Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
REVIEW

Role of the Na+/K+-ATPase ion pump in male reproduction and embryo development

D. R. Câmara A C , J. P. Kastelic B and J. C. Thundathil B
+ Author Affiliations
- Author Affiliations

A Faculdade de Medicina Veterinária, Universidade Federal de Alagoas, Fazenda São Luiz, s/n, Zona Rural do Município de Viçosa, Viçosa-AL, CEP: 57700-000, Brazil.

B Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Dr., NW, Calgary, AB T2N 4N1, Canada.

C Corresponding author. Email: diogo@vicosa.ufal.br

Reproduction, Fertility and Development 29(8) 1457-1467 https://doi.org/10.1071/RD16091
Submitted: 24 February 2016  Accepted: 19 June 2016   Published: 26 July 2016

Abstract

Na+/K+-ATPase was one of the first ion pumps studied because of its importance in maintaining osmotic and ionic balances between intracellular and extracellular environments, through the exchange of three Na+ ions out and two K+ ions into a cell. This enzyme, which comprises two main subunits (α and β), with or without an auxiliary polypeptide (γ), can have specific biochemical properties depending on the expression of associated isoforms (α1β1 and/or α2β1) in the cell. In addition to the importance of Na+/K+-ATPase in ensuring the function of many tissues (e.g. brain, heart and kidney), in the reproductive tract this protein is essential for embryo development because of its roles in blastocoel formation and embryo hatching. In the context of male reproduction, the discovery of a very specific subunit (α4), apparently restricted to male germ cells, only expressed after puberty and able to influence sperm function (e.g. motility and capacitation), opened a remarkable field for further investigations regarding sperm biology. Therefore, the present review focuses on the importance of Na+/K+-ATPase on male reproduction and embryo development.

Additional keywords: ion channel, P-type ATPase, sodium pump, spermatozoa.


References

Apell, H. J. (2004). How do P-type ATPases transport ions? Bioelectrochemistry 63, 149–156.
How do P-type ATPases transport ions?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjsVWisL0%3D&md5=bcfa7feb138d1753cdb2627def0d61fdCAS | 15110265PubMed |

Barcroft, L. C., Gill, S. E., and Watson, A. J. (2002). The γ subunit of the Na-K-ATPase as a potential regulator of apical and basolateral Na+-pump isozymes during development of bovine pre-attachment embryos. Reproduction 124, 387–397.
The γ subunit of the Na-K-ATPase as a potential regulator of apical and basolateral Na+-pump isozymes during development of bovine pre-attachment embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnsV2ht7g%3D&md5=74a3441f7da89e3198fa56d985a2ab16CAS | 12201812PubMed |

Barcroft, L. C., Moseley, A. E., Lingrel, J. B., and Watson, A. J. (2004). Deletion of the Na/K-ATPase α1 subunit gene (Atp1a1) does not prevent cavitation of the preimplantation mouse embryo. Mech. Dev. 121, 417–426.
| 1:CAS:528:DC%2BD2cXktVOkurw%3D&md5=e44030f0aa0e38676a8315b534a77d31CAS | 15147760PubMed |

Béguin, P., Wang, X., Firsov, D., Puoti, A., Clayes, D., Horisberger, J. D., and Geering, K. (1997). The γ subunit is a specific component of the Na,K-ATPase and modulates its transport function. EMBO J. 16, 4250–4260.
The γ subunit is a specific component of the Na,K-ATPase and modulates its transport function.Crossref | GoogleScholarGoogle Scholar | 9250668PubMed |

Betts, D. H., MacPhee, D. J., Kidder, G. M., and Watson, A. J. (1997). Ouabain sensitivity and expression of Na/K-ATPase α- and β-subunit isoform genes during bovine early development. Mol. Reprod. Dev. 46, 114–126.
Ouabain sensitivity and expression of Na/K-ATPase α- and β-subunit isoform genes during bovine early development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXoslWhtw%3D%3D&md5=dedcbe01db6ec9b1d6b09dc825303443CAS | 9021743PubMed |

Betts, D. H., Barcroft, L. C., and Watson, A. J. (1998). Na/K-ATPase mediated 86Rb+ uptake and asymmetrical trophectoderm localization of α1 and α3 Na/K-ATPase isoforms during bovine preattachment development. Dev. Biol. 197, 77–92.
Na/K-ATPase mediated 86Rb+ uptake and asymmetrical trophectoderm localization of α1 and α3 Na/K-ATPase isoforms during bovine preattachment development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjtFaitbg%3D&md5=88c22aeaee37ffaf1a8ed748fdfdfaf1CAS | 9578620PubMed |

Blanco, G. (2005). Na,K-ATPase subunit heterogeneity as a mechanism for tissue-specific ion regulation. Semin. Nephrol. 25, 292–303.
Na,K-ATPase subunit heterogeneity as a mechanism for tissue-specific ion regulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFeqtbjM&md5=b476c07189018d90eca71b71bc46e790CAS | 16139684PubMed |

Blanco, G., and Mercer, R. W. (1998). Isozymes of Na,K-ATPase: heterogeneity in structure, diversity and function. Am. J. Physiol. 275, F633–F650.
| 1:CAS:528:DyaK1cXnsF2ltL4%3D&md5=f10473d5d1de869e453347a375ce19d4CAS | 9815123PubMed |

Blanco, G., Koster, J. C., Sánchez, G., and Mercer, R. W. (1995). Kinetic properties of α2β1 and α2β2 isozymes of the Na,K-ATPase. Biochemistry 34, 319–325.
Kinetic properties of α2β1 and α2β2 isozymes of the Na,K-ATPase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXivVeltr4%3D&md5=70903e5afe1386bf0108de8577852074CAS | 7819213PubMed |

Blanco, G., Melton, R. J., Sánchez, G., and Mercer, R. W. (1999). Functional characterization of a testes-specific α-subunit isoform of the sodium/potassium adenosine triphosphatase. Biochemistry 38, 13661–13669.
Functional characterization of a testes-specific α-subunit isoform of the sodium/potassium adenosine triphosphatase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmtVChsr0%3D&md5=7deea0e93394733ff0b1640eef489e62CAS | 10521273PubMed |

Blanco, G., Sánchez, G., Melton, R. J., Tourtellotte, W. G., and Mercer, R. W. (2000). The α4 isoform of the Na,K-ATPase in expressed in the germ cells of the testis. J. Histochem. Cytochem. 48, 1023–1032.
The α4 isoform of the Na,K-ATPase in expressed in the germ cells of the testis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlsFOlsb0%3D&md5=d3badd6a7d372bf4b843f2c3230eb583CAS | 10898797PubMed |

Brewis, I. A., and Gadella, B. M. (2010). Sperm surface proteomics: from protein list to biological function. Mol. Hum. Reprod. 16, 68–79.
Sperm surface proteomics: from protein list to biological function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXktlCitw%3D%3D&md5=e099644840aef8d726d3ea0e50096e22CAS | 19717474PubMed |

