Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Expression of ENPP3 in human cyclic endometrium: a novel molecule involved in embryo implantation

Qianqian Chen A , Aijie Xin B , Ronggui Qu B , Wenbi Zhang B , Lu Li B , Junling Chen B , Xiang Lu B , Yongwei Gu A , Jing Li A and Xiaoxi Sun A B C D
+ Author Affiliations
- Author Affiliations

A Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China.

B Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China.

C Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China.

D Corresponding author. Email: xiaoxi_sun@aliyun.com

Reproduction, Fertility and Development 30(10) 1277-1285 https://doi.org/10.1071/RD17257
Submitted: 8 July 2017  Accepted: 4 March 2018   Published: 4 April 2018

Abstract

Ectonucleotide pyrophosphatase–phosphodiesterase 3 (ENPP3), a protein detected in the human uterus, has been found to play an important role in the development and invasion of tumours. It was recently discovered that ENPP3 was upregulated during the window of implantation in the human endometrium but its functional relevance remains elusive. The objective was to determine ENPP3 expression in human endometrium and its roles in endometrial receptivity and embryo implantation. ENPP3 expression was analysed using immunohistochemistry and western blot assay. The effects of ENPP3 on embryo implantation were evaluated using a BeWo cell (a human choriocarcinoma cell line) spheroid attachment assay and BeWo cells were dual cultured with Ishikawa cells transfected with lentiviral vectors (LV5-NC or LV5-ENPP3) to mimic embryo implantation in a Transwell model. The effects of endometrial ENPP3 on factors related to endometrial receptivity were also determined. The results showed that ENPP3 was expressed in human endometrial epithelial cells and its expression levels changed during the menstrual cycle, peaking in the mid-secretory phase, corresponding to the time of embryo implantation. The overexpression of endometrial ENPP3 not only increased the embryo implantation rate but also had positive effects on the expression of factors related to endometrial receptivity in human endometrial cells. The results indicate that ENPP3 levels undergo cyclic changes in the endometrium and affect embryo adhesion and invasion via altering the expression of implantation factors in the human endometrium. Therefore, ENPP3 may play an important role in embryo implantation and may be a unique biomarker of endometrial receptivity.

Additional keywords: endometrial receptivity, integrin-β3, LIF, window of implantation.


References

Aghajanova, L. (2004). Leukemia inhibitory factor and human embryo implantation. Ann. N. Y. Acad. Sci. 1034, 176–183.
Leukemia inhibitory factor and human embryo implantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXivFKks78%3D&md5=0fbe7537905eb66ac177bf6681a9f9f5CAS |

Aliagas, E., Vidal, A., Torrejon-Escribano, B., Taco, M. R., Ponce, J., de Aranda, I. G., Sevigny, J., Condom, E., and Martin-Satue, M. (2013). Ecto-nucleotidases distribution in human cyclic and postmenopausic endometrium. Purinergic Signal. 9, 227–237.
Ecto-nucleotidases distribution in human cyclic and postmenopausic endometrium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXntVGjsrg%3D&md5=0e55e069bfde76f8d295b8d4d671243eCAS |

Aschenbach, L. C., Hester, K. E., McCann, N. C., Zhang, J. G., Dimitriadis, E., and Duffy, D. M. (2013). The LIF receptor antagonist PEGLA is effectively delivered to the uterine endometrium and blocks LIF activity in cynomolgus monkeys. Contraception 87, 813–823.
The LIF receptor antagonist PEGLA is effectively delivered to the uterine endometrium and blocks LIF activity in cynomolgus monkeys.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1ajt7vL&md5=e9fe4b40ccd3d8ca2bf1d448e4a40276CAS |

Boggavarapu, N. R., Lalitkumar, S., Joshua, V., Kasvandik, S., Salumets, A., Lalitkumar, P. G., and Gemzell-Danielsson, K. (2016). Compartmentalized gene expression profiling of receptive endometrium reveals progesterone regulated ENPP3 is differentially expressed and secreted in glycosylated form. Sci. Rep. 6, 33811.
Compartmentalized gene expression profiling of receptive endometrium reveals progesterone regulated ENPP3 is differentially expressed and secreted in glycosylated form.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhsFynurzE&md5=ba94db346d686e9bd2950a92c4be7b70CAS |

Chen, G., Xin, A., Liu, Y., Shi, C., Chen, J., Tang, X., Chen, Y., Yu, M., Peng, X., Li, L., and Sun, X. (2016). Integrins β1 and β3 are biomarkers of uterine condition for embryo transfer. J. Transl. Med. 14, 303.
Integrins β1 and β3 are biomarkers of uterine condition for embryo transfer.Crossref | GoogleScholarGoogle Scholar |

