Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Prominin-1 glycosylation changes throughout early pregnancy in uterine epithelial cells under the influence of maternal ovarian hormones

Samson N. Dowland A B , Romanthi J. Madawala A , Connie E. Poon A , Laura A. Lindsay A and Christopher R. Murphy A
+ Author Affiliations
- Author Affiliations

A Cell and Reproductive Biology Laboratory, School of Medical Sciences (Discipline of Anatomy and Histology) and The Bosch Institute, Room N364, F13 Anderson Stuart Building, The University of Sydney, NSW 2006, Australia.

B Corresponding author. Email: sdowland@anatomy.usyd.edu.au

Reproduction, Fertility and Development 29(6) 1194-1208 https://doi.org/10.1071/RD15432
Submitted: 21 October 2015  Accepted: 17 March 2016   Published: 11 May 2016

Abstract

In preparation for uterine receptivity, the uterine epithelial cells (UECs) exhibit a loss of microvilli and glycocalyx and a restructuring of the actin cytoskeleton. The prominin-1 protein contains large, heavily glycosylated extracellular loops and is usually restricted to apical plasma membrane (APM) protrusions. The present study examined rat UECs during early pregnancy using immunofluorescence, western blotting and deglycosylation analyses. Ovariectomised rats were injected with oestrogen and progesterone to examine how these hormones affect prominin-1. At the time of fertilisation, prominin-1 was located diffusely in the apical domain of UECs and 147- and 120-kDa glycoforms of prominin-1 were identified, along with the 97-kDa core protein. At the time of implantation, prominin-1 concentrates towards the APM and densitometry revealed that the 120-kDa glycoform decreased (P < 0.05), but there was an increase in the 97-kDa core protein (P < 0.05). Progesterone treatment of ovariectomised rats resulted in prominin-1 becoming concentrated towards the APM. The 120-kDa glycoform was increased after oestrogen treatment (P < 0.0001), whereas the 97-kDa core protein was increased after progesterone treatment (P < 0.05). Endoglycosidase H analysis demonstrated that the 120-kDa glycoform is in the endoplasmic reticulum, undergoing protein synthesis. These results indicate that oestrogen stimulates prominin-1 production, whereas progesterone stimulates the deglycosylation and concentration of prominin-1 to the apical region of the UECs. This likely presents the deglycosylated extracellular loops of prominin-1 to the extracellular space, where they may interact with the implanting blastocyst.

Additional keywords: microvilli, uterine receptivity.


References

Aplin, J. D. (1999). MUC-1 glycosylation in endometrium: possible roles of the apical glycocalyx at implantation. Hum. Reprod. 14, 17–25.
MUC-1 glycosylation in endometrium: possible roles of the apical glycocalyx at implantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhtVertLg%3D&md5=5981600f6526f5392d87579639cf6d52CAS | 10690797PubMed |

Carson, D. D., Tang, J. P., and Hu, G. (1987). Estrogen influences dolichyl phosphate distribution among glycolipid pools in mouse uteri. Biochemistry 26, 1598–1606.
Estrogen influences dolichyl phosphate distribution among glycolipid pools in mouse uteri.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXhtFeksb4%3D&md5=b6c4bbbcf6f280f871d14714ae8259dcCAS | 3593679PubMed |

Carson, D. D., DeSouza, M. M., Kardon, R., Zhou, X., Lagow, E., and Julian, J. (1998). Mucin expression and function in the female reproductive tract. Hum. Reprod. Update 4, 459–464.
Mucin expression and function in the female reproductive tract.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhvVShsLs%3D&md5=00ec937155df75de95408e58e9cc76f8CAS | 10027596PubMed |

Corbeil, D., Roper, K., Hannah, M. J., Hellwig, A., and Huttner, W. B. (1999). Selective localization of the polytopic membrane protein prominin in microvilli of epithelial cells: a combination of apical sorting and retention in plasma membrane protrusions. J. Cell Sci. 112, 1023–1033.
| 1:CAS:528:DyaK1MXis12ls7k%3D&md5=4b358214f8169df63253689bd35f3acfCAS | 10198284PubMed |

