest, C. H. A., Wubbolts, R., Aardema, H., Priore, P., Roelen, B. A. J., Helms, J. B., and Gadella, B. M. (2015). The cumulus cell layer protects the bovine maturing oocyte against fatty acid-induced lipotoxicity. Biol. Reprod. 92, 16.
The cumulus cell layer protects the bovine maturing oocyte against fatty acid-induced lipotoxicity.Crossref | GoogleScholarGoogle Scholar |

Maillo, V., Rizos, D., Besenfelder, U., Havlicek, V., Kelly, A. K., Garrett, M., and Lonergan, P. (2012). Influence of lactation on metabolic characteristics and embryo development in postpartum Holstein dairy cows. J. Dairy Sci. 95, 3865–3876.
Influence of lactation on metabolic characteristics and embryo development in postpartum Holstein dairy cows.Crossref | GoogleScholarGoogle Scholar |

Marei, W. F. A., De Bie, J., Mohey-Elsaeed, O., Wydooghe, E., Bols, P. E. J., and Leroy, J. (2017). Alpha-linolenic acid protects the developmental capacity of bovine cumulus-oocyte complexes matured under lipotoxic conditions in vitro. Biol. Reprod. 96, 1181–1196.
Alpha-linolenic acid protects the developmental capacity of bovine cumulus-oocyte complexes matured under lipotoxic conditions in vitro.Crossref | GoogleScholarGoogle Scholar |

Meizel, S. (1984). The importance of hydrolytic enzymes to an exocytotic event, the mammalian sperm acrosome reaction. Biol. Rev. Camb. Philos. Soc. 59, 125–157.
The importance of hydrolytic enzymes to an exocytotic event, the mammalian sperm acrosome reaction.Crossref | GoogleScholarGoogle Scholar |

Meizel, S., and Turner, K. O. (1983). Stimulation of an exocytotic event, the hamster sperm acrosome reaction, by cis-unsaturated fatty acids. FEBS Lett. 161, 315–318.
Stimulation of an exocytotic event, the hamster sperm acrosome reaction, by cis-unsaturated fatty acids.Crossref | GoogleScholarGoogle Scholar |

Mitchell, M., Bakos, H. W., and Lane, M. (2011). Paternal diet-induced obesity impairs embryo development and implantation in the mouse. Fertil. Steril. 95, 1349–1353.
Paternal diet-induced obesity impairs embryo development and implantation in the mouse.Crossref | GoogleScholarGoogle Scholar |

Miyamoto, H., and Chang, M. C. (1973). Effect of osmolality on fertilization of mouse and golden hamster eggs in vitro. J. Reprod. Fertil. 33, 481–487.
Effect of osmolality on fertilization of mouse and golden hamster eggs in vitro.Crossref | GoogleScholarGoogle Scholar |

Mortimer, D. (2000). Sperm preparation methods. J. Androl. 21, 357–366.

Neill, A. R., and Masters, C. J. (1972). Metabolism of fatty acids by bovine spermatozoa. Biochem. J. 127, 375–385.
Metabolism of fatty acids by bovine spermatozoa.Crossref | GoogleScholarGoogle Scholar |

Okabe, M. (2013). The cell biology of mammalian fertilization. Development 140, 4471–4479.
The cell biology of mammalian fertilization.Crossref | GoogleScholarGoogle Scholar |

Paillamanque, J., Madrid, C., Carmona, E. M., Osses, N., Moreno, R. D., Oresti, G. M., Pino, J. A., and Reyes, J. G. (2016). Effects of fatty acids on intracellular [Ca(2+)], mitochondrial uncoupling and apoptosis in rat pachytene spermatocytes and round spermatids. PLoS One 11, e0158518.
Effects of fatty acids on intracellular [Ca(2+)], mitochondrial uncoupling and apoptosis in rat pachytene spermatocytes and round spermatids.Crossref | GoogleScholarGoogle Scholar |