Deissler, H., Lottspeich, F., and Rajewsky, M. F. (1995). Affinity purification and cDNA cloning of rat neural differentiation and tumor cell surface antigen gp130RB13–6 reveals relationship to human and murine PC-1. J. Biol. Chem. 270, 9849–9855.
Affinity purification and cDNA cloning of rat neural differentiation and tumor cell surface antigen gp130RB13–6 reveals relationship to human and murine PC-1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXltlWgurs%3D&md5=d4b7e13cf7b5b27c8495217031523b21CAS |

Deissler, H., Blass-Kampmann, S., Bruyneel, E., Mareel, M., and Rajewsky, M. F. (1999). Neural cell surface differentiation antigen gp130(RB13–6) induces fibroblasts and glioma cells to express astroglial proteins and invasive properties. FASEB J. 13, 657–666.
Neural cell surface differentiation antigen gp130(RB13–6) induces fibroblasts and glioma cells to express astroglial proteins and invasive properties.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXit1ers7o%3D&md5=6ba456a04f2aa5f6a31fb7fb89a152ecCAS |

Diedrich, K., Fauser, B. C., Devroey, P., and Griesinger, G. (2007). The role of the endometrium and embryo in human implantation. Hum. Reprod. Update 13, 365–377.
The role of the endometrium and embryo in human implantation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2szmvVejtw%3D%3D&md5=a1b1b401d08b2624041874f395ff5e86CAS |

Fukazawa, H., Mizuno, S., and Uehara, Y. (1995). A microplate assay for quantitation of anchorage-independent growth of transformed cells. Anal. Biochem. 228, 83–90.
A microplate assay for quantitation of anchorage-independent growth of transformed cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXmsFyrtro%3D&md5=36f869318967bae3d65b1c8122b70516CAS |

Goding, J. W., Grobben, B., and Slegers, H. (2003). Physiological and pathophysiological functions of the ecto-nucleotide pyrophosphatase/phosphodiesterase family. Biochim. Biophys. Acta 1638, 1–19.
Physiological and pathophysiological functions of the ecto-nucleotide pyrophosphatase/phosphodiesterase family.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjvFahsb0%3D&md5=fcb5af763ccef39d7bb7ca7d4056e6d6CAS |

Haouzi, D., Mahmoud, K., Fourar, M., Bendhaou, K., Dechaud, H., De Vos, J., Reme, T., Dewailly, D., and Hamamah, S. (2009). Identification of new biomarkers of human endometrial receptivity in the natural cycle. Hum. Reprod. 24, 198–205.
Identification of new biomarkers of human endometrial receptivity in the natural cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFWjtbnE&md5=78067f633239b76e69e76199c6d84d2aCAS |

Haouzi, D., Dechaud, H., Assou, S., De Vos, J., and Hamamah, S. (2012). Insights into human endometrial receptivity from transcriptomic and proteomic data. Reprod. Biomed. Online 24, 23–34.
Insights into human endometrial receptivity from transcriptomic and proteomic data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmtFejtQ%3D%3D&md5=9b800e7c82a3cb90338c2934c1300ff1CAS |

Hood, B. L., Liu, B., Liu, B., Alkhas, A., Shoji, Y., Challa, R., Wang, G., Ferguson, S., Oliver, J., Mitchell, D., Bateman, N. W., Zahn, C. M., Hamilton, C. A., Payson, M., Lessey, B., Fazleabas, A. T., Maxwell, G. L., Conrads, T. P., and Risinger, J. I. (2015). Proteomics of the human endometrial glandular epithelium and stroma from the proliferative and secretory phases of the menstrual cycle. Biol. Reprod. 92, 106.
Proteomics of the human endometrial glandular epithelium and stroma from the proliferative and secretory phases of the menstrual cycle.Crossref | GoogleScholarGoogle Scholar |

Lessey, B. A. (1998). Endometrial integrins and the establishment of uterine receptivity. Hum. Reprod. 13, 247–258, discussion 259–261.
Endometrial integrins and the establishment of uterine receptivity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmtVCnu7o%3D&md5=e133970605aaa8d142fc35cb18ad31b0CAS |

Lessey, B. A., Castelbaum, A. J., Sawin, S. W., and Sun, J. (1995). Integrins as markers of uterine receptivity in women with primary unexplained infertility. Fertil. Steril. 63, 535–542.
Integrins as markers of uterine receptivity in women with primary unexplained infertility.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2M7lsVGjsw%3D%3D&md5=a39b25ff5acab2a2efe3a59c0441ed5dCAS |