Corbeil, D., Fargeas, C. A., and Huttner, W. B. (2001). Rat prominin, like its mouse and human orthologues, is a pentaspan membrane glycoprotein. Biochem. Biophys. Res. Commun. 285, 939–944.
Rat prominin, like its mouse and human orthologues, is a pentaspan membrane glycoprotein.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXltlWls78%3D&md5=4dec0cf35db8f1539eb54e640afb05ecCAS | 11467842PubMed |

Corbeil, D., Marzesco, A. M., Wilsch-Bräuninger, M., and Huttner, W. B. (2010). The intriguing links between prominin-1 (CD133), cholesterol-based membrane microdomains, remodeling of apical plasma membrane protrusions, extracellular membrane particles, and (neuro)epithelial cell differentiation. FEBS Lett. 584, 1659–1664.
The intriguing links between prominin-1 (CD133), cholesterol-based membrane microdomains, remodeling of apical plasma membrane protrusions, extracellular membrane particles, and (neuro)epithelial cell differentiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkvFKqtbo%3D&md5=0995876e1b44ce56476e4aafc21627d5CAS | 20122930PubMed |

D’Amico, F., Skarmoutsou, E., Quaderno, G., Malaponte, G., La Corte, C., Scibilia, G., D’Agate, G., Scollo, P., Fraggetta, F., Spandidos, D. A., and Mazzarino, M. C. (2013). Expression and localisation of osteopontin and prominin-1 (CD133) in patients with endometriosis. Int. J. Mol. Med. 31, 1011–1016.
Expression and localisation of osteopontin and prominin-1 (CD133) in patients with endometriosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnvVGnsrs%3D&md5=94866c48fa49117595752278667c2062CAS | 23545719PubMed |

Denker, H. W. (1990) Trophoblast–endometrial interactions at embryo implantation: a cell biological paradox. In ‘Trophoblast Invasion and Endometrial Receptivity. Novel Aspects of the Cell Biology of Embryo Implantation. Trophoblast Research, Vol. 4’. (Eds H. W. Denker and J. D. Aplin.) pp. 3–29. (Plenum Medical Book Company: New York and London.)

Denker, H. W. (1993). Implantation: a cell biological paradox. J. Exp. Zool. 266, 541–558.
Implantation: a cell biological paradox.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3szotFCntw%3D%3D&md5=6f90781749ce632d6be8457e03f27343CAS | 8371097PubMed |

Dey, S. K. (2004). Focus on implantation. Reproduction 128, 655–656.
Focus on implantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFSmuw%3D%3D&md5=2006799be135f88099829dfda3308a18CAS | 15579582PubMed |

Dubreuil, V., Marzesco, A. M., Corbeil, D., Huttner, W. B., and Wilsch-Bräuninger, M. (2007). Midbody and primary cilium of neural progenitors release extracellular membrane particles enriched in the stem cell marker prominin-1. J. Cell Biol. 176, 483–495.
Midbody and primary cilium of neural progenitors release extracellular membrane particles enriched in the stem cell marker prominin-1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhvFCqtrw%3D&md5=817d03f06872a312cba38105cee51703CAS | 17283184PubMed |

Dutt, A., Tang, J. P., Welply, J. K., and Carson, D. D. (1986). Regulation of N-linked glycoprotein assembly in uteri by steroid hormones. Endocrinology 118, 661–673.
Regulation of N-linked glycoprotein assembly in uteri by steroid hormones.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XhtVaks74%3D&md5=019b9517a217d817be4f0eddf389af53CAS | 2417825PubMed |