Budik, S., Walter, I., Tschulenk, W., Helmreich, M., Deichsel, K., Pittner, F., and Aurich, C. (2008). Significance of aquaporins and sodium potassium ATPase subunits for the expansion of the early equine conceptus. Reproduction 135, 497–508.
Significance of aquaporins and sodium potassium ATPase subunits for the expansion of the early equine conceptus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltFOnu74%3D&md5=c91fde3ba438a762f1b766c1c17af0a6CAS | 18367510PubMed |

Buffone, M. G., Ijiri, T. W., Cao, W., Merdiushev, T., Aghajanian, H. K., and Gerton, G. L. (2012). Heads or tails? Structural events and molecular mechanisms that promote mammalian sperm acrosomal exocytosis and motility. Mol. Reprod. Dev. 79, 4–18.
Heads or tails? Structural events and molecular mechanisms that promote mammalian sperm acrosomal exocytosis and motility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlKrtbnP&md5=f461a4e82cbefd199af2a88698ee2fd3CAS | 22031228PubMed |

Caiza de la Cueva, F. I., Pujol, M. R., Rigau, T., Bonet, S., Miró, J., Briz, M., and Rodríguez-Gil, J. E. (1997). Resistance to osmotic stress of horse spermatozoa: the role of ionic pumps and their relationship to cryopreservation success. Theriogenology 48, 947–968.
Resistance to osmotic stress of horse spermatozoa: the role of ionic pumps and their relationship to cryopreservation success.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28zgtV2gtA%3D%3D&md5=4cc59c6d51c4270463950b908a367597CAS | 16728185PubMed |

Chen, Y., Li, X., Ye, Q., Tian, J., Jing, R., and Xie, Z. (2011). Regulation of the α1 Na/K-ATPase expression by cholesterol. J. Biol. Chem. 286, 15 517–15 524.
Regulation of the α1 Na/K-ATPase expression by cholesterol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltVWjsrc%3D&md5=d69a9e222a664f1e2d4a925d053e718cCAS |

Cheng, C. Y., and Mruk, D. D. (2002). Cell junction dynamics in the testis: Sertoli–germ cell interactions and male contraceptive development. Physiol. Rev. 82, 825–874.
Cell junction dynamics in the testis: Sertoli–germ cell interactions and male contraceptive development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xot1Ggurs%3D&md5=f214c244d23e4294a22fe61a1f7d998fCAS | 12270945PubMed |

Cherniavsky-Lev, M., Golani, O., Karlish, S. J. D., and Garty, H. (2014). Ouabain-induced internalization and lysosomal degradation of the Na+/K+-ATPase. J. Biol. Chem. 289, 1049–1059.
Ouabain-induced internalization and lysosomal degradation of the Na+/K+-ATPase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXns1Cktg%3D%3D&md5=18ff59fa148d7fc8381265420fb46ef0CAS | 24275648PubMed |

Cornelius, F., Habeck, M., Kanai, R., Toyoshima, C., and Karlish, S. F. J. (2015). General and specific lipid-protein interaction in Na,K-ATPase. Biochim. Biophys. Acta 1848, 1729–1743.
General and specific lipid-protein interaction in Na,K-ATPase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXkvF2qu7s%3D&md5=8227a5b6a06677bda34bda035dd02ba0CAS | 25791351PubMed |

Daniel, L., Etkovitz, N., Weiss, S. R., Rubinstein, S., Ickowicz, D., and Breitbart, H. (2010). Regulation of the sperm EGF receptor by ouabain leads to initiation of the acrosome reaction. Dev. Biol. 344, 650–657.
Regulation of the sperm EGF receptor by ouabain leads to initiation of the acrosome reaction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXps1akt7k%3D&md5=f5b6a0703729006f403c50287771e527CAS | 20580701PubMed |

Darszon, A., Nishigaki, T., Wood, C., Treviño, C. L., Felix, R., and Beltrán, C. (2005). Calcium channels and Ca+ fluctuations in sperm physiology. Int. Rev. Cytol. 243, 79–172.
Calcium channels and Ca+ fluctuations in sperm physiology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitlaitbw%3D&md5=74b1c319f3ab2b4053f7833144fd04abCAS | 15797459PubMed |

Darszon, A., Nishigaki, T., Beltran, C., and Treviño, C. L. (2011). Calcium channels in the development, maturation, and function of spermatozoa. Physiol. Rev. 91, 1305–1355.
Calcium channels in the development, maturation, and function of spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVOjsbrK&md5=45a970587eb7e74c15f7d2999c383801CAS | 22013213PubMed |

De Sousa, P. A., Westhusin, M. E., and Watson, A. J. (1998). Analysis of variation in relative mRNA abundance for specific gene transcripts in single bovine oocytes and early embryos. Mol. Reprod. Dev. 49, 119–130.
Analysis of variation in relative mRNA abundance for specific gene transcripts in single bovine oocytes and early embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjt1Oisw%3D%3D&md5=0aa9c60ab584f7f95d84758e7b7ba625CAS | 9444655PubMed |

Deng, W. B., Tian, Z., Liang, X. H., Wang, B. C., Yang, F., and Yang, Z. M. (2013). Progesterone regulation of Na/K-ATPase β1 subunit expression in the mouse uterus during the peri-implantation period. Theriogenology 79, 1196–1203.
Progesterone regulation of Na/K-ATPase β1 subunit expression in the mouse uterus during the peri-implantation period.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXksFOmu7o%3D&md5=2071f18fb3ce06fbe587e515e74ad83cCAS | 23534996PubMed |

Dietze, R., Konrad, L., Shihan, M., Kirch, U., and Scheiner-Bobis, G. (2013). Cardiac glycoside ouabain induces activation of ATF-1 and StAR expression by interacting with the α4 isoform of the sodium pump in Sertoli cells. Biochim. Biophys. Acta 1833, 511–519.
Cardiac glycoside ouabain induces activation of ATF-1 and StAR expression by interacting with the α4 isoform of the sodium pump in Sertoli cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1yitbg%3D&md5=1975c796044e6ce934db9c5dc1c3bae7CAS | 23220124PubMed |

Dietze, R., Shihan, M., Stammler, A., Konrad, L., and Scheiner-Bobis, G. (2015). Cardiotonic steroid ouabain stimulates expression of blood–testis barrier proteins claudin-1 and claudin-11 and formation of tight junctions in Sertoli cells. Mol. Cell. Endocrinol. 405, 1–13.
Cardiotonic steroid ouabain stimulates expression of blood–testis barrier proteins claudin-1 and claudin-11 and formation of tight junctions in Sertoli cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXisl2qsL0%3D&md5=49911929f1200a89d4ff00dbeafcae88CAS | 25666991PubMed |

