Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Exploring early differentiation and pluripotency in domestic animals

R. Michael Roberts A B C , Ye Yuan A and Toshihiko Ezashi A
+ Author Affiliations
- Author Affiliations

A Division of Animal Sciences and Bond Life Sciences Center, University of Missouri, 245 Bond Life Sciences Center, 1201 East Rollins Street, Columbia, MO 65211, USA.

B Department of Biochemistry, University of Missouri, 117 Schweitzer Hall, Columbia, MO 65211, USA.

C Corresponding author. Email: robertsrm@missouri.edu

Reproduction, Fertility and Development 29(1) 101-107 https://doi.org/10.1071/RD16292
Published: 2 December 2016

Abstract

This short review describes some general features of the origins of the pluripotent inner cell mass and epiblast during the early development of eutherian mammals and the two kinds of embryonic stem cell (ESC), naïve and primed type, that have been produced from these structures. We point out that the derivation of pluripotent stem cells from domesticated species continues to be fraught with difficulties, most likely because the culture requirements of these cells are distinct from those of mouse and human ESCs. Generation of induced pluripotent stem cells (iPSCs) from the domesticated species has been more straightforward, although the majority of the iPSC lines remain dependent on the continued expression of one or more integrated reprogramming genes. Although hope for the potential usefulness of these cells in genetic modification of livestock and other domestic species has dimmed, ESCs and iPSCs remain our best source of self-renewing populations of pluripotent cells, with potential usefulness in preserving and propagating valuable animal breeds and making contributions to fields such as regenerative medicine, toxicology and even laboratory meat production.

Additional keywords: blastocyst, embryonic stem cell, epiblast, induced pluripotent stem cell, inner cell mass.


References

Amit, M., Shariki, C., Margulets, V., and Itskovitz-Eldor, J. (2004). Feeder layer- and serum-free culture of human embryonic stem cells. Biol. Reprod. 70, 837–845.
Feeder layer- and serum-free culture of human embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhs1Chtr8%3D&md5=de4e7e5dcf3a43a8e709f84b832ec9b1CAS |

Austin, C. P., Battey, J. F., Bradley, A., Bucan, M., Capecchi, M., Collins, F. S., Dove, W. F., Duyk, G., Dymecki, S., Eppig, J. T., Grieder, F. B., Heintz, N., Hicks, G., Insel, T. R., Joyner, A., Koller, B. H., Lloyd, K. C., Magnuson, T., Moore, M. W., Nagy, A., Pollock, J. D., Roses, A. D., Sands, A. T., Seed, B., Skarnes, W. C., Snoddy, J., Soriano, P., Stewart, D. J., Stewart, F., Stillman, B., Varmus, H., Varticovski, L., Verma, I. M., Vogt, T. F., von Melchner, H., Witkowski, J., Woychik, R. P., Wurst, W., Yancopoulos, G. D., Young, S. G., and Zambrowicz, B. (2004). The knockout mouse project. Nat. Genet. 36, 921–924.
The knockout mouse project.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntFSktb8%3D&md5=873898019705c58f387ee844757f7bc3CAS |

Brons, I. G., Smithers, L. E., Trotter, M. W., Rugg-Gunn, P., Sun, B., Chuva de Sousa Lopes, S. M., Howlett, S. K., Clarkson, A., Ahrlund-Richter, L., Pedersen, R. A., and Vallier, L. (2007). Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448, 191–195.
Derivation of pluripotent epiblast stem cells from mammalian embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnsFeisbw%3D&md5=66e47110fb52bb03814e6f1e1e564871CAS |

Chazaud, C., Yamanaka, Y., Pawson, T., and Rossant, J. (2006). Early lineage segregation between epiblast and primitive endoderm in mouse blastocysts through the Grb2-MAPK pathway. Dev. Cell 10, 615–624.
Early lineage segregation between epiblast and primitive endoderm in mouse blastocysts through the Grb2-MAPK pathway.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XltVyktro%3D&md5=2a48ae871f942aa1b316492055433e16CAS |

Deglincerti, A., Croft, G. F., Pietila, L. N., Zernicka-Goetz, M., Siggia, E. D., and Brivanlou, A. H. (2016). Self-organization of the in vitro attached human embryo. Nature 533, 251–254.
Self-organization of the in vitro attached human embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xnt1Ogs7Y%3D&md5=8abd52e59e219271b5890c84e055667aCAS |