Florek, M., Bauer, N., Janich, P., Wilsch-Braeuninger, M., Fargeas, C. A., Marzesco, A. M., Ehninger, G., Thiele, C., Huttner, W. B., and Corbeil, D. (2007). Prominin-2 is a cholesterol-binding protein associated with apical and basolateral plasmalemmal protrusions in polarized epithelial cells and released into urine. Cell Tissue Res. 328, 31–47.
Prominin-2 is a cholesterol-binding protein associated with apical and basolateral plasmalemmal protrusions in polarized epithelial cells and released into urine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXivVShtbg%3D&md5=43294b8e3a674535100306cf8da15cceCAS | 17109118PubMed |

Freeze, H. H., and Kranz, C. (2010). Endoglycosidase and glycoamidase release of N-linked glycans. Curr. Protoc. Mol. Biol , .
Endoglycosidase and glycoamidase release of N-linked glycans.Crossref | GoogleScholarGoogle Scholar | 20069534PubMed |

Greening, D. W., Nguyen, H. P. T., Elgass, K., Simpson, R. J., and Salamonsen, L. A. (2016). Human endometrial exosomes contain hormone-specific cargo modulating trophoblast adhesive capacity: insights into endometrial–embryo interactions. Biol. Reprod. 94, 38.
Human endometrial exosomes contain hormone-specific cargo modulating trophoblast adhesive capacity: insights into endometrial–embryo interactions.Crossref | GoogleScholarGoogle Scholar | 26764347PubMed |

Grieve, A. G., and Rabouille, C. (2011). Golgi bypass: skirting around the heart of classical secretion. Cold Spring Harb. Perspect. Biol. 3, a005298.
Golgi bypass: skirting around the heart of classical secretion.Crossref | GoogleScholarGoogle Scholar | 21441587PubMed |

Haze, K., Yoshida, H., Yanagi, H., Yura, T., and Mori, K. (1999). Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol. Biol. Cell 10, 3787–3799.
Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXntlyrsLs%3D&md5=c8a913cdb50b4e64324e7857d7a4c653CAS | 10564271PubMed |

Jászai, J., Fargeas, C. A., Florek, M., Huttner, W. B., and Corbeil, D. (2007). Focus on molecules: prominin-1 (CD133). Exp. Eye Res. 85, 585–586.
Focus on molecules: prominin-1 (CD133).Crossref | GoogleScholarGoogle Scholar | 16733052PubMed |

Jones, B. J., and Murphy, C. R. (1994). A high resolution study of the glycocalyx of rat uterine epithelial cells during early pregnancy with the field emission gun scanning electron microscope. J. Anat. 185, 443–446.
| 7961152PubMed |

Kaneko, Y., Lecce, L., and Murphy, C. R. (2009). Ovarian hormones regulate expression of the focal adhesion proteins, talin and paxillin, in rat uterine luminal but not glandular epithelial cells. Histochem. Cell Biol. 132, 613–622.
Ovarian hormones regulate expression of the focal adhesion proteins, talin and paxillin, in rat uterine luminal but not glandular epithelial cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVWms7%2FK&md5=7eb93783590c4e2d3a96481a5029490aCAS | 19779731PubMed |

Kaneko, Y., Murphy, C. R., and Day, M. L. (2014). Calpain 2 activity increases at the time of implantation in rat uterine luminal epithelial cells and administration of calpain inhibitor significantly reduces implantation sites. Histochem. Cell Biol. 141, 423–430.
Calpain 2 activity increases at the time of implantation in rat uterine luminal epithelial cells and administration of calpain inhibitor significantly reduces implantation sites.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVKnsb%2FP&md5=9e3c78c7390e1f053f88665b1b2f9c56CAS | 24271063PubMed |

Kania, G., Corbeil, D., Fuchs, J., Tarasov, K. V., Blyszczuk, P., Huttner, W. B., Boheler, K. R., and Wobus, A. M. (2005). Somatic stem cell marker prominin-1/CD133 is expressed in embryonic stem cell-derived progenitors. Stem Cells 23, 791–804.
Somatic stem cell marker prominin-1/CD133 is expressed in embryonic stem cell-derived progenitors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlslCltbw%3D&md5=e10cb0a73c0b76b2eb00d989adb111d4CAS | 15917475PubMed |

