Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Hypothyroidism affects lipid and glycogen content and peroxisome proliferator-activated receptor δ expression in the ovary of the rabbit

Julia Rodríguez-Castelán A , Maribel Méndez-Tepepa A , Jorge Rodríguez-Antolín B , Francisco Castelán B C D and Estela Cuevas-Romero B D
+ Author Affiliations
- Author Affiliations

A Doctorado en Ciencias Biológicas, Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, 90070, México.

B Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, México, 90070.

C Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Unidad Foránea Tlaxcala, Universidad Nacional Autónoma de México, Tlaxcala, 90070, México.

D Corresponding authors. Emails: ecuevas@uatx.mx; fcocastelan@iibiomedicas.unam.mx

Reproduction, Fertility and Development 30(10) 1380-1387 https://doi.org/10.1071/RD17502
Submitted: 12 October 2017  Accepted: 27 March 2018   Published: 3 May 2018

Abstract

Dyslipidaemia and hyperglycaemia are associated with ovarian failure and both have been related to hypothyroidism. Hypothyroidism promotes anovulation and ovarian cysts in women and reduces the size of follicles and the expression of aromatase in the ovary of rabbits. Considering that ovarian steroidogenesis and ovulation depend on lipid metabolism and signalling, the aim of the present study was to analyse the effect of hypothyroidism on the lipid content and expression of peroxisome proliferator-activated receptor (PPAR) δ in the ovary. Ovaries from female rabbits belonging to the control (n = 7) and hypothyroid (n = 7) groups were processed to measure total cholesterol (TC), triacylglycerol (TAG) and glycogen content, as well as to determine the presence of granules containing oxidized lipids (oxysterols and lipofuscin) and the relative expression of perilipin A (PLIN-A) and PPARδ. Hypothyroidism increased TC and glycogen content, but reduced TAG content in the ovary. This was accompanied by a reduction in the expression of PLIN-A in total and cytosolic extracts, changes in the presence of granules containing oxidative lipids and low PPARδ expression. The results of the present study suggest that hypothyroidism modifies the content and signalling of lipids in the ovary, possibly affecting follicle maturation. These results could improve our understanding of the association between hypothyroidism and infertility in females.

Additional keywords: oogenesis, ovary metabolism, ovulation, reproduction.


References

Aardema, H., Vos, P. L., Lolicato, F., Roelen, B. A., Knijn, H. M., Vaandrager, A. B., Helms, J. B., and Gadella, B. M. (2011). Oleic acid prevents detrimental effects of saturated fatty acids on bovine oocyte developmental competence. Biol. Reprod. 85, 62–69.
Oleic acid prevents detrimental effects of saturated fatty acids on bovine oocyte developmental competence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotFOls74%3D&md5=95cf54789a5e5d39295ec15bcebfcdb5CAS |

Altintas, K. Z., Dilbaz, B., Cirik, D. A., Ozelci, R., Zengin, T., Erginay, O. N., and Dilbaz, S. (2017). The incidence of metabolic syndrome in adolescents with different phenotypes of PCOS. Ginekol. Pol. 88, 289–295.
The incidence of metabolic syndrome in adolescents with different phenotypes of PCOS.Crossref | GoogleScholarGoogle Scholar |

Anaya-Hernández, A., Rodríguez-Castelán, J., Nicolás, L., Martínez-Gómez, M., Jiménez-Estrada, I., Castelán, F., and Cuevas, E. (2015). Hypothyroidism affects differentially the cell size of epithelial cells among oviductal regions of rabbits. Reprod. Domest. Anim. 50, 104–111.
Hypothyroidism affects differentially the cell size of epithelial cells among oviductal regions of rabbits.Crossref | GoogleScholarGoogle Scholar |