Du, X., Feng, T., Yu, D., Wu, Y., Zou, H., Ma, S., Feng, C., Huang, Y., Ouyang, H., Hu, X., Pan, D., Li, N., and Wu, S. (2015). Barriers for deriving transgene-free pig iPS cells with episomal vectors. Stem Cells 33, 3228–3238.
Barriers for deriving transgene-free pig iPS cells with episomal vectors.Crossref | GoogleScholarGoogle Scholar |

Evans, M. J., and Kaufman, M. H. (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154–156.
Establishment in culture of pluripotential cells from mouse embryos.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL3M3itV2qsg%3D%3D&md5=b191a7c908a5a2a39735083ae28fab46CAS |

Ezashi, T., Yuan, Y., and Roberts, R. M. (2016). Pluripotent stem cells from domesticated mammals. Annu. Rev. Anim. Biosci. 4, 223–253.
Pluripotent stem cells from domesticated mammals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhvVCqs7vI&md5=91055d8b6772755226e5a9b72651599eCAS |

Fan, N., Chen, J., Shang, Z., Dou, H., Ji, G., Zou, Q., Wu, L., He, L., Wang, F., Liu, K., Liu, N., Han, J., Zhou, Q., Pan, D., Yang, D., Zhao, B., Ouyang, Z., Liu, Z., Zhao, Y., Lin, L., Zhong, C., Wang, Q., Wang, S., Xu, Y., Luan, J., Liang, Y., Yang, Z., Li, J., Lu, C., Vajta, G., Li, Z., Ouyang, H., Wang, H., Wang, Y., Yang, Y., Wei, H., Luan, Z., Esteban, M. A., Deng, H., Yang, H., Pei, D., Li, N., Pei, G., Liu, L., Du, Y., Xiao, L., and Lai, L. (2013). Piglets cloned from induced pluripotent stem cells. Cell Res. 23, 162–166.
Piglets cloned from induced pluripotent stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjslSqtQ%3D%3D&md5=1d817718bb733a92cb097db8d0337669CAS |

Fujishiro, S. H., Nakano, K., Mizukami, Y., Azami, T., Arai, Y., Matsunari, H., Ishino, R., Nishimura, T., Watanabe, M., Abe, T., Furukawa, Y., Umeyama, K., Yamanaka, S., Ema, M., Nagashima, H., and Hanazono, Y. (2013). Generation of naive-like porcine-induced pluripotent stem cells capable of contributing to embryonic and fetal development. Stem Cells Dev. 22, 473–482.
Generation of naive-like porcine-induced pluripotent stem cells capable of contributing to embryonic and fetal development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVKrsbk%3D&md5=d4a5f1dece642a3738be63e80d1240ebCAS |

Gafni, O., Weinberger, L., Mansour, A. A., Manor, Y. S., Chomsky, E., Ben-Yosef, D., Kalma, Y., Viukov, S., Maza, I., Zviran, A., Rais, Y., Shipony, Z., Mukamel, Z., Krupalnik, V., Zerbib, M., Geula, S., Caspi, I., Schneir, D., Shwartz, T., Gilad, S., Amann-Zalcenstein, D., Benjamin, S., Amit, I., Tanay, A., Massarwa, R., Novershtern, N., and Hanna, J. H. (2013). Derivation of novel human ground state naive pluripotent stem cells. Nature 504, 282–286.
Derivation of novel human ground state naive pluripotent stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslSnsLbM&md5=65acb8c1a894d86c56c07c5c83321de1CAS |

Gu, M., Nguyen, P. K., Lee, A. S., Xu, D., Hu, S., Plews, J. R., Han, L., Huber, B. C., Lee, W. H., Gong, Y., de Almeida, P. E., Lyons, J., Ikeno, F., Pacharinsak, C., Connolly, A. J., Gambhir, S. S., Robbins, R. C., Longaker, M. T., and Wu, J. C. (2012). Microfluidic single-cell analysis shows that porcine induced pluripotent stem cell-derived endothelial cells improve myocardial function by paracrine activation. Circ. Res. 111, 882–893.
Microfluidic single-cell analysis shows that porcine induced pluripotent stem cell-derived endothelial cells improve myocardial function by paracrine activation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlemsLbP&md5=de7b57397e7d1daed7f2445aab4f7db2CAS |