Karbanová, J., Missol-Kolka, E., Fonseca, A. V., Lorra, C., Janich, P., Hollerová, H., Jászai, J., Ehrmann, J., Kolár, Z., Liebers, C., Arl, S., Subrtová, D., Freund, D., Mokry, J., Huttner, W. B., and Corbeil, D. (2008). The stem cell marker CD133 (Prominin-1) is expressed in various human glandular epithelia. J. Histochem. Cytochem. 56, 977–993.
The stem cell marker CD133 (Prominin-1) is expressed in various human glandular epithelia.Crossref | GoogleScholarGoogle Scholar | 18645205PubMed |

Kemper, K., Sprick, M. R., de Bree, M., Scopelliti, A., Vermeulen, L., Hoek, M., Zeilstra, J., Pals, S. T., Mehmet, H., Stassi, G., and Medema, J. P. (2010). The AC133 epitope, but not the CD133 protein, is lost upon cancer stem cell differentiation. Cancer Res. 70, 719–729.
The AC133 epitope, but not the CD133 protein, is lost upon cancer stem cell differentiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltlajsw%3D%3D&md5=013ec54eace160d093034b8e22e9a62aCAS | 20068153PubMed |

Kim, S., and Coulombe, P. A. (2010). Emerging role for the cytoskeleton as an organizer and regulator of translation. Nat. Rev. Mol. Cell Biol. 11, 75–81.
Emerging role for the cytoskeleton as an organizer and regulator of translation.Crossref | GoogleScholarGoogle Scholar | 20027187PubMed |

Kleinman, M. E., and Ambati, J. (2008). Fifty years later: the disk goes to the prom. J. Clin. Invest. 118, 2681–2684.
| 1:CAS:528:DC%2BD1cXpsVOkt7c%3D&md5=5b68197a62c2d7eef7a5ff43c572a121CAS | 18654671PubMed |

Kornfeld, R., and Kornfeld, S. (1985). Assembly of asparagine-linked oligosaccharides. Annu. Rev. Biochem. 54, 631–664.
Assembly of asparagine-linked oligosaccharides.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2M3nvVSjsA%3D%3D&md5=a72fdd6a1c60ec719c21407073094528CAS | 3896128PubMed |

Lee, K. Y., and DeMayo, F. J. (2004). Animal models of implantation. Reproduction 128, 679–695.
Animal models of implantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFSltg%3D%3D&md5=0532cea7b525ca5a4461ae89a3c0de88CAS | 15579585PubMed |

Lessey, B. A., Yeh, I., Castelbaum, A. J., Fritz, M. A., Ilesanmi, A. O., Korzeniowski, P., Sun, J., and Chwalisz, K. (1996). Endometrial progesterone receptors and markers of uterine receptivity in the window of implantation. Fertil. Steril. 65, 477–483.
| 1:STN:280:DyaK28zntVektQ%3D%3D&md5=96702e2984dcd9659ad26b77eb817daaCAS | 8774273PubMed |

Li, X., Zhu, L., Koide, S. S., and Yu, H. (2000). Immunolocalization of uterine luminal fluid protein (ULF-250) in rat uterus. Chin. Med. J. (Engl.) 113, 632–635.
| 1:CAS:528:DC%2BD3cXlvFyrsrY%3D&md5=264a1bc539237d54350ea8c6e23c8455CAS | 11776035PubMed |

Lindsay, L. A., and Murphy, C. R. (2014). Ovarian hyperstimulation affects fluid transporters in the uterus: a potential mechanism in uterine receptivity. Reprod. Fertil. Dev. 26, 982–990.
Ovarian hyperstimulation affects fluid transporters in the uterus: a potential mechanism in uterine receptivity.Crossref | GoogleScholarGoogle Scholar | 23886336PubMed |