DiZio, S. M., and Tasca, R. J. (1977). Sodium-dependent amino acid transport in preimplantation mouse embryos: III. Na+-K+-ATPase-linked mechanism in blastocysts. Dev. Biol. 59, 198–205.
Sodium-dependent amino acid transport in preimplantation mouse embryos: III. Na+-K+-ATPase-linked mechanism in blastocysts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXltlWgsLc%3D&md5=704d969c72ca5dc9325dc187aa0b50b1CAS | 142676PubMed |

Donnay, I., and Leese, H. J. (1999). Embryo metabolism during the expansion of the bovine blastocyst. Mol. Reprod. Dev. 53, 171–178.
Embryo metabolism during the expansion of the bovine blastocyst.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXivFKmt7c%3D&md5=8f815afa40d2496cdfc50b218ebb7518CAS | 10331455PubMed |

Ellerman, D. A., Myles, D. G., and Primakoff, P. (2006). A role for sperm surface protein disulfide isomerase activity in gamete fusion: evidence for the participation of ERp57. Dev. Cell 10, 831–837.
A role for sperm surface protein disulfide isomerase activity in gamete fusion: evidence for the participation of ERp57.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmtVagsL8%3D&md5=05700562fd38b0c546b34fe810c0c502CAS | 16740484PubMed |

Evans, J. P. (2012). Sperm–egg interaction. Annu. Rev. Physiol. 74, 477–502.
Sperm–egg interaction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjvFynt78%3D&md5=2fd548727263fa5a671ccc4b368d1177CAS | 22054237PubMed |

Farin, C. E., Farmer, W. T., and Farin, P. W. (2010). Pregnancy recognition and abnormal offspring syndrome in cattle. Reprod. Fertil. Dev. 22, 75–87.
Pregnancy recognition and abnormal offspring syndrome in cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitlagurc%3D&md5=3430dcc8102cd43862ec219b65b8bc7aCAS | 20003848PubMed |

Fleming, J. S., Yu, F., McDonald, R., Meyers, S. A., Montgomery, G. W., Smith, J. F., and Nicholson, H. D. (2004). Effects of scrotal heating on sperm surface protein PH-20 expression in sheep. Mol. Reprod. Dev. 68, 103–114.
Effects of scrotal heating on sperm surface protein PH-20 expression in sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXivFyrsrs%3D&md5=319c423681ca461fb523e999fdfc1c75CAS | 15039954PubMed |

Flesch, F. M., and Gadella, B. M. (2000). Dynamics of the mammalian sperm plasma membrane in the process of fertilization. Biochim. Biophys. Acta 1469, 197–235.
Dynamics of the mammalian sperm plasma membrane in the process of fertilization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXovFKnsL4%3D&md5=ebed0c682bce97551c6e12f00bc64ebdCAS | 11063883PubMed |

Gabrielli, N. M., Veiga, M. F., Matos, M. L., Quintana, S., Chemes, H., Blanco, G., and Vazquez-Levin, M. H. (2011). Expression of dysadherin in the human male reproductive tract and in spermatozoa. Fertil. Steril. 96, 554–561.e2.
Expression of dysadherin in the human male reproductive tract and in spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFarsr%2FM&md5=cc237c612a134e8cae398ce7f90ceaadCAS | 21774927PubMed |

Gardiner, C. S., Williams, J. S., and Menino, A. R. (1990). Sodium/potassium adenosine triphosphate α- and β-subunit and α-subunit mRNA levels during mouse embryo development in vitro. Biol. Reprod. 43, 788–794.
Sodium/potassium adenosine triphosphate α- and β-subunit and α-subunit mRNA levels during mouse embryo development in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXmt1ynsbw%3D&md5=9175eba4611122e94e14f99b47264632CAS | 1963318PubMed |

Geering, K. (2001). The functional role of β subunits in oligomeric P-type ATPases. J. Bioenerg. Biomembr. 33, 425–438.
The functional role of β subunits in oligomeric P-type ATPases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnsl2ltbc%3D&md5=43fcd16fa15579ddc433870691046228CAS | 11762918PubMed |

Geering, K. (2008). Functional roles of Na,K-ATPase subunits. Curr. Opin. Nephrol. Hypertens. 17, 526–532.
Functional roles of Na,K-ATPase subunits.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVejtbfN&md5=0b1fe05e5c7476eb14d03d646ae2762cCAS | 18695395PubMed |

Gerber, J., Heinrich, J., and Brehm, R. (2016). Blood–testis barrier and Sertoli cell function: lessons from SCCx43KO mice. Reproduction 151, R15–R27.
Blood–testis barrier and Sertoli cell function: lessons from SCCx43KO mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XivVakt7k%3D&md5=484cb8300ff323484f21cc593821fc31CAS | 26556893PubMed |

Giannatselis, H., Calder, M., and Watson, A. J. (2011). Ouabain stimulates a Na+/K+-ATPase-mediated–SFK-activated signalling pathway that regulates tight junction function in the mouse blastocyst. PLoS One 6, e23704.
Ouabain stimulates a Na+/K+-ATPase-mediated–SFK-activated signalling pathway that regulates tight junction function in the mouse blastocyst.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1Sgt7nO&md5=5aa87d59bc449c910b12e9cd131eabcdCAS | 21901128PubMed |

Glynn, I. M. (2002). A hundred years of sodium pumping. Annu. Rev. Physiol. 64, 1–18.
A hundred years of sodium pumping.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XisFGms7s%3D&md5=174b62c99484073c6dbe545aa8fb4d5cCAS | 11826261PubMed |

Gualtieri, R., Mollo, V., Duma, G., and Talevi, R. (2009). Redox control of surface protein sulphhydryls in bovine spermatozoa reversibly modulates sperm adhesion to the oviductal epithelium and capacitation. Reproduction 138, 33–43.
Redox control of surface protein sulphhydryls in bovine spermatozoa reversibly modulates sperm adhesion to the oviductal epithelium and capacitation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXovFemsb4%3D&md5=20e6410aa757db3894a62919c04f3977CAS | 19439561PubMed |

Gur, Y., and Breitbart, H. (2006). Mammalian sperm translate nuclear-encoded proteins by mitochondrial-type ribosomes. Genes Dev. 20, 411–416.
Mammalian sperm translate nuclear-encoded proteins by mitochondrial-type ribosomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xhslaqurk%3D&md5=55a799f29170018d02427b67e65c25eaCAS | 16449571PubMed |

Hernández-González, E. O., Sosnik, J., Edwards, J., Acevedo, J. J., Mendoza-Lujambio, I., López-González, I., Demarco, I., Wertheimer, E., Darszon, A., and Visconti, P. E. (2006). Sodium and epithelia sodium channels participate in the regulation of the capacitation-associated hyperpolarization in mouse sperm. J. Biol. Chem. 281, 5623–5633.
Sodium and epithelia sodium channels participate in the regulation of the capacitation-associated hyperpolarization in mouse sperm.Crossref | GoogleScholarGoogle Scholar | 16407190PubMed |