Andreone, L., Velásquez, E. V., Abramovich, D., Ambao, V., Loreti, N., Croxatto, H. B., Parborell, F., Tesone, M., and Campo, S. (2009). Regulation of inhibin/activin expression in rat early antral follicles. Mol. Cell. Endocrinol. 309, 48–54.
Regulation of inhibin/activin expression in rat early antral follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptlalsLo%3D&md5=d895451f7ac3e8769d9320ea3c9a417aCAS |

Bausenwein, J., Serke, H., Eberle, K., Hirrlinger, J., Jogschies, P., Hmeidan, F. A., Blumenauer, V., and Spanel-Borowski, K. (2010). Elevated levels of oxidized low-density lipoprotein and of catalase activity in follicular fluid of obese women. Mol. Hum. Reprod. 16, 117–124.
Elevated levels of oxidized low-density lipoprotein and of catalase activity in follicular fluid of obese women.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXktlCjuw%3D%3D&md5=a0dd9a54da4b95399a39ba9ed363b8d9CAS |

Brannian, J. D., and Rickert, C. S. (2000). Oxidized-low density lipoprotein inhibits cyclic AMP production by porcine luteal cells. Domest. Anim. Endocrinol. 18, 127–132.
Oxidized-low density lipoprotein inhibits cyclic AMP production by porcine luteal cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhtFamu7k%3D&md5=e5668f91631f0e7ce30535d0709e9ab7CAS |

Chang, X. L., Liu, L., Wang, N., Chen, Z. J., and Zhang, C. (2017). The function of high-density lipoprotein and low-density lipoprotein in the maintenance of mouse ovarian steroid balance. Biol. Reprod. 97, 862–872.
The function of high-density lipoprotein and low-density lipoprotein in the maintenance of mouse ovarian steroid balance.Crossref | GoogleScholarGoogle Scholar |

Chen, J. J., Wang, S. W., Chien, E. J., and Wang, P. S. (2003). Direct effect of propylthiouracil on progesterone release in rat granulosa cells. Br. J. Pharmacol. 139, 1564–1570.
Direct effect of propylthiouracil on progesterone release in rat granulosa cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnsVSrs7g%3D&md5=cde6067d89b6e771d329c938a0611ee8CAS |

Dadarwal, D., Adams, G. P., Hyttel, P., Brogliatti, G. M., Caldwell, S., and Singh, J. (2015). Organelle reorganization in bovine oocytes during dominant follicle growth and regression. Reprod. Biol. Endocrinol. 13, 124.
Organelle reorganization in bovine oocytes during dominant follicle growth and regression.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC28vjvVGntg%3D%3D&md5=18369bbbd4909d5ae8c9c5151f371cdfCAS |

Dunning, K. R., Russell, D. L., and Robker, R. L. (2014). Lipids and oocyte developmental competence: the role of fatty acids and β-oxidation. Reproduction 148, R15–R27.
Lipids and oocyte developmental competence: the role of fatty acids and β-oxidation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFyrtrnE&md5=da974ebfa612fbac09e5d8e7b18456a0CAS |

Felske, D., Gagnon, A., and Sorisky, A. (2015). Interacting effects of TSH and insulin on human differentiated adipocytes. Horm. Metab. Res. 47, 681–685.
Interacting effects of TSH and insulin on human differentiated adipocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitFamsbjP&md5=e6415296a2c9f9579b213fdab70e529eCAS |

Folch, J., Lees, M., and Sloane Stanley, G. H. (1957). A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226, 497–509.
| 1:STN:280:DyaG2s%2FnsFCjtw%3D%3D&md5=3458eec0f71039e247b8ea759eb203ddCAS |

Frank, N., Sojka, J. E., Latour, M. A., McClure, S. R., and Polazzi, L. (1999). Effect of hypothyroidism on blood lipid concentrations in horses. Am. J. Vet. Res. 60, 730–733.
| 1:CAS:528:DyaK1MXjvFWqt7s%3D&md5=d76a15f7145a5776c990d3648fc92a3eCAS |