Ljungkvist, I. (1971a). Attachment reaction of rat uterine luminal epithelium. II. The effect of progesterone on the morphology of the uterine glands and the luminal epithelium of the spayed, virgin rat. Acta Soc. Med. Ups. 76, 110–126.
| 1:CAS:528:DyaE38Xht1aisb0%3D&md5=88e772d68c2bf2f46a099780172e3841CAS | 5135497PubMed |

Ljungkvist, I. (1971b). Attachment reaction of rat uterine luminal epithelium. 3. The effect of estradiol, estrone and estriol on the morphology of the luminal epithelium of the spayed, virgin rat. Acta Soc. Med. Ups. 76, 139–157.
| 1:CAS:528:DyaE38Xht1aisbo%3D&md5=bc1cb844d0235e83a9982fb0b3b38466CAS | 5135498PubMed |

Ljungkvist, I. (1972a). Attachment reaction of rat uterine luminal epithelium. IV. The cellular changes in the attachment reaction and its hormonal regulation. Fertil. Steril. 23, 847–865.
| 1:STN:280:DyaE3s%2FjtVymtw%3D%3D&md5=9ee5b48a7d097fb8a36f9333c53ab019CAS | 4343241PubMed |

Ljungkvist, I. (1972b). Implantation and attachment reaction of rat uterine luminal epithelium at a high dose of oestradiol. J. Endocrinol. 55, 515–518.
Implantation and attachment reaction of rat uterine luminal epithelium at a high dose of oestradiol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXisVChsg%3D%3D&md5=5cf3f3062533292c40695dbd25103540CAS | 4647461PubMed |

Ljungkvist, I., and Nilsson, O. (1971). Ultrastructure of rat uterine luminal epithelium at functional states compatible with implantation. Z. Anat. Entwicklungsgesch. 135, 101–107.
| 1:STN:280:DyaE38%2FjsVegtw%3D%3D&md5=13e49108c1b1a2ef7bab8999d80fefebCAS | 5117460PubMed |

Luxford, K. A., and Murphy, C. R. (1989). Cytoskeletal alterations in the microvilli of uterine epithelial cells during early pregnancy. Acta Histochem. 87, 131–136.
Cytoskeletal alterations in the microvilli of uterine epithelial cells during early pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3c7nslGluw%3D%3D&md5=ef955818eebf85ea1b1256d685b8f4b3CAS | 2516678PubMed |

Luxford, K. A., and Murphy, C. R. (1992a). Reorganization of the apical cytoskeleton of uterine epithelial-cells during early-pregnancy in the rat: a study with myosin subfragment-1. Biol. Cell 74, 195–202.
Reorganization of the apical cytoskeleton of uterine epithelial-cells during early-pregnancy in the rat: a study with myosin subfragment-1.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK383ot1alug%3D%3D&md5=0f9408881a1b8ab309820915fa9e742cCAS | 1596639PubMed |

Luxford, K. A., and Murphy, C. R. (1992b). Changes in the apical microfilaments of rat uterine epithelial cells in response to estradiol and progesterone. Anat. Rec. 233, 521–526.
Changes in the apical microfilaments of rat uterine epithelial cells in response to estradiol and progesterone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xlt1Crurg%3D&md5=7bf7a82ec0a892a3b45163841afdf654CAS | 1626711PubMed |

Luxford, K. A., and Murphy, C. R. (1993). Cytoskeletal control of the apical surface transformation of rat uterine epithelium. Biol. Cell 79, 111–116.
Cytoskeletal control of the apical surface transformation of rat uterine epithelium.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2c3hsVekug%3D%3D&md5=ba285314509479890c8e6613659f0d9cCAS | 8161965PubMed |

