Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Immunolocalisation of aromatase regulators liver kinase B1, phosphorylated AMP-activated protein kinase and cAMP response element-binding protein-regulated transcription co-activators in the human testis

Seungmin Ham A B , Kristy A. Brown A C , Evan R. Simpson A D and Sarah J. Meachem A E F
+ Author Affiliations
- Author Affiliations

A Hudson Institute of Medical Research, 27–31 Wright Street, Clayton, Vic. 3168, Australia.

B Department of Obstetrics and Gynaecology, Monash University, Wellington Road and Blackburn Road, Clayton, Vic. 3800, Australia.

C Department of Physiology, Monash University, Wellington Road and Blackburn Road, Clayton, Vic. 3800, Australia.

D Department of Biochemistry and Molecular Biology, Monash University, Wellington Road and Blackburn Road, Clayton, Vic. 3800, Australia.

E Department of Anatomy and Developmental Biology, Monash University, Wellington Road and Blackburn Road, Clayton, Vic. 3800, Australia.

F Corresponding author. Email: sarah.meachem@princehenrys.org

Reproduction, Fertility and Development 29(5) 1029-1038 https://doi.org/10.1071/RD15390
Submitted: 2 October 2015  Accepted: 4 February 2016   Published: 7 March 2016

Abstract

Although oestrogens are essential for spermatogenesis and their biosynthesis is dependent on aromatase expression, the molecular mechanism of aromatase regulation is poorly understood. Our laboratory has demonstrated that liver kinase B1 (LKB1) is a negative regulator of aromatase in the breast by phosphorylating AMP-activated protein kinase (AMPK) and inhibiting the nuclear translocation of the cAMP response element-binding protein-regulated transcription co-activator (CRTC) 2. The aim of this study was to determine the location of testis-associated proteins in the LKB1–CRTC pathway. Aromatase, LKB1, phosphorylated AMPK (pAMPK) and CRTC1–3 were examined by selected immunofluorescent antibodies in testis samples from a prepubertal boy and three fertile men. Aromatase, pAMPK and LKB1 proteins were present in the seminiferous epithelium and interstitium of the testis and were expressed in a differential and developmental manner in particular cell types. The expression pattern of LKB1 was similar to that of pAMPK and inversely related to aromatase expression. CRTC1 and CRTC3 were localised in the seminiferous epithelium, whereas CRTC2 was barely detectable in testis. These results lead to the conclusion that LKB1 is involved in the molecular pathway that underpins aromatase regulation in the testis via CRTC1 and CRTC3 and