Galland, S., Georges, B., Le Borgne, F., Conductier, G., Dias, J. V., and Demarguoy, J. (2002). Thyroid hormone controls carnitine status through modifications of gamma-butyrobeatine hydroxylase activity and gene expression. Cell. Mol. Life Sci. 59, 540–545.
Thyroid hormone controls carnitine status through modifications of gamma-butyrobeatine hydroxylase activity and gene expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xis1Wms7Y%3D&md5=3e20b1928767c5546f73777bb2b91ea5CAS |

Grasselli, E., Voci, A., Canesi, L., De Matteis, R., Goglia, F., Cioffi, F., Fugassa, E., Gallo, G., and Vergani, L. (2011). Direct effects of iodothyronines on excess fat storage in rat hepatocytes. J. Hepatol. 54, 1230–1236.
Direct effects of iodothyronines on excess fat storage in rat hepatocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsVygsbk%3D&md5=2fe01e8797d39af1866a00c286d78d6aCAS |

Guraya, S. S., and Gupta, S. K. (1979). Morphology and histochemistry of ovarian changes in the field rat, Millardia meltada. Z. Mikrosk. Anat. Forsch. 93, 959–973.
| 1:STN:280:DyaL3c7ptl2gtg%3D%3D&md5=89ca1170e941b8642e2e86c9ed945687CAS |

Hall, M. C. (2006). The effect of oxysterols, individually and as a representative mixture from food, on in vitro cultured bovine ovarian granulosa cells. Mol. Cell. Biochem. 292, 1–11.
The effect of oxysterols, individually and as a representative mixture from food, on in vitro cultured bovine ovarian granulosa cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFKmsbfN&md5=67c93f62e2279066952d55083ccd1603CAS |

Hatting, M., Tavares, C. D. J., Sharabi, K., Rines, A. K., and Puigserver, P. (2018). Insulin regulation of gluconeogenesis. Ann. N. Y. Acad. Sci. 1411, 21–35.
Insulin regulation of gluconeogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC1cXhvFClsLY%3D&md5=07a4b699588d6039dc5e06261b271d67CAS |

Jayasingh, I. A., and Puthuran, P. (2016). Subclinical hypothyroidism and the risk of hypercholesterolemia. J. Family Med. Prim. Care 5, 809–816.
Subclinical hypothyroidism and the risk of hypercholesterolemia.Crossref | GoogleScholarGoogle Scholar |

Knauff, E. A., Westerveld, H. E., Goverde, A. J., Eijkemans, M. J., Valkenburg, O., van Santbrink, E. J., Fauser, B. C., and van der Schouw, Y. T. (2008). Lipid profile of women with premature ovarian failure. Menopause 15, 919–923.
Lipid profile of women with premature ovarian failure.Crossref | GoogleScholarGoogle Scholar |

Komar, C. M. (2005). Peroxisome proliferator-activated receptors (PPARs) and ovarian function – implications for regulating steroidogenesis, differentiation, and tissue remodeling. Reprod. Biol. Endocrinol. 3, 41.
Peroxisome proliferator-activated receptors (PPARs) and ovarian function – implications for regulating steroidogenesis, differentiation, and tissue remodeling.Crossref | GoogleScholarGoogle Scholar |

Kurzynska, A., Bogacki, M., Chojnowska, K., and Bogacka, I. (2014). Peroxisome proliferator activated receptor ligands affect progesterone and 17β-estradiol secretion by porcine corpus luteum during early pregnancy. J. Physiol. Pharmacol. 65, 709–717.
| 1:CAS:528:DC%2BC2MXhtlGntr8%3D&md5=1e91f69de01b8f3228f39bb994b73dc8CAS |

Kurzynska, A., Chojnowska, K., Bogachi, M., and Bogacka, I. (2016). PPAR ligand association with prostaglandin F2α and E2 synthesis in the pig corpus luteum – an in vitro study. Anim. Reprod. Sci. 172, 157–163.
PPAR ligand association with prostaglandin F and E2 synthesis in the pig corpus luteum – an in vitro study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xht12jt73F&md5=eaf6e49db937395aac80599d8df6fb37CAS |