Palma, G. A., and Sinowatz, F. (2004). Male and female effects on the in vitro production of bovine embryos. Anat. Histol. Embryol. 33, 257–262.
Male and female effects on the in vitro production of bovine embryos.Crossref | GoogleScholarGoogle Scholar |

Parrish, J. J. (2014). Bovine in vitro fertilization: in vitro oocyte maturation and sperm capacitation with heparin. Theriogenology 81, 67–73.
Bovine in vitro fertilization: in vitro oocyte maturation and sperm capacitation with heparin.Crossref | GoogleScholarGoogle Scholar |

Pellicer-Rubio, M. T., and Combarnous, Y. (1998). Deterioration of goat spermatozoa in skimmed milk-based extenders as a result of oleic acid released by the bulbourethral lipase BUSgp60. J. Reprod. Fertil. 112, 95–105.
Deterioration of goat spermatozoa in skimmed milk-based extenders as a result of oleic acid released by the bulbourethral lipase BUSgp60.Crossref | GoogleScholarGoogle Scholar |

Prentice-Biensch, J. R., Singh, J., Alfoteisy, B., and Anzar, M. (2012). A simple and high-throughput method to assess maturation status of bovine oocytes: comparison of anti-lamin A/C-DAPI with an aceto-orcein staining technique. Theriogenology 78, 1633–1638.
A simple and high-throughput method to assess maturation status of bovine oocytes: comparison of anti-lamin A/C-DAPI with an aceto-orcein staining technique.Crossref | GoogleScholarGoogle Scholar |

Quinn, P., and Whitfingham, D. C. (1982). Effect of fatty acids on fertilization and development of mouse embryos in vitro. J. Androl. 3, 440–444.
Effect of fatty acids on fertilization and development of mouse embryos in vitro.Crossref | GoogleScholarGoogle Scholar |

Rahman, M. B., Vandaele, L., Rijsselaere, T., Zhandi, M., Maes, D., Shamsuddin, M., and Van Soom, A. (2012). Oocyte quality determines bovine embryo development after fertilisation with hydrogen peroxide-stressed spermatozoa. Reprod. Fertil. Dev. 24, 608–618.
Oocyte quality determines bovine embryo development after fertilisation with hydrogen peroxide-stressed spermatozoa.Crossref | GoogleScholarGoogle Scholar |

Rizos, D., Gutierrez-Adan, A., Perez-Garnelo, S., De La Fuente, J., Boland, M. P., and Lonergan, P. (2003). Bovine embryo culture in the presence or absence of serum: implications for blastocyst development, cryotolerance, and messenger RNA expression. Biol. Reprod. 68, 236–243.
Bovine embryo culture in the presence or absence of serum: implications for blastocyst development, cryotolerance, and messenger RNA expression.Crossref | GoogleScholarGoogle Scholar |

Rizos, D., Carter, F., Besenfelder, U., Havlicek, V., and Lonergan, P. (2010). Contribution of the female reproductive tract to low fertility in postpartum lactating dairy cows. J. Dairy Sci. 93, 1022–1029.
Contribution of the female reproductive tract to low fertility in postpartum lactating dairy cows.Crossref | GoogleScholarGoogle Scholar |

Rodina, T. M., Cooke, F. N., Hansen, P. J., and Ealy, A. D. (2009). Oxygen tension and medium type actions on blastocyst development and interferon-tau secretion in cattle. Anim. Reprod. Sci. 111, 173–188.
Oxygen tension and medium type actions on blastocyst development and interferon-tau secretion in cattle.Crossref | GoogleScholarGoogle Scholar |

Rooke, J. A., Shao, C. C., and Speake, B. K. (2001). Effects of feeding tuna oil on the lipid composition of pig spermatozoa and in vitro characteristics of semen. Reproduction 121, 315–322.
Effects of feeding tuna oil on the lipid composition of pig spermatozoa and in vitro characteristics of semen.Crossref | GoogleScholarGoogle Scholar |