Lindskog, C. (2016). The Human Protein Atlas – an important resource for basic and clinical research. Expert Rev. Proteomics 13, 627–629.
The Human Protein Atlas – an important resource for basic and clinical research.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtVGntLfK&md5=0cad9a36c201b77de7bacd3a04dcb123CAS |

Livak, K. J., and Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25, 402–408.
Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtFelt7s%3D&md5=a80b5e0841c49e736a3564bfe77a7aa6CAS |

Melamed, A., Gockley, A. A., Joseph, N. T., Sun, S. Y., Clapp, M. A., Goldstein, D. P., Berkowitz, R. S., and Horowitz, N. S. (2016). Effect of race/ethnicity on risk of complete and partial molar pregnancy after adjustment for age. Gynecol. Oncol. 143, 73–76.
Effect of race/ethnicity on risk of complete and partial molar pregnancy after adjustment for age.Crossref | GoogleScholarGoogle Scholar |

Menkhorst, E., Zhang, J. G., Sims, N. A., Morgan, P. O., Soo, P., Poulton, I. J., Metcalf, D., Alexandrou, E., Gresle, M., Salamonsen, L. A., Butzkueven, H., Nicola, N. A., and Dimitriadis, E. (2011). Vaginally administered PEGylated LIF antagonist blocked embryo implantation and eliminated non-target effects on bone in mice. PLoS One 6, e19665.
Vaginally administered PEGylated LIF antagonist blocked embryo implantation and eliminated non-target effects on bone in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXms1Kgu70%3D&md5=8a301665e4b92b44e1231778889ed134CAS |

Murray, M. J., and Lessey, B. A. (1999). Embryo implantation and tumor metastasis: common pathways of invasion and angiogenesis. Semin. Reprod. Endocrinol. 17, 275–290.
Embryo implantation and tumor metastasis: common pathways of invasion and angiogenesis.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3c3lvVarsw%3D%3D&md5=c4f009aa2966a61ca74b7c6dd3c8297fCAS |

Nishida, M. (2002). The Ishikawa cells from birth to the present. Hum. Cell 15, 104–117.
The Ishikawa cells from birth to the present.Crossref | GoogleScholarGoogle Scholar |

Nishida, M., Kasahara, K., Kaneko, M., Iwasaki, H., and Hayashi, K. (1985). Establishment of a new human endometrial adenocarcinoma cell line, Ishikawa cells, containing estrogen and progesterone receptors. Nippon Sanka Fujinka Gakkai Zasshi 37, 1103–1111.
| 1:STN:280:DyaL2M3ptFWhtw%3D%3D&md5=04ffa7a93952e7316261bb218cd5753eCAS |

Noyes, R. W., Hertig, A. T., and Rock, J. (1975). Dating the endometrial biopsy. Am. J. Obstet. Gynecol. 122, 262–263.
Dating the endometrial biopsy.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE2M3it1KitA%3D%3D&md5=44e3d799cd4232762d4b4d5aa905056dCAS |

Parmar, T., Gadkar-Sable, S., Savardekar, L., Katkam, R., Dharma, S., Meherji, P., Puri, C. P., and Sachdeva, G. (2009). Protein profiling of human endometrial tissues in the midsecretory and proliferative phases of the menstrual cycle. Fertil. Steril. 92, 1091–1103.
Protein profiling of human endometrial tissues in the midsecretory and proliferative phases of the menstrual cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFaqtb%2FO&md5=a5f7a7b4099ec7fe550a8d2e396aae21CAS |

Pattillo, R. A., and Gey, G. O. (1968). The establishment of a cell line of human hormone-synthesizing trophoblastic cells in vitro. Cancer Res. 28, 1231–1236.
| 1:STN:280:DyaF1czlvVWhtQ%3D%3D&md5=fd1a75d40eb516d83a192e4735f5c9ecCAS |

Pattillo, R. A., Gey, G. O., Delfs, E., and Mattingly, R. F. (1968). Human hormone production in vitro. Science 159, 1467–1469.
Human hormone production in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1cXpsVWlsA%3D%3D&md5=153655860725b40b910721f3ad36a4a3CAS |

Rai, P., Kota, V., Sundaram, C. S., Deendayal, M., and Shivaji, S. (2010). Proteome of human endometrium: identification of differentially expressed proteins in proliferative and secretory phase endometrium. Proteomics Clin. Appl. 4, 48–59.
Proteome of human endometrium: identification of differentially expressed proteins in proliferative and secretory phase endometrium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXntVeluw%3D%3D&md5=c15fed442b989c58dccbc45c8b700a35CAS |