Leroy, J. L., Vanholder, T., Delanghe, J. R., Opsomer, G., Van Soom, A., Bols, P. E., and de Kruif, A. (2004). Metabolite and ionic composition of follicular fluid from different-sized follicles and their relationship to serum concentrations in dairy cows. Anim. Reprod. Sci. 80, 201–211.
Metabolite and ionic composition of follicular fluid from different-sized follicles and their relationship to serum concentrations in dairy cows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXht1ygtL0%3D&md5=12fe323b47d5caf6d2251348afc13c9cCAS |

Löhrke, B., Viergutz, T., and Krüger, B. (2005). Polar phospholipids from bovine endogenously oxidized low density lipoprotein interfere with follicular thecal function. J. Mol. Endocrinol. 35, 531–545.
Polar phospholipids from bovine endogenously oxidized low density lipoprotein interfere with follicular thecal function.Crossref | GoogleScholarGoogle Scholar |

Lombardi, A., De Matteis, R., Moreno, M., Napolitano, L., Busiello, R. A., Senese, R., de Lange, P., Lanni, A., and Goglia, F. (2012). Responses of skeletal muscle lipid metabolism in rat gastrocnemius to hypothyroidism and iodothyronine administration: a putative role for FAT/CD36. Am. J. Physiol. Endocrinol. Metab. 303, E1222–E1233.
Responses of skeletal muscle lipid metabolism in rat gastrocnemius to hypothyroidism and iodothyronine administration: a putative role for FAT/CD36.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVKmtb%2FP&md5=c7fdbb90be39db4eef7e2a137413510bCAS |

Mandard, S., Stienstra, R., Escher, P., Tan, N. S., Kim, I., Gonzalez, F. J., Wahli, W., Desvergne, B., Müller, M., and Kersten, S. (2007). Glycogen synthase 2 is a novel target gene of peroxisome proliferator-activated receptors. Cell. Mol. Life Sci. 64, 1145–1157.
Glycogen synthase 2 is a novel target gene of peroxisome proliferator-activated receptors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlsVWltb4%3D&md5=11013caa382aa0018d12d6fc66c6456aCAS |

Meng, L., Rijntjes, E., Swarts, H., Bunschoten, A., van der Stelt, I., Keijer, J., and Teerds, K. (2016). Dietary-induced chronic hypothyroidism negatively affects rat follicular development and ovulation rate and is associated with oxidative stress. Biol. Reprod. 94, 90.
Dietary-induced chronic hypothyroidism negatively affects rat follicular development and ovulation rate and is associated with oxidative stress.Crossref | GoogleScholarGoogle Scholar |

Mousa-Balabel, T. M., and Mohamed, R. A. (2011). Effect of different photoperiods and melatonin treatment on rabbit reproductive performance. Vet. Q. 31, 165–171.
Effect of different photoperiods and melatonin treatment on rabbit reproductive performance.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC387mtFartg%3D%3D&md5=5286a7d57bb28c91fe81348872673719CAS |

Munakata, Y., Ichinose, T., Ogawa, K., Itami, N., Tasaki, H., Shirasuna, K., Kuwayama, T., and Iwata, H. (2016). Relationship between the number of cells surrounding oocytes and energy states of oocytes. Theriogenology 86, 1789–1798.
Relationship between the number of cells surrounding oocytes and energy states of oocytes.Crossref | GoogleScholarGoogle Scholar |

Mutinati, M., Rizzo, A., and Sciorsci, R. L. (2013). Cystic ovarian follicles and thyroid activity in the dairy cow. Anim. Reprod. Sci. 138, 150–154.
Cystic ovarian follicles and thyroid activity in the dairy cow.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlsVKnsLg%3D&md5=24d62e93d13284d88947f803bcc8a768CAS |