Hickey, K. D., and Buhr, M. M. (2011). Lipid bilayer composition affects transmembrane protein orientation and function. J. Lipids 2011, Article ID 208457.
Lipid bilayer composition affects transmembrane protein orientation and function.Crossref | GoogleScholarGoogle Scholar |

Hickey, K. D., and Buhr, M. M. (2012). Characterization of Na+K+-ATPase in bovine sperm. Theriogenology 77, 1369–1380.
Characterization of Na+K+-ATPase in bovine sperm.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjvVeltL8%3D&md5=c982b95f69b8ac1dc157ca8b413de584CAS | 22284223PubMed |

Hlivko, J. T., Chakraborty, S., Hlivko, T. J., Sengupta, A., and James, P. F. (2006). The human Na,K-ATPase alpha4 isoform is an ouabain-sensitive alpha isoform that is expressed in sperm. Mol. Reprod. Dev. 73, 101–115.
The human Na,K-ATPase alpha4 isoform is an ouabain-sensitive alpha isoform that is expressed in sperm.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht12ntbzE&md5=b02741ef740aacaed641d2c61549517fCAS | 16175638PubMed |

Hosken, D. J., and Hodgson, D. J. (2014). Why do sperm carry RNA? Relatedness, conflict, and control. Trends Ecol. Evol. 29, 451–455.
Why do sperm carry RNA? Relatedness, conflict, and control.Crossref | GoogleScholarGoogle Scholar | 24916312PubMed |

Houghton, F. D., Humpherson, P. G., Hawkhead, J. A., Hall, C. J., and Leese, H. J. (2003). Na+,K+-ATPase activity in the human and bovine preimplantation embryo. Dev. Biol. 263, 360–366.
Na+,K+-ATPase activity in the human and bovine preimplantation embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXos1CisLk%3D&md5=62e65bf0eea1e0ef6a7e1e5a914f2babCAS | 14597208PubMed |

Inoue, N., Ikawa, M., Isotani, A., and Okabe, M. (2005). The immunoglobulin superfamily protein Izumo is required for sperm to fuse with eggs. Nature 434, 234–238.
The immunoglobulin superfamily protein Izumo is required for sperm to fuse with eggs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXitV2hsrs%3D&md5=00fabc0f5fade434f01d0c224671f5eeCAS | 15759005PubMed |

Jahromi, S. S. F., and Shamsir, M. S. (2013). Construction and analysis of the cell surface’s protein network for human sperm–egg interaction. ISRN Bioinform. 2013, Article ID 962760.

Jimenez, T., Sanchez, G., Wertheimer, E., and Blanco, G. (2010). Activity of the Na,K-ATPase α4 isoform is important for membrane potential, intracellular Ca2+, and pH to maintain motility in rat spermatozoa. Reproduction 139, 835–845.
Activity of the Na,K-ATPase α4 isoform is important for membrane potential, intracellular Ca2+, and pH to maintain motility in rat spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmvVCgsLo%3D&md5=1de3f92c44ad278ce69ad83f246869e9CAS | 20179187PubMed |

Jimenez, T., McDermott, J. P., Sánchez, G., and Blanco, G. (2011a). Na,K-ATPase α4 isoform is essential for sperm fertility. Proc. Natl Acad. Sci. USA 108, 644–649.
Na,K-ATPase α4 isoform is essential for sperm fertility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXosFClsw%3D%3D&md5=01426e921366d0bae0cc3bad031fcebdCAS | 21187400PubMed |

Jimenez, T., Sanchez, G., McDermott, J. P., Nguyen, A., Kumar, R., and Blanco, G. (2011b). Increased expression of the Na,K-ATPase alpha4 isoform enhances sperm motility in transgenic mice. Biol. Reprod. 84, 153–161.
Increased expression of the Na,K-ATPase alpha4 isoform enhances sperm motility in transgenic mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlvVegurc%3D&md5=ecf2942b15f8c4667520dfca489eadd9CAS | 20826726PubMed |

Jimenez, T., Sanchez, G., and Blanco, G. (2012). Activity of the Na,K-ATPase α4 isoform is regulated during sperm capacitation to support sperm motility. J. Androl. 33, 1047–1057.
Activity of the Na,K-ATPase α4 isoform is regulated during sperm capacitation to support sperm motility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFSqt7%2FL&md5=6c44fbbef2fdbe8a8c150ef2956360b5CAS | 22441762PubMed |

Jones, D. H., Davies, T. C., and Kidder, G. M. (1997). Embryonic expression of the putative γ subunit of the sodium pump is required for acquisition of fluid transport capacity during mouse blastocyst development. J. Cell Biol. 139, 1545–1552.
Embryonic expression of the putative γ subunit of the sodium pump is required for acquisition of fluid transport capacity during mouse blastocyst development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXotVSrtbk%3D&md5=fa0fe103199914cc8a2164d8d5a7a3fcCAS | 9396759PubMed |

Jones, D. H., Golding, M. C., Barr, K. J., Fong, G. H., and Kidder, G. M. (2001). The mouse Na+-K+-ATPase γ-subunit gene (Fxyd2) encodes three developmentally regulated transcripts. Physiol. Genomics 6, 129–135.
| 1:CAS:528:DC%2BD3MXns1Clsbc%3D&md5=200895ebd377cef9cc91f60537357859CAS | 11526196PubMed |

Jorgensen, P. L., Hákansson, K. O., and Karlish, S. J. D. (2003). Structure and mechanism of Na,K-ATPase: functional sites and their interactions. Annu. Rev. Physiol. 65, 817–849.
Structure and mechanism of Na,K-ATPase: functional sites and their interactions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjt1Glur8%3D&md5=d65ee668465d691d2e96feedc7931669CAS | 12524462PubMed |

Kaplan, J. H. (2002). Biochemistry of Na,K-ATPase. Annu. Rev. Biochem. 71, 511–535.
Biochemistry of Na,K-ATPase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xos1Cltrc%3D&md5=0cefff5d212a5cb6c419cb89044a0903CAS | 12045105PubMed |

Kelly, J. M., and McBride, B. W. (1990). The sodium pump and other mechanisms of thermogenesis in selected tissues. Proc. Nutr. Soc. 49, 185–202.
The sodium pump and other mechanisms of thermogenesis in selected tissues.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3M%2Fks1SltA%3D%3D&md5=e198aaabb3eb8f7de7ce3c8fc7e06d8aCAS | 2172993PubMed |

Kidder, G. M., and Watson, A. J. (2005). Roles of Na,K-ATPase in early development and trophectoderm differentiation. Semin. Nephrol. 25, 352–355.
Roles of Na,K-ATPase in early development and trophectoderm differentiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFeqtbjL&md5=63d050fe44fa7ddfa14d6044d3c2b80bCAS | 16139691PubMed |