Simintiras, C. A., Fröhlich, T., Sathyapalan, T., Arnold, G., Ulbrich, S. E., Leese, H. J., and Sturmey, R. G. (2017). Modelling oviduct fluid formation in vitro. Reproduction 153, 23–33.
Modelling oviduct fluid formation in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXpsFajtb0%3D&md5=9f2c00c73c211bb9722708bf2cb2639eCAS |

Steck, T., Giess, R., Suetterlin, M. W., Bolland, M., Wiest, S., Poehls, U. G., and Dietl, J. (2004). Leukaemia inhibitory factor (LIF) gene mutations in women with unexplained infertility and recurrent failure of implantation after IVF and embryo transfer. Eur. J. Obstet. Gynecol. Reprod. Biol. 112, 69–73.
Leukaemia inhibitory factor (LIF) gene mutations in women with unexplained infertility and recurrent failure of implantation after IVF and embryo transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpvVWqtLk%3D&md5=bddebea42da64093ec1541bbbbe5fe11CAS |

Stewart, C. L., Kaspar, P., Brunet, L. J., Bhatt, H., Gadi, I., Kontgen, F., and Abbondanzo, S. J. (1992). Blastocyst implantation depends on maternal expression of leukaemia inhibitory factor. Nature 359, 76–79.
Blastocyst implantation depends on maternal expression of leukaemia inhibitory factor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XlvVGmtLc%3D&md5=3328c7b43ffb0a38847ae615b7d2eb2fCAS |

Terakawa, J., Wakitani, S., Sugiyama, M., Inoue, N., Ohmori, Y., Kiso, Y., Hosaka, Y. Z., and Hondo, E. (2011). Embryo implantation is blocked by intraperitoneal injection with anti-LIF antibody in mice. J. Reprod. Dev. 57, 700–707.
Embryo implantation is blocked by intraperitoneal injection with anti-LIF antibody in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjtVGrsb0%3D&md5=d012cc3a61934fdc64d9dda792f7f9abCAS |

White, C. A., Zhang, J. G., Salamonsen, L. A., Baca, M., Fairlie, W. D., Metcalf, D., Nicola, N. A., Robb, L., and Dimitriadis, E. (2007). Blocking LIF action in the uterus by using a PEGylated antagonist prevents implantation: a nonhormonal contraceptive strategy. Proc. Natl. Acad. Sci. USA 104, 19357–19362.
Blocking LIF action in the uterus by using a PEGylated antagonist prevents implantation: a nonhormonal contraceptive strategy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXisVOjuw%3D%3D&md5=86de4f61388de5c221a8d2f7d29b5ea6CAS |

Wilcox, A. J., Baird, D. D., and Weinberg, C. R. (1999). Time of implantation of the conceptus and loss of pregnancy. N. Engl. J. Med. 340, 1796–1799.
Time of implantation of the conceptus and loss of pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1M3ntVKisA%3D%3D&md5=f6607a7d76f44a0a5975a44f2076a55eCAS |

Wu, M., Yin, Y., Zhao, M., Hu, L., and Chen, Q. (2013). The low expression of leukemia inhibitory factor in endometrium: possible relevant to unexplained infertility with multiple implantation failures. Cytokine 62, 334–339.
The low expression of leukemia inhibitory factor in endometrium: possible relevant to unexplained infertility with multiple implantation failures.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXltVCrtrk%3D&md5=d3b13d5cf3c246bee8350ed2de375d1cCAS |

Yano, Y., Hayashi, Y., Sano, K., Shinmaru, H., Kuroda, Y., Yokozaki, H., Yoon, S., and Kasuga, M. (2003). Expression and localization of ecto-nucleotide pyrophosphatase/phosphodiesterase I-3 (E-NPP3/CD203c/PD-I beta/B10/gp130RB13–6) in human colon carcinoma. Int. J. Mol. Med. 12, 763–766.
| 1:CAS:528:DC%2BD3sXovFKjsrw%3D&md5=e6399ea80e629c5184e3895f7ee1f2ddCAS |

Zhu, L. H., Sun, L. H., Hu, Y. L., Jiang, Y., Liu, H. Y., Shen, X. Y., Jin, X. Y., Zhen, X., Sun, H. X., and Yan, G. J. (2013). PCAF impairs endometrial receptivity and embryo implantation by down-regulating β3-integrin expression via HOXA10 acetylation. J. Clin. Endocrinol. Metab. 98, 4417–4428.
PCAF impairs endometrial receptivity and embryo implantation by down-regulating β3-integrin expression via HOXA10 acetylation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsl2msr3N&md5=61e7017f850633373bd39f13e3ad2c08CAS |