Mak, A. B., Blakely, K. M., Williams, R. A., Penttilä, P. A., Shukalyuk, A. I., Osman, K. T., Kasimer, D., Ketela, T., and Moffat, J. (2011). CD133 protein N-glycosylation processing contributes to cell surface recognition of the primitive cell marker AC133 epitope. J. Biol. Chem. 286, 41 046–41 056.
CD133 protein N-glycosylation processing contributes to cell surface recognition of the primitive cell marker AC133 epitope.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVOqu7fJ&md5=08bd93767f3259e01bb5df072562daffCAS |

Marzesco, A. M., Janich, P., Wilsch-Bräuninger, M., Dubreuil, V., Langenfeld, K., Corbeil, D., and Huttner, W. B. (2005). Release of extracellular membrane particles carrying the stem cell marker prominin-1 (CD133) from neural progenitors and other epithelial cells. J. Cell Sci. 118, 2849–2858.
Release of extracellular membrane particles carrying the stem cell marker prominin-1 (CD133) from neural progenitors and other epithelial cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXnsVCjtrk%3D&md5=92f2dbab9967079771eb77f5e1b264caCAS | 15976444PubMed |

Marzesco, A. M., Wilsch-Brauninger, M., Dubreuil, V., Janich, P., Langenfeld, K., Thiele, C., Huttner, W. B., and Corbeil, D. (2009). Release of extracellular membrane vesicles from microvilli of epithelial cells is enhanced by depleting membrane cholesterol. FEBS Lett. 583, 897–902.
Release of extracellular membrane vesicles from microvilli of epithelial cells is enhanced by depleting membrane cholesterol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXis1aqtb8%3D&md5=67033b616dc60e103f72dfdbd3a2e69bCAS | 19302789PubMed |

McCormack, J. T., and Greenwald, G. S. (1974). Progesterone and oestradiol-17 concentrations in the peripheral plasma during pregnancy in the mouse. J. Endocrinol. 62, 101–107.
Progesterone and oestradiol-17 concentrations in the peripheral plasma during pregnancy in the mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2cXltVahsb0%3D&md5=a5c3631e253cabde8e0cb4ee230a8973CAS | 4853889PubMed |

Meglioli, G. (1976). Oestrogenic sensitivity of rat uterine secretion. J. Reprod. Fertil. 46, 395–399.
Oestrogenic sensitivity of rat uterine secretion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XhslCgsr4%3D&md5=f98e133d11646da83969f5c3e4320b1aCAS |

Miraglia, S., Godfrey, W., Yin, A. H., Atkins, K., Warnke, R., Holden, J. T., Bray, R. A., Waller, E. K., and Buck, D. W. (1997). A novel five-transmembrane hematopoietic stem cell antigen: isolation, characterization, and molecular cloning. Blood 90, 5013–5021.
| 1:CAS:528:DyaK2sXnvFWkt7c%3D&md5=6b519188708d75c9bbeae4c2e8a169eaCAS | 9389721PubMed |

Murphy, C. R. (1993). The plasma membrane of uterine epithelial cells: structure and histochemistry. Prog. Histochem. Cytochem. 27, 1–66.
The plasma membrane of uterine epithelial cells: structure and histochemistry.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2c%2FovF2iuw%3D%3D&md5=bad6bf2b499a59d4ae63c1dd3a780f60CAS | 8265798PubMed |

Murphy, C. R. (1995). The cytoskeleton of uterine epithelial cells: a new player in uterine receptivity and the plasma membrane transformation. Hum. Reprod. Update 1, 567–580.
The cytoskeleton of uterine epithelial cells: a new player in uterine receptivity and the plasma membrane transformation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2s3jtlajug%3D%3D&md5=6e511519f6b3f88526e7244fe4cbbfb8CAS | 9079397PubMed |

Murphy, C. R. (2000). The plasma membrane transformation of uterine epithelial cells during pregnancy. J. Reprod. Fertil. Suppl. 55, 23–28.
| 1:STN:280:DC%2BD3czkvVejtQ%3D%3D&md5=0b4c0be1ac86a4800ceae0724db5c705CAS | 10889831PubMed |