Shamsuddin, M., and Larsson, B. (1993). In vitro development of bovine embryos after fertilization using semen from different donors. Reprod. Domest. Anim. 28, 77–84.
In vitro development of bovine embryos after fertilization using semen from different donors.Crossref | GoogleScholarGoogle Scholar |

Soubry, A. (2015). Epigenetic inheritance and evolution: a paternal perspective on dietary influences. Prog. Biophys. Mol. Biol. 118, 79–85.
Epigenetic inheritance and evolution: a paternal perspective on dietary influences.Crossref | GoogleScholarGoogle Scholar |

Stringfellow, D.A., Givens, M. D., and International Embryo Transfer Society (2010) ‘Manual of the International Embryo Transfer Society: a Procedural Guide and General Information for the Use of Embryo Transfer Technology Emphasizing Sanitary Procedures’. (International Embryo Transfer Society: Savoy, IL, USA.)

Sturmey, R., and Leese, H. (2008). 137 Role of glucose and fatty acid metabolism in porcine early embryo development. Reprod. Fertil. Dev. 20, 149.
137 Role of glucose and fatty acid metabolism in porcine early embryo development.Crossref | GoogleScholarGoogle Scholar |

Tanghe, S., Van Soom, A., Nauwynck, H., Coryn, M., and de Kruif, A. (2002). Minireview: functions of the cumulus oophorus during oocyte maturation, ovulation, and fertilization. Mol. Reprod. Dev. 61, 414–424.
Minireview: functions of the cumulus oophorus during oocyte maturation, ovulation, and fertilization.Crossref | GoogleScholarGoogle Scholar |

Tanghe, S., Van Soom, A., Mehrzad, J., Maes, D., Duchateau, L., and de Kruif, A. (2003). Cumulus contributions during bovine fertilization in vitro. Theriogenology 60, 135–149.
Cumulus contributions during bovine fertilization in vitro.Crossref | GoogleScholarGoogle Scholar |

Van Hoeck, V., Sturmey, R. G., Bermejo-Alvarez, P., Rizos, D., Gutierrez-Adan, A., Leese, H. J., Bols, P. E., and Leroy, J. L. (2011). Elevated non-esterified fatty acid concentrations during bovine oocyte maturation compromise early embryo physiology. PLoS One 6, e23183.
Elevated non-esterified fatty acid concentrations during bovine oocyte maturation compromise early embryo physiology.Crossref | GoogleScholarGoogle Scholar |

Van Hoeck, V., Leroy, J. L., Arias Alvarez, M., Rizos, D., Gutierrez-Adan, A., Schnorbusch, K., Bols, P. E., Leese, H. J., and Sturmey, R. G. (2013). Oocyte developmental failure in response to elevated nonesterified fatty acid concentrations: mechanistic insights. Reproduction 145, 33–44.
Oocyte developmental failure in response to elevated nonesterified fatty acid concentrations: mechanistic insights.Crossref | GoogleScholarGoogle Scholar |

Van Hoeck, V., Rizos, D., Gutierrez-Adan, A., Pintelon, I., Jorssen, E., Dufort, I., Sirard, M. A., Verlaet, A., Hermans, N., Bols, P. E., and Leroy, J. L. (2015). Interaction between differential gene expression profile and phenotype in bovine blastocysts originating from oocytes exposed to elevated non-esterified fatty acid concentrations. Reprod. Fertil. Dev. 27, 372–384.
Interaction between differential gene expression profile and phenotype in bovine blastocysts originating from oocytes exposed to elevated non-esterified fatty acid concentrations.Crossref | GoogleScholarGoogle Scholar |

Ward, F., Enright, B., Rizos, D., Boland, M., and Lonergan, P. (2002). Optimization of in vitro bovine embryo production: effect of duration of maturation, length of gamete co-incubation, sperm concentration and sire. Theriogenology 57, 2105–2117.
Optimization of in vitro bovine embryo production: effect of duration of maturation, length of gamete co-incubation, sperm concentration and sire.Crossref | GoogleScholarGoogle Scholar |