Hall, V. J. (2013). Early development of the porcine embryo: the importance of cell signalling in development of pluripotent cell lines. Reprod. Fertil. Dev. 25, 94–102.
Early development of the porcine embryo: the importance of cell signalling in development of pluripotent cell lines.Crossref | GoogleScholarGoogle Scholar |

Hanna, J. H., Saha, K., and Jaenisch, R. (2010). Pluripotency and cellular reprogramming: facts, hypotheses, unresolved issues. Cell 143, 508–525.
Pluripotency and cellular reprogramming: facts, hypotheses, unresolved issues.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVahtbrL&md5=9774ba052b5bd0ebd10d68f673574610CAS |

Hochedlinger, K., and Jaenisch, R. (2006). Nuclear reprogramming and pluripotency. Nature 441, 1061–1067.
Nuclear reprogramming and pluripotency.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xmtlahsrg%3D&md5=7c9af58c4dea9bcf2dab152e635402edCAS |

Hou, D. R., Jin, Y., Nie, X. W., Zhang, M. L., Ta, N., Zhao, L. H., Yang, N., Chen, Y., Wu, Z. Q., Jiang, H. B., Li, Y. R., Sun, Q. Y., Dai, Y. F., and Li, R. F. (2016). Derivation of porcine embryonic stem-like cells from in vitro-produced blastocyst-stage embryos. Sci. Rep. 6, 25838.
Derivation of porcine embryonic stem-like cells from in vitro-produced blastocyst-stage embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XotFKqsbk%3D&md5=ee119b9ceb78177521a330def6504970CAS |

Kalkan, T., and Smith, A. (2014). Mapping the route from naive pluripotency to lineage specification. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369, 20130540.
Mapping the route from naive pluripotency to lineage specification.Crossref | GoogleScholarGoogle Scholar |

Katayama, M., Ellersieck, M. R., and Roberts, R. M. (2010). Development of monozygotic twin mouse embryos from the time of blastomere separation at the two-cell stage to blastocyst. Biol. Reprod. 82, 1237–1247.
Development of monozygotic twin mouse embryos from the time of blastomere separation at the two-cell stage to blastocyst.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmvVCgtLk%3D&md5=ce3f45afbc5328e8c248577b222ea60bCAS |

Kawaguchi, T., Tsukiyama, T., Kimura, K., Matsuyama, S., Minami, N., Yamada, M., and Imai, H. (2015). Generation of naive bovine induced pluripotent stem cells using piggyBac transposition of doxycycline-inducible transcription factors. PLoS One 10, e0135403.
Generation of naive bovine induced pluripotent stem cells using piggyBac transposition of doxycycline-inducible transcription factors.Crossref | GoogleScholarGoogle Scholar |

Koh, S., and Piedrahita, J. A. (2014). From ‘ES-like’ cells to induced pluripotent stem cells: a historical perspective in domestic animals. Theriogenology 81, 103–111.
From ‘ES-like’ cells to induced pluripotent stem cells: a historical perspective in domestic animals.Crossref | GoogleScholarGoogle Scholar |

Kumar, D., Talluri, T. R., Anand, T., and Kues, W. A. (2015). Induced pluripotent stem cells: mechanisms, achievements and perspectives in farm animals. World J. Stem Cells 7, 315–328.
Induced pluripotent stem cells: mechanisms, achievements and perspectives in farm animals.Crossref | GoogleScholarGoogle Scholar |

Lawson, K. A., Meneses, J. J., and Pedersen, R. A. (1991). Clonal analysis of epiblast fate during germ layer formation in the mouse embryo. Development 113, 891–911.
| 1:STN:280:DyaK38zjvFeluw%3D%3D&md5=d0c8f956c1d172ffde37fa7841522374CAS |

Ludwig, T. E., Bergendahl, V., Levenstein, M. E., Yu, J., Probasco, M. D., and Thomson, J. A. (2006). Feeder-independent culture of human embryonic stem cells. Nat. Methods 3, 637–646.
Feeder-independent culture of human embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XntFCgtb4%3D&md5=eeb244cf23d31e5946efcb023f1e8dbbCAS |

Mascetti, V. L., and Pedersen, R. A. (2014). Naivete of the human pluripotent stem cell. Nat. Biotechnol. 32, 68–70.
Naivete of the human pluripotent stem cell.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXltVSqsA%3D%3D&md5=6235a7fddc7a641eff265ff12c3f6cfcCAS |