Kirichok, Y., and Lishko, P. V. (2011). Rediscovering sperm ion channels with the patch-clamp technique. Mol. Hum. Reprod. 17, 478–499.
Rediscovering sperm ion channels with the patch-clamp technique.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptFCnsbk%3D&md5=d594b3bb06f2610cd572339171f13fa2CAS | 21642646PubMed |

Koçak-Toker, N., Aktan, G., and Aykaç-Toker, G. (2002). The role of Na,K-ATPase in human sperm motility. Int. J. Androl. 25, 180–185.
The role of Na,K-ATPase in human sperm motility.Crossref | GoogleScholarGoogle Scholar | 12031047PubMed |

Konrad, L., Dietze, R., Kirch, U., Kirch, H., Eva, A., and Scheiner-Bobis, G. (2011). Cardiotonic steroids trigger non-classical testosterone signalling in Sertoli cells via the α4 isoform of the sodium pump. Biochim. Biophys. Acta 1813, 2118–2124.
Cardiotonic steroids trigger non-classical testosterone signalling in Sertoli cells via the α4 isoform of the sodium pump.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVKhsbbK&md5=f88431ec1c69d8d00280c4007a77d2beCAS | 21820472PubMed |

Krause, G., Winkler, L., Mueller, S. L., Haseloff, R. F., Piontek, J., and Blasig, I. E. (2008). Structure and function of claudins. Biochim. Biophys. Acta 1778, 631–645.
Structure and function of claudins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjtVSqt70%3D&md5=0c47991cddad1d9d71c3fd57a6236babCAS | 18036336PubMed |

Krutskikh, A., Poliandri, A., Cabrera-Sharp, V., Dacheux, J. L., Poutanen, M., and Huhtaniemi, I. (2012). Epididymal protein RNase10 is required for post-testicular sperm maturation and male fertility. FASEB J. 26, 4198–4209.
Epididymal protein RNase10 is required for post-testicular sperm maturation and male fertility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFSmtbjO&md5=03cd9fc765e29210adf2b9262b28d4c4CAS | 22750516PubMed |

Lingrel, J. B., and Kuntzweiler, T. (1994). Na+,K+-ATPase. J. Biol. Chem. 269, 19 659–19 662.
| 1:CAS:528:DyaK2cXlt1ygtr0%3D&md5=8c2b5192afaf4551cc2025d227c5fbf4CAS |

Lishko, P. V., Kirichok, Y., Ren, D., Navarro, B., Chung, J. J., and Clapham, D. E. (2012). The control of male fertility by spermatozoan ion channels. Annu. Rev. Physiol. 74, 453–475.
The control of male fertility by spermatozoan ion channels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjvFynt74%3D&md5=8034db918cdf0cf5713d81843f506749CAS | 22017176PubMed |

Lubarski, I., Pihakaski-Maunsbach, K., Karlish, S. J. D., Maunsbach, A. B., and Garty, H. (2005). Interaction with the Na,K-ATPase and tissue distribution of FXYD5 (related to ion channel). J. Biol. Chem. 280, 37 717–37 724.
Interaction with the Na,K-ATPase and tissue distribution of FXYD5 (related to ion channel).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtF2isrbP&md5=e7ac7758b2a06795e0d7305f2d00ff33CAS |

Lucas, T. F. G., Amaral, L. S., Porto, C. S., and Quintas, L. E. M. (2012). Na+/K+-ATPase α1 isoform mediates ouabain-induced expression of cyclin D1 and proliferation of rat Sertoli cells. Reproduction 144, 737–745.
Na+/K+-ATPase α1 isoform mediates ouabain-induced expression of cyclin D1 and proliferation of rat Sertoli cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVOitbzN&md5=1908e1889fb8fd581c633b5938743ff5CAS |

Lucas, T. F. G., Siu, E. R., Esteves, C. A., Monteiro, H. P., Oliveira, C. A., Porto, C. S., and Lazari, M. F. M. (2008). 17β-estradiol induces the translocation of the estrogen receptors ESR1 and ESR2 to the cell membrane, MAPK3/1 phosphorylation and proliferation of cultured immature rat Sertoli cells. Biol. Reprod. 78, 101–114.
17β-estradiol induces the translocation of the estrogen receptors ESR1 and ESR2 to the cell membrane, MAPK3/1 phosphorylation and proliferation of cultured immature rat Sertoli cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlslM%3D&md5=e9e6cedf49003b5a59626683e19e2104CAS |

MacPhee, D. J., Jones, D. H., Barr, K. J., Betts, D. H., Watson, A. J., and Kidder, G. M. (2000). Differential involvement of Na+,K+-ATPase isozymes in preimplantation development in the mouse. Dev. Biol. 222, 486–498.
Differential involvement of Na+,K+-ATPase isozymes in preimplantation development in the mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjs12qsbg%3D&md5=47b9c01e42a110563e0ae31fd186abfaCAS | 10837135PubMed |

Madan, P., Rose, K., and Watson, A. J. (2007). Na/K-ATPase β1 subunit expression is required for blastocyst formation and normal assembly of trophectoderm tight-junctions-associated proteins. J. Biol. Chem. 282, 12 127–12 134.
Na/K-ATPase β1 subunit expression is required for blastocyst formation and normal assembly of trophectoderm tight-junctions-associated proteins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXktFeltb8%3D&md5=b050a71af7e2625b1e24b4994253962bCAS |

Manejwala, F. M., Cragoe, E. J., and Schultz, R. M. (1989). Blastocoel expansion in the preimplantation mouse embryo: role of extracellular sodium and chloride and possible apical routes of their entry. Dev. Biol. 133, 210–220.
Blastocoel expansion in the preimplantation mouse embryo: role of extracellular sodium and chloride and possible apical routes of their entry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXhvV2qt70%3D&md5=c00c504f47a21a5f371f5333624fcd5dCAS | 2540052PubMed |

Marikawa, Y., and Alarcon, V. (2012). Creation of trophectoderm, the first epithelium, in mouse preimplantation development. Results Probl. Cell Differ. 55, 165–184.
Creation of trophectoderm, the first epithelium, in mouse preimplantation development.Crossref | GoogleScholarGoogle Scholar | 22918806PubMed |

McDermott, J. P., Sánchez, G., Chennathukuzhi, V., and Blanco, G. (2012). Green fluorescence protein driven by the Na,K-ATPase α4 isoform promoter is expressed only in male germ cells of the mouse testis. J. Assist. Reprod. Genet. 29, 1313–1325.
Green fluorescence protein driven by the Na,K-ATPase α4 isoform promoter is expressed only in male germ cells of the mouse testis.Crossref | GoogleScholarGoogle Scholar | 23229519PubMed |