Murphy, C. R. (2001). The plasma membrane transformation: a key concept in uterine receptivity. Reprod. Med. Rev. 9, 197–208.
The plasma membrane transformation: a key concept in uterine receptivity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlsFOlur0%3D&md5=f2bf71cafcd7bce67ccfe2f9a7497f1eCAS |

Murphy, C. R. (2004). Uterine receptivity and the plasma membrane transformation. Cell Res. 14, 259–267.
Uterine receptivity and the plasma membrane transformation.Crossref | GoogleScholarGoogle Scholar | 15353123PubMed |

Murphy, C. R., and Rogers, A. (1981). Effects of ovarian hormones on cell membranes in the rat uterus. III. The surface carbohydrates at the apex of the luminal epithelium. Cell Biophys. 3, 305–320.
| 1:CAS:528:DyaL38XhvFeltb4%3D&md5=0ba33eef9f48df8ba8d6d1738e8345d1CAS | 6175417PubMed |

Murphy, C. R., and Shaw, T. J. (1994). Plasma-membrane transformation: a common response of uterine epithelial-cells during the periimplantation period. Cell Biol. Int. 18, 1115–1128.
Plasma-membrane transformation: a common response of uterine epithelial-cells during the periimplantation period.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2M3hvVOnsA%3D%3D&md5=b40e3de23d1ac16292987010c21bc569CAS | 7703952PubMed |

Nie, J., Mahato, S., Mustill, W., et al. (2012). Cross species analysis of Prominin reveals a conserved cellular role in invertebrate and vertebrate photoreceptor cells. Dev. Biol. 371, 312–320.
Cross species analysis of Prominin reveals a conserved cellular role in invertebrate and vertebrate photoreceptor cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlGqtLnO&md5=923591c9dda7034f56e13525a050fd3bCAS | 22960282PubMed |

Nilsson, O. (1958). Ultrastructure of mouse uterine surface epithelium under different estrogenic influences: 2. Early effect of estrogen administered to spayed animals. J. Ultrastruct. Res. 2, 73–95.
Ultrastructure of mouse uterine surface epithelium under different estrogenic influences: 2. Early effect of estrogen administered to spayed animals.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaG1M%2FmtFensQ%3D%3D&md5=0c448607a9d8dfa44cad08a10da9452aCAS | 13631742PubMed |

Nilsson, O. (1966). Structural differentiation of luminal membrane in rat uterus during normal and experimental implantations. Z. Anat. Entwicklungsgesch. 125, 152–159.
| 1:STN:280:DyaF1c%2Fgs12gtQ%3D%3D&md5=087035e2eeb1508b7c4546fc4bd2276eCAS | 5982644PubMed |

Png, F. Y., and Murphy, C. R. (1997). The plasma membrane transformation does not last: microvilli return to the apical plasma membrane of uterine epithelial cells after the period of uterine receptivity. Eur. J. Morphol. 35, 19–24.
The plasma membrane transformation does not last: microvilli return to the apical plasma membrane of uterine epithelial cells after the period of uterine receptivity.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2s3ovV2nsQ%3D%3D&md5=a11183d3f293d25113da642e4aceb64dCAS | 9143875PubMed |

Psychoyos, A. (1974). Hormonal control of ovoimplantation. Vitam. Horm. 31, 201–256.
Hormonal control of ovoimplantation.Crossref | GoogleScholarGoogle Scholar |

Riesewijk, A., Martin, J., van Os, R., Horcajadas, J. A., Polman, J., Pellicer, A., Mosselman, S., and Simón, C. (2003). Gene expression profiling of human endometrial receptivity on days LH+2 versus LH+7 by microarray technology. Mol. Hum. Reprod. 9, 253–264.
Gene expression profiling of human endometrial receptivity on days LH+2 versus LH+7 by microarray technology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXltFygurY%3D&md5=da66b70ac3f5d63cf44a1b1cfcae6b87CAS | 12728018PubMed |