Niakan, K. K., and Eggan, K. (2013). Analysis of human embryos from zygote to blastocyst reveals distinct gene expression patterns relative to the mouse. Dev. Biol. 375, 54–64.
Analysis of human embryos from zygote to blastocyst reveals distinct gene expression patterns relative to the mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1Oksr4%3D&md5=8c2711d74fbec52fb33b6194c74f1847CAS |

Nichols, J., and Smith, A. (2009). Naive and primed pluripotent states. Cell Stem Cell 4, 487–492.
Naive and primed pluripotent states.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnt1Ggt7c%3D&md5=9d1380a0074a118a35a2d430d43a4a86CAS |

Nichols, J., and Smith, A. (2012). Pluripotency in the embryo and in culture. Cold Spring Harb. Perspect. Biol. 4, a008128.
Pluripotency in the embryo and in culture.Crossref | GoogleScholarGoogle Scholar |

Parfitt, D. E., and Shen, M. M. (2014). From blastocyst to gastrula: gene regulatory networks of embryonic stem cells and early mouse embryogenesis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369, 20130542.
From blastocyst to gastrula: gene regulatory networks of embryonic stem cells and early mouse embryogenesis.Crossref | GoogleScholarGoogle Scholar |

Posfai, E., Tam, O. H., and Rossant, J. (2014). Mechanisms of pluripotency in vivo and in vitro. Curr. Top. Dev. Biol. 107, 1–37.
Mechanisms of pluripotency in vivo and in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXpsleqtbk%3D&md5=8a64a3c6c4278f1830c4fe109a814898CAS |

Roberts, R. M., Yuan, Y., Genovese, N., and Ezashi, T. (2015). Livestock models for exploiting the promise of pluripotent stem cells. ILAR J. 56, 74–82.
Livestock models for exploiting the promise of pluripotent stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xht1Cqs7fI&md5=ffbb0b876fba53467a0ed14b02ee6241CAS |

Rossant, J. (2007). Stem cells and lineage development in the mammalian blastocyst. Reprod. Fertil. Dev. 19, 111–118.
Stem cells and lineage development in the mammalian blastocyst.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xhtleitr%2FJ&md5=1877d891044bd0f019aa999ff6c763e9CAS |

Sartori, C., DiDomenico, A. I., Thomson, A. J., Milne, E., Lillico, S. G., Burdon, T. G., and Whitelaw, C. B. (2012). Ovine-induced pluripotent stem cells can contribute to chimeric lambs. Cell. Reprogram. 14, 8–19.
| 1:CAS:528:DC%2BC38XjtFaqsrY%3D&md5=b870d2905752a4dac3fa5e4697ba293cCAS |

Takahashi, K., and Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676.
Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xpt1aktbs%3D&md5=281c397210b4e43d134c8a186b5e3900CAS |

Tesar, P. J., Chenoweth, J. G., Brook, F. A., Davies, T. J., Evans, E. P., Mack, D. L., Gardner, R. L., and McKay, R. D. (2007). New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 448, 196–199.
New cell lines from mouse epiblast share defining features with human embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnsFeisbk%3D&md5=e92cc78058d88c6f58123635b5f52eb8CAS |

Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S., and Jones, J. M. (1998). Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147.
Embryonic stem cell lines derived from human blastocysts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXntleisLg%3D&md5=c57ee6fceae023c22399b7dea1e264eeCAS |

Wang, H., Pei, Y., Li, N., and Han, J. (2014). Progress, problems and prospects of porcine pluripotent stem cells. Front. Agr. Sci. Eng. 1, 6–15.
Progress, problems and prospects of porcine pluripotent stem cells.Crossref | GoogleScholarGoogle Scholar |

Wang, W., Lee, S. J., Scott, P. A., Lu, X., Emery, D., Liu, Y., Ezashi, T., Roberts, M. R., Ross, J. W., Kaplan, H. J., and Dean, D. C. (2016). Two-step reactivation of dormant cones in retinitis pigmentosa. Cell Reports 15, 372–385.
Two-step reactivation of dormant cones in retinitis pigmentosa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XlsVWitrs%3D&md5=6d3db387d99ee7f132efa93804b59e2fCAS |

West, F. D., Terlouw, S. L., Kwon, D. J., Mumaw, J. L., Dhara, S. K., Hasneen, K., Dobrinsky, J. R., and Stice, S. L. (2010). Porcine induced pluripotent stem cells produce chimeric offspring. Stem Cells Dev. 19, 1211–1220.
Porcine induced pluripotent stem cells produce chimeric offspring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVejs77O&md5=e0d13a1c90fb73484e80806f5c916a1fCAS |