McDermott, J., Sánchez, G., Nagia, A. K., and Blanco, G. (2015). Role of human Na,K-ATPase alpha 4 in sperm function, derived from studies in transgenic mice. Mol. Reprod. Dev. 82, 167–181.
Role of human Na,K-ATPase alpha 4 in sperm function, derived from studies in transgenic mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXnvVeisA%3D%3D&md5=2b1cd5c76e605228a7c68d70d85002e6CAS | 25640246PubMed |

McDonough, A. A., Geering, K., and Farley, R. A. (1990). The sodium pump needs its β subunit. FASEB J. 4, 1598–1605.
| 1:CAS:528:DyaK3cXitFakur4%3D&md5=a7986c67c1e2921dc47e22d8b1eafaafCAS | 2156741PubMed |

Mishra, C., Palai, T. K., Sarangi, L. N., Prusty, B. R., and Maharana, B. R. (2013). Candidate gene markers for sperm quality and fertility in bulls. Vet. World 6, 905–910.
Candidate gene markers for sperm quality and fertility in bulls.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXlsVWqs7w%3D&md5=aa2cd204de78719018b16e50a82c7611CAS |

Mogas, M. T., Rivera del Álamo, M., and Rodríguez-Gil, J. E. (2011). Roles of Na+/K+-dependent ATPase, Na+/H+ antiporter and GLUT hexose transporters in the cryosurvival of dog spermatozoa: effects on viability, acrosome state and motile sperm subpopulation structure. Theriogenology 75, 1669–1681.
Roles of Na+/K+-dependent ATPase, Na+/H+ antiporter and GLUT hexose transporters in the cryosurvival of dog spermatozoa: effects on viability, acrosome state and motile sperm subpopulation structure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotFWgt7Y%3D&md5=726a2cc1fdf3893e4be5009db0485651CAS | 21334054PubMed |

Moriwaki, K., Tsukita, S., and Furuse, M. (2007). Tight junctions containing claudin 4 and 6 are essential for blastocyst formation in preimplantation mouse embryos. Dev. Biol. 312, 509–522.
Tight junctions containing claudin 4 and 6 are essential for blastocyst formation in preimplantation mouse embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVSktrvI&md5=d8c43ed7778cad91817f5f7eccbc0dd7CAS | 17980358PubMed |

Morrow, C. M. K., Mruk, D., Cheng, C. Y., and Hess, R. A. (2010). Claudin and occludin expression and function in the seminiferous epithelium. Philos. Trans. R. Soc. Lond. B Biol. Sci. 365, 1679–1696.
Claudin and occludin expression and function in the seminiferous epithelium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVaisrrL&md5=f8d1b32f70fcfdcc76090901f8ab68b4CAS |

Morth, J. P., Poulsen, H., Toustrup-Jensen, M. S., Schack, V. R., Egebjerg, J., Andersen, J. P., Vilsen, B., and Nissen, P. (2009). The structure of the Na+,K+-ATPase and mapping of isoforms differences and disease related mutations. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364, 217–227.
The structure of the Na+,K+-ATPase and mapping of isoforms differences and disease related mutations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXivFSltL0%3D&md5=088af0fd097e8b8d51a5ed5488b0bba4CAS | 18957371PubMed |

Morth, J. P., Pedersen, B. P., Buvh-Pedersen, M. J., Andersen, J. P., Vilsen, B., Palmgren, M. G., and Nissen, P. (2011). A structural overview of the plasma membrane Na+,K+-ATPase and H+-ATPase ion pumps. Nat. Rev. Mol. Cell Biol. 12, 60–70.
A structural overview of the plasma membrane Na+,K+-ATPase and H+-ATPase ion pumps.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsF2murbM&md5=398cdcd72e359a953ac66da08ea94c06CAS | 21179061PubMed |

Mrsny, R. J., and Meizel, S. (1981). Potassium ion influx and Na+,K+-ATPase activity are required for the hamster sperm acrosome reaction. J. Cell Biol. 91, 77–82.
| 1:CAS:528:DyaL3MXls1KitL4%3D&md5=dfd0b866614b67bf5b2b42238120b651CAS | 6271793PubMed |

Mrsny, R. J., and Meizel, S. (1985). Inhibition of hamster sperm Na+,K+-ATPase activity by taurine and hypotaurine. Life Sci. 36, 271–275.
Inhibition of hamster sperm Na+,K+-ATPase activity by taurine and hypotaurine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXktlCguw%3D%3D&md5=0d5d797958ce6eb3a3efe34f3293501dCAS | 2981386PubMed |

Naaby-Hansen, S., Diekman, A., Shetty, J., Flickinger, C., Westbrook, A., and Herr, J. C. (2010). Identification of calcium-binding proteins associated with the human sperm plasma membrane. Reprod. Biol. Endocrinol. 8, 6.
Identification of calcium-binding proteins associated with the human sperm plasma membrane.Crossref | GoogleScholarGoogle Scholar | 20078857PubMed |

Naderi, M. M., Sarvari, A., Saviz, A., Naji, T., Boroujeni, S. B., Heidari, B., Behzadi, B., Akhondi, M. M., and Shirazi, A. (2015). The effect of aldosterone on Na+/K+/ATPase expression and development of embryos derived from vitrified–warmed sheep oocytes. Small Rumin. Res. 126, 44–51.
The effect of aldosterone on Na+/K+/ATPase expression and development of embryos derived from vitrified–warmed sheep oocytes.Crossref | GoogleScholarGoogle Scholar |

Nandi, P., Ghosh, S., Jana, K., and Sem, P. C. (2012). Elucidation of the involvement of p14, a sperm protein during maturation, capacitation and acrosome reaction of caprine spermatozoa. PLoS One 7, e30552.
Elucidation of the involvement of p14, a sperm protein during maturation, capacitation and acrosome reaction of caprine spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XitFentrg%3D&md5=fd8a02a889ad2716d97a0752b94bd667CAS | 22291985PubMed |

Naz, R. K., and Leslie, M. H. (1999). Sperm surface protein profiles of fertile and infertile men: search for a diagnostic molecular marker. Arch. Androl. 43, 173–181.
Sperm surface protein profiles of fertile and infertile men: search for a diagnostic molecular marker.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXotVert7w%3D&md5=55be202005a91570a0692f57a8c85555CAS | 10624499PubMed |

Newton, L. D., Kastelic, J. P., Wong, B., Van Der Hoorn, F., and Thundathil, J. (2009). Elevated testicular temperature modulates expression pattern of sperm proteins in Holstein bulls. Mol. Reprod. Dev. 76, 109–118.
Elevated testicular temperature modulates expression pattern of sperm proteins in Holstein bulls.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFemtL3L&md5=c09d7fcb9cddaeaeaa70c35127a26acaCAS | 18459118PubMed |