Otsuki, J., Nagai, Y., and Chiba, K. (2007). Lipofuscin bodies in human oocytes as an indicator of oocyte quality. J. Assist. Reprod. Genet. 24, 263–270.
Lipofuscin bodies in human oocytes as an indicator of oocyte quality.Crossref | GoogleScholarGoogle Scholar |

Philp, A., MacKenzie, M. G., Belew, M. Y., Towler, M. C., Corstorphine, A., Papalamprou, A., Hardie, D. G., and Baar, K. (2013). Glycogen content regulates peroxisome proliferator activated receptor-∂ (ppar-∂) activity in rat skeletal muscle. PLoS One 8, e77200.
Glycogen content regulates peroxisome proliferator activated receptor-∂ (ppar-∂) activity in rat skeletal muscle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1yjsrbJ&md5=cc4c83adc219eaee8d1ac7ad88ac6154CAS |

Rodríguez-Castelán, J., Nicolás, L., Morimoto, S., and Cuevas, E. (2015). The Langerhans islet cells of female rabbits are differentially affected by hypothyroidism depending on the islet size. Endocrine 48, 811–817.
The Langerhans islet cells of female rabbits are differentially affected by hypothyroidism depending on the islet size.Crossref | GoogleScholarGoogle Scholar |

Rodríguez-Castelán, J., Méndez-Tepepa, M., Carrillo-Portillo, Y., Anaya-Hernández, A., Rodríguez-Antolín, J., Zambrano, E., Castelán, F., and Cuevas-Romero, E. (2017a). Hypothyroidism reduces the size of ovarian follicles and promotes hypertrophy of periovarian fat with infiltration of macrophages in adult rabbits. BioMed Res. Int. 2017, Article ID 3795950. 10.1155/2017/3795950

Rodríguez-Castelán, J., Corona-Pérez, A., Nicolás-Toledo, L., Martínez-Gómez, M., Castelán, F., and Cuevas, E. (2017b). Hypothyroidism induces a moderate steatohepatitis accompanied by liver regeneration, mast cells infiltration, and changes in the expression of the farnesoid X receptor. Exp. Clin. Endocrinol. Diabetes 125, 183–190.
Hypothyroidism induces a moderate steatohepatitis accompanied by liver regeneration, mast cells infiltration, and changes in the expression of the farnesoid X receptor.Crossref | GoogleScholarGoogle Scholar |

Sarkar, D., Chowdhury, J. P., and Singh, S. K. (2016). Effect of polybrominated diphenyl ether (BDE-209) on testicular steroidogenesis and spermatogenesis through altered thyroid status in adult mice. Gen. Comp. Endocrinol. 239, 50–61.
Effect of polybrominated diphenyl ether (BDE-209) on testicular steroidogenesis and spermatogenesis through altered thyroid status in adult mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhvFWltbbF&md5=2e0fb86cfd25f1d5a03159d08bc9019bCAS |

Scaramuzzi, R. J., Zouaïdi, N., Menassol, J. B., and Dupont, J. (2015). The effects of intravenous, glucose versus saline on ovarian follicles and their levels of some mediators of insulin signalling. Reprod. Biol. Endocrinol. 13, 6.
The effects of intravenous, glucose versus saline on ovarian follicles and their levels of some mediators of insulin signalling.Crossref | GoogleScholarGoogle Scholar |

Schisterman, E. F., Mumford, S. L., Browne, B. W., Barr, D. B., Chen, Z., and Louis, G. M. (2014). Lipid concentrations and couple fecundity: the LIFE study. J. Clin. Endocrinol. Metab. 99, 2786–2794.
Lipid concentrations and couple fecundity: the LIFE study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsVSgu7nM&md5=99c1418cbe8b4389f36e6fd8497a156bCAS |

Shu, J., Xing, L., Zhang, L., Fang, S., and Huang, H. (2011). Ignored adult primary hypothyroidism presenting chiefly with persistent ovarian cysts: a need for increased awareness. Reprod. Biol. Endocrinol. 9, 119. 10.1186/1477-7827-9-119