West, F. D., Shirazi, R., Mardanpour, P., Ozcan, S., Dinc, G., Hodges, D. H., Soleimanpour-Lichaei, H. R., and Nayernia, K. (2013). In vitro-derived gametes from stem cells. Semin. Reprod. Med. 31, 33–38.
In vitro-derived gametes from stem cells.Crossref | GoogleScholarGoogle Scholar |

Williams, R. L., Hilton, D. J., Pease, S., Willson, T. A., Stewart, C. L., Gearing, D. P., Wagner, E. F., Metcalf, D., Nicola, N. A., and Gough, N. M. (1988). Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature 336, 684–687.
Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXntlKitg%3D%3D&md5=86804465fffb4f435aa641504b4fca45CAS |

Wu, J., and Izpisua Belmonte, J. C. (2015). Dynamic pluripotent stem cell states and their applications. Cell Stem Cell 17, 509–525.
Dynamic pluripotent stem cell states and their applications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhslaktLfI&md5=6b7652a554f15a2cc53f4b27dedfd68eCAS |

Xue, B., Li, Y., He, Y., Wei, R., Sun, R., Yin, Z., Bou, G., and Liu, Z. (2016). Porcine pluripotent stem cells derived from IVF embryos contribute to chimeric development in vivo. PLoS One 11, e0151737.
Porcine pluripotent stem cells derived from IVF embryos contribute to chimeric development in vivo.Crossref | GoogleScholarGoogle Scholar |

Yang, Y., Adachi, K., Sheridan, M. A., Alexenko, A. P., Schust, D. J., Schulz, L. C., Ezashi, T., and Roberts, R. M. (2015). Heightened potency of human pluripotent stem cell lines created by transient BMP4 exposure. Proc. Natl Acad. Sci. USA 112, E2337–E2346.
Heightened potency of human pluripotent stem cell lines created by transient BMP4 exposure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXmsFSht7g%3D&md5=ff2c6496db5924fc1aebc8d45c759b67CAS |

Ying, Q. L., Nichols, J., Chambers, I., and Smith, A. (2003). BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 115, 281–292.
BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXovFClu7c%3D&md5=33acc4f84002871e13e239cf49ad1682CAS |

Ying, Q. L., Wray, J., Nichols, J., Batlle-Morera, L., Doble, B., Woodgett, J., Cohen, P., and Smith, A. (2008). The ground state of embryonic stem cell self-renewal. Nature 453, 519–523.
The ground state of embryonic stem cell self-renewal.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmt1Ortbg%3D&md5=d92b2583a53dcb1dfd245618e83660c5CAS |

Yuan, Y., Lee, K., Park, K. W., Spate, L. D., Prather, R. S., Wells, K. D., and Roberts, R. M. (2014). Cell cycle synchronization of leukemia inhibitory factor (LIF)-dependent porcine-induced pluripotent stem cells and the generation of cloned embryos. Cell Cycle 13, 1265–1276.
Cell cycle synchronization of leukemia inhibitory factor (LIF)-dependent porcine-induced pluripotent stem cells and the generation of cloned embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFWgs7fK&md5=8b1bb61b4aa36d805bc842b95d12ef87CAS |

Zhou, L., Wang, W., Liu, Y., Fernandez de Castro, J., Ezashi, T., Telugu, B. P., Roberts, R. M., Kaplan, H. J., and Dean, D. C. (2011). Differentiation of induced pluripotent stem cells of swine into rod photoreceptors and their integration into the retina. Stem Cells 29, 972–980.
Differentiation of induced pluripotent stem cells of swine into rod photoreceptors and their integration into the retina.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXos1Onu7w%3D&md5=ef58fab9761bda153fd4c94e75b6cd67CAS |

Zhou, Q., Wang, M., Yuan, Y., Wang, X., Fu, R., Wan, H., Xie, M., Liu, M., Guo, X., Zheng, Y., Feng, G., Shi, Q., Zhao, X. Y., Sha, J., and Zhou, Q. (2016). Complete meiosis from embryonic stem cell-derived germ cells in vitro. Cell Stem Cell 18, 330–340.
Complete meiosis from embryonic stem cell-derived germ cells in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xjtlersr8%3D&md5=8be68754e235dd89ddf49cb5c6e5928bCAS |