Newton, L. D., Krishnakumar, S., Menon, A. G., Kastelic, J. P., Van Der Hoorn, F. A., and Thundathil, J. C. (2010). Na+/K+ ATPase regulates sperm capacitation through a mechanism involving kinases and redistribution of its testis-specific isoform. Mol. Reprod. Dev. 77, 136–148.
| 1:CAS:528:DC%2BD1MXhsF2jurnJ&md5=c5a5a38c725e9a3f552193e9ef1bd4ffCAS | 19834983PubMed |

Ollero, M., Bescós, O., Cebrián-Pérez, J. A., and Muiño-Blanco, T. (1998). Loss of plasma membrane proteins of bull spermatozoa through the freezing–thawing process. Theriogenology 49, 547–555.
Loss of plasma membrane proteins of bull spermatozoa through the freezing–thawing process.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhtFShu78%3D&md5=838d0b8927607a8b8fa58f79df181137CAS | 10732034PubMed |

Pavlovic, D., Fuller, W., and Shattock, M. J. (2013). Novel regulation of cardiac Na pump via phospholemman. J. Mol. Cell. Cardiol. 61, 83–93.
Novel regulation of cardiac Na pump via phospholemman.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXptFKru7c%3D&md5=3cf6f9525d9528f55b6be50f18ff220cCAS | 23672825PubMed |

Peng, M., Huang, L., Xie, Z., Huang, W. H., and Askari, A. (1996). Partial inhibition of Na+/K+-ATPase by ouabain induces the Ca2+-dependent expression of early-response gene in cardiac myocytes. J. Biol. Chem. 271, 10 372–10 378.
Partial inhibition of Na+/K+-ATPase by ouabain induces the Ca2+-dependent expression of early-response gene in cardiac myocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XisFKjsbs%3D&md5=162cc55867742adfe066532d8c0a6879CAS |

Peris, S., Solanes, D., Peña, A., Rodríguez-Gil, J. E., and Rigau, T. (2000). Ion-mediated resistance to osmotic changes of ram spermatozoa: the role of amiloride and ouabain. Theriogenology 54, 1453–1467.
Ion-mediated resistance to osmotic changes of ram spermatozoa: the role of amiloride and ouabain.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXltFOntQ%3D%3D&md5=c60b094ee09cd3240a15c58b2d66af70CAS | 11191869PubMed |

Rajamanickam, G. D., Dance, A., and Thundathil, J. C. (2011). Frozen–thawed sperm from beef bulls differ in their Na/K-ATPase activity. In ‘Proceedings of the 44th Annual Meeting of Society for the Study of Reproduction: Reproduction and the World’s Future’, 31 July–4 August 2011, Portland, OR, USA. (Eds Society for the Study of Reproduction.) p. 126. (Society for the Study of Reproduction.

Ramalho-Santos, J., Moreno, R. D., Sutovsky, P., Chan, A. W., Hewitson, L., Wessel, G. M., Simerly, C. R., and Schatten, G. (2000). SNAREs in mammalian sperm: possible implications for fertilization. Dev. Biol. 223, 54–69.
SNAREs in mammalian sperm: possible implications for fertilization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXktFehtLs%3D&md5=1527137998e5c732cf186afd27008c73CAS | 10864460PubMed |

Ren, D., Navarro, B., Perez, G., Jackson, A. C., Hsu, S., Shi, Q., Tilly, J. L., and Clapham, D. E. (2001). A sperm ion channel required for sperm motility and female fertility. Nature 413, 603–609.
A sperm ion channel required for sperm motility and female fertility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnslehurk%3D&md5=edaf7a439579088a08e8505ab06894adCAS | 11595941PubMed |

Reyes, N., and Gadsby, D. C. (2006). Ion permeation through the Na+,K+-ATPase. Nature 443, 470–474.
Ion permeation through the Na+,K+-ATPase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVSns7fP&md5=ecaba0066c397a8b23e2c7cde15bc6e6CAS | 17006516PubMed |

Rodríguez, A., Diez, C., Ikeda, S., Royo, L. J., Caamaño, J. N., Alonso-Montes, C., Goyache, F., Alvarez, I., Facal, N., and Gomez, E. (2006). Retinoids during the in vitro transition from bovine morula to blastocyst. Hum. Reprod. 21, 2149–2157.
Retinoids during the in vitro transition from bovine morula to blastocyst.Crossref | GoogleScholarGoogle Scholar | 16606641PubMed |

Rodríguez-Gil, J. E., and Rigau, T. (1996). Effects of ouabain on the response to osmotic changes in dog and boar spermatozoa. Theriogenology 45, 873–888.
Effects of ouabain on the response to osmotic changes in dog and boar spermatozoa.Crossref | GoogleScholarGoogle Scholar | 16727849PubMed |

Ruan, Y. C., Chen, H., and Chan, H. C. (2014). Ion channels in the endometrium: regulation of the endometrial receptivity and embryo implantation. Hum. Reprod. Update 20, 517–529.
Ion channels in the endometrium: regulation of the endometrial receptivity and embryo implantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVKhs7zK&md5=8fd929018c6a8ed422e2285728d5a0f8CAS | 24591147PubMed |

Sanchez, G., Nguyen, A. N., Timmerberg, B., Tash, J. S., and Blanco, G. (2006). The Na,K-ATPase α4 isoform from humans has distinct enzymatic properties and is important for sperm motility. Mol. Hum. Reprod. 12, 565–576.
The Na,K-ATPase α4 isoform from humans has distinct enzymatic properties and is important for sperm motility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVWltrvF&md5=711db6dbaa2cde73fe208fd1ffa21d57CAS | 16861705PubMed |

Sandtner, W., Egwolf, B., Khalili-Araghi, F., Sánchez-Rodríguez, J. E., Roux, B., Bezanilla, F., and Holmgren, M. (2011). Ouabain binding site in a functioning Na+/K+-ATPase. J. Biol. Chem. 286, 38 177–38 183.
Ouabain binding site in a functioning Na+/K+-ATPase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlyktbzE&md5=b47f106068eeee1e51b67823e8300488CAS |

Shinoda, T., Ogawa, H., Cornelius, F., and Toyoshima, C. (2009). Crystal structure of the sodium–potassium pump at 2.4 resolution. Nature 459, 446–450.
Crystal structure of the sodium–potassium pump at 2.4 resolution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtFKmtbo%3D&md5=b2733e22e314a8989f86a3815301ebfbCAS | 19458722PubMed |

Shukla, K. K., Mahdi, A. A., and Rajender, S. (2012). Ion channels in sperm physiology and male fertility and infertility. J. Androl. 33, 777–788.
Ion channels in sperm physiology and male fertility and infertility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFSqtrnI&md5=e30433478d6379be775385ee4b2ffcedCAS | 22441763PubMed |