Röper, K., Corbeil, D., and Huttner, W. B. (2000). Retention of prominin in microvilli reveals distinct cholesterol-based lipid micro-domains in the apical plasma membrane. Nat. Cell Biol. 2, 582–592.
Retention of prominin in microvilli reveals distinct cholesterol-based lipid micro-domains in the apical plasma membrane.Crossref | GoogleScholarGoogle Scholar | 10980698PubMed |

Salleh, N., Baines, D. L., Naftalin, R. J., and Milligan, S. R. (2005). The hormonal control of uterine luminal fluid secretion and absorption. J. Membr. Biol. 206, 17–28.
The hormonal control of uterine luminal fluid secretion and absorption.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XntVKnsQ%3D%3D&md5=9a1aea6a46de6612ed085e0fddfc9d39CAS | 16440178PubMed |

Schlafke, S., and Enders, A. C. (1975). Cellular basis of interaction between trophoblast and uterus at implantation. Biol. Reprod. 12, 41–65.
Cellular basis of interaction between trophoblast and uterus at implantation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE2M7osVCjtQ%3D%3D&md5=0a63ff3d78878e36a6bb8adb92edd097CAS | 1095088PubMed |

Schwab, K. E., Hutchinson, P., and Gargett, C. E. (2008). Identification of surface markers for prospective isolation of human endometrial stromal colony-forming cells. Hum. Reprod. 23, 934–943.
Identification of surface markers for prospective isolation of human endometrial stromal colony-forming cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmslKktLg%3D&md5=a6817932d713d655ec64734b18133ceaCAS | 18305000PubMed |

Szczesna-Skorupa, E., and Kemper, B. (1993). An N-terminal glycosylation signal on cytochrome P450 is restricted to the endoplasmic reticulum in a luminal orientation. J. Biol. Chem. 268, 1757–1762.
| 1:CAS:528:DyaK3sXhvVGqs7c%3D&md5=97f7e9368ae31de9b67d201c6f733f3bCAS | 8420952PubMed |

Tarentino, A. L., Trimble, R. B., and Plummer, T. H. (1989). Enzymatic approaches for studying the structure, synthesis, and processing of glycoproteins. Methods Cell Biol. 32, 111–139.
Enzymatic approaches for studying the structure, synthesis, and processing of glycoproteins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXktlOitbY%3D&md5=5738036e33ac99332154f1e02859a2c0CAS | 2691848PubMed |

Trimble, R. B., and Tarentino, A. L. (1991). Identification of distinct endoglycosidase (endo) activities in Flavobacterium meningosepticum: endo F1, endo F2, and endo F3. Endo F1 and endo H hydrolyze only high mannose and hybrid glycans. J. Biol. Chem. 266, 1646–1651.
| 1:CAS:528:DyaK3MXhvVWjtb0%3D&md5=7a1259f4f2d47e017922185d7dd32a7eCAS | 1899092PubMed |

Trombetta, E. S. (2003). The contribution of N-glycans and their processing in the endoplasmic reticulum to glycoprotein biosynthesis. Glycobiology 13, 77R–91R.
The contribution of N-glycans and their processing in the endoplasmic reticulum to glycoprotein biosynthesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXotFKrs7c%3D&md5=dc155704d56e3a72a7784852c4ed4ffbCAS | 12736198PubMed |

Weigmann, A., Corbeil, D., Hellwig, A., and Huttner, W. B. (1997). Prominin, a novel microvilli-specific polytopic membrane protein of the apical surface of epithelial cells, is targeted to plasmalemmal protrusions of non-epithelial cells. Proc. Natl Acad. Sci. USA 94, 12 425–12 430.
Prominin, a novel microvilli-specific polytopic membrane protein of the apical surface of epithelial cells, is targeted to plasmalemmal protrusions of non-epithelial cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXns1ylsb8%3D&md5=3bc2c9928a2d915c55f0d95c749800a6CAS |