Silva, J. F., Ocarino, N. M., Vieira, A. L., Nascimento, E. F., and Serakides, R. (2013). Effects of hypo- and hyperthyroidism on proliferation, angiogenesis, apoptosis and expression of COX-2 in the corpus luteum of female rats. Reprod. Domest. Anim. 48, 691–698.
Effects of hypo- and hyperthyroidism on proliferation, angiogenesis, apoptosis and expression of COX-2 in the corpus luteum of female rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVersLnJ&md5=7a35db6afc01b7072ae10d7fc4aba7d0CAS |

Stankiewicz, T. (2015). Biochemical composition of the fluid of ovarian cysts and pre-ovulatory follicles compared to the serum in sows. Tierarztl. Prax. Ausg. G Grosstiere Nutztiere 43, 216–221.
Biochemical composition of the fluid of ovarian cysts and pre-ovulatory follicles compared to the serum in sows.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC2Mfht1KjsQ%3D%3D&md5=560cf7930c9b9d5bcb916cc63f997046CAS |

Sztalryd, C., Xu, G., Dorward, H., Tansey, J. T., Contreras, J. A., Kimmel, A. R., and Londos, C. (2003). Perilipin A is essential for the translocation of hormone-sensitive lipase during lipolytic activation. J. Cell Biol. 161, 1093–1103.
Perilipin A is essential for the translocation of hormone-sensitive lipase during lipolytic activation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkvFCmsr0%3D&md5=a13edeab19bba1fd54b1dfb4f5df5a03CAS |

Tatone, C., Benedetti, E., Vitti, M., Di Emidio, G., Ciriminna, R., Vento, M. E., Cela, V., Borzì, P., Carta, G., Lispi, M., Cimini, A. M., Artini, P. G., Italian Society of Embryology, and Reproduction and Research (SIERR) (2016). Modulating intrafollicular hormonal milieu in controlled ovarian stimulation: insights from ppar expression in human granulosa cells. J. Cell. Physiol. 231, 908–914.
Modulating intrafollicular hormonal milieu in controlled ovarian stimulation: insights from ppar expression in human granulosa cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsVGlsL7L&md5=51eb5c7c3b0a76e4b6f59169c9d3cae9CAS |

Tehrani, F. R., Erfani, H., Cheraghi, L., Tohidi, M., and Azizi, F. (2014). Lipid profiles and ovarian reserve status: a longitudinal study. Hum. Reprod. 29, 2522–2529.
Lipid profiles and ovarian reserve status: a longitudinal study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXhs1ahsbrJ&md5=4e518ff675b51a0794a7328e4bfc1834CAS |

Yesilaltay, A., Dokshin, G. A., Busso, D., Wang, L., Galiani, D., Chavarria, T., Vasile, E., Quilaqueo, L., Orellana, J. A., Walzer, D., Shalgi, R., Dekel, N., Albertini, D. F., Rigotti, A., Page, D. C., and Krieger, M. (2014). Excess cholesterol induces mouse egg activation and may cause female infertility. Proc. Natl. Acad. Sci. USA 111, E4972–E4980.
Excess cholesterol induces mouse egg activation and may cause female infertility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvVGksbvE&md5=741b64a717248d32feb8a131ce2da963CAS |

Yuan, B., Liang, S., Kwon, J. W., Jin, Y. X., Park, S. H., Wang, H. Y., Sun, T. Y., Zhang, J. B., and Kim, N. H. (2016). The role of glucose metabolism on porcine oocyte cytoplasmic maturation and its possible mechanisms. PLoS One 11, e0168329.
The role of glucose metabolism on porcine oocyte cytoplasmic maturation and its possible mechanisms.Crossref | GoogleScholarGoogle Scholar |

Zhang, P. (2012). Analysis of mouse liver glycogen content. Bio Protoc. 2, e186.
Analysis of mouse liver glycogen content.Crossref | GoogleScholarGoogle Scholar |