Stein, K. K., Primakoff, P., and Myles, D. (2004). Sperm–egg fusion: events at the plasma membrane. J. Cell Sci. 117, 6269–6274.
Sperm–egg fusion: events at the plasma membrane.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFertro%3D&md5=3c4377ff2f30e061433aac594d0cd333CAS | 15591242PubMed |

Stocco, D. M. (2001). StAR protein and the regulation of steroid hormone biosynthesis. Annu. Rev. Physiol. 63, 193–213.
StAR protein and the regulation of steroid hormone biosynthesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjtFKmtLw%3D&md5=cd6277e5148947fb12ae8a3adf8514caCAS | 11181954PubMed |

Suri, A. (2004). Sperm specific proteins: potential candidate molecules for fertility control. Reprod. Biol. Endocrinol. 2, 10.
Sperm specific proteins: potential candidate molecules for fertility control.Crossref | GoogleScholarGoogle Scholar | 15012833PubMed |

Thundathil, J. C., Anzar, M., and Buhr, M. M. (2006). Na+/K+ ATPase as a signaling molecule during bovine sperm capacitation. Biol. Reprod. 75, 308–317.
Na+/K+ ATPase as a signaling molecule during bovine sperm capacitation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XovVWmtLc%3D&md5=1cffdef201290ebb8e7e415f4798b851CAS | 16687652PubMed |

Thundathil, J. C., Rajamanickam, G. D., Kastelic, J. P., and Newton, L. D. (2012). The effects of increased testicular temperature on testis-specific isoform of Na+/K+ ATPase in sperm and its role in spermatogenesis and sperm function. Reprod. Domest. Anim. 47, 170–177.
The effects of increased testicular temperature on testis-specific isoform of Na+/K+ ATPase in sperm and its role in spermatogenesis and sperm function.Crossref | GoogleScholarGoogle Scholar | 22827367PubMed |

Urner, F., and Sakkas, D. (2003). Protein phosphorylation in mammalian spermatozoa. Reproduction 125, 17–26.
Protein phosphorylation in mammalian spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhvFGls78%3D&md5=0acec5e91682e19c192b141cf0151b14CAS | 12622692PubMed |

Vignini, A., Buldreghini, E., Nanetti, L., Amoroso, S., Boscaro, M., Ricciardo-Lamonica, G., Mazzanti, L., and Balercia, G. (2009). Free thiols in human spermatozoa: are Na+/K+-ATPase, Ca+-ATPase activities involved in sperm motility through peroxynitrite formation? Reprod. Biomed. Online 18, 132–140.
Free thiols in human spermatozoa: are Na+/K+-ATPase, Ca+-ATPase activities involved in sperm motility through peroxynitrite formation?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisFeqt7g%3D&md5=3669cc96ecd2b38bb9fd827ea76f7821CAS | 19146780PubMed |

Violette, M. I., Madan, P., and Watson, A. J. (2006). Na+/K+-ATPase regulates tight junction formation and function during mouse preimplantation development. Dev. Biol. 289, 406–419.
Na+/K+-ATPase regulates tight junction formation and function during mouse preimplantation development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksVGqug%3D%3D&md5=fddb52a801307cd259d56feeef64af5aCAS | 16356488PubMed |

Waelchli, R. O., MacPhee, D. J., Kidder, G. M., and Betteridge, K. J. (1997). Evidence for the presence of sodium- and potassium-dependent adenosine triphosphate α1 and β1 subunit isoforms and their probable role in blastocyst expansion in the preattachment horse conceptus. Biol. Reprod. 57, 630–640.
Evidence for the presence of sodium- and potassium-dependent adenosine triphosphate α1 and β1 subunit isoforms and their probable role in blastocyst expansion in the preattachment horse conceptus.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2svis1aqtQ%3D%3D&md5=fddab8eb847049b428f4f01fa0ac23ffCAS | 9283001PubMed |

Wagoner, K., Sanchez, G., Nguyen, A. N., Enders, G. C., and Blanco, G. (2005). Different expression and activity of the α1 and α4 isoforms of the Na,K-ATPase during rat male germ cell ontogeny. Reproduction 130, 627–641.
Different expression and activity of the α1 and α4 isoforms of the Na,K-ATPase during rat male germ cell ontogeny.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1OnsLjN&md5=7b75b71895c30794300fe72cf3719e78CAS | 16264093PubMed |

Watson, A. J. (1992). The cell biology of blastocyst development. Mol. Reprod. Dev. 33, 492–504.
The cell biology of blastocyst development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXpvVGmtg%3D%3D&md5=c4a9e22769497f98b1bc18e6eaed432eCAS | 1335276PubMed |

Watson, A. J., Natale, D. R., and Barcroft, L. C. (2004). Molecular regulation of blastocyst formation. Anim. Reprod. Sci. 82–83, 583–592.
Molecular regulation of blastocyst formation.Crossref | GoogleScholarGoogle Scholar | 15271481PubMed |

Wiley, L. M. (1984). Cavitation in the mouse preimplantation embryo: Na/K-ATPase and the origin of the nascent blastocoele fluid. Dev. Biol. 105, 330–342.
Cavitation in the mouse preimplantation embryo: Na/K-ATPase and the origin of the nascent blastocoele fluid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXmtVyitrY%3D&md5=95ae0f97909bf49bb2781e952e79a79aCAS | 6090240PubMed |

Woo, A. L., James, P. F., and Lingrel, J. B. (1999). Characterization of the fourth α isoform of the Na,K-ATPase. J. Membr. Biol. 169, 39–44.
Characterization of the fourth α isoform of the Na,K-ATPase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjtVKkurs%3D&md5=e991c1ecbc1a67059b5ab52bacdcce2fCAS | 10227850PubMed |

Woo, A. L., James, P. F., and Lingrel, J. B. (2000). Sperm motility is dependent on a unique isoform of the Na,K-ATPase. J. Biol. Chem. 275, 20 693–20 699.
Sperm motility is dependent on a unique isoform of the Na,K-ATPase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXkvVyhtr8%3D&md5=0cb1c96877bdc92407afe82e44e01063CAS |

Woo, A. L., James, P. F., and Lingrel, J. B. (2002). Roles of the Na,K-ATPase α4 isoform and the Na+/H+ exchanger in sperm motility. Mol. Reprod. Dev. 62, 348–356.
Roles of the Na,K-ATPase α4 isoform and the Na+/H+ exchanger in sperm motility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XktlWku7g%3D&md5=3a6dbde774ffc3e6e8b05f40e317564cCAS | 12112599PubMed |

Zhao, Y., and Buhr, M. M. (1996). Localization of various ATPases in fresh and cryopreserved bovine spermatozoa. Anim. Reprod. Sci. 44, 139–148.
Localization of various ATPases in fresh and cryopreserved bovine spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmtVSnu7g%3D&md5=a3b54e94e1e709d72775ef939d8fc5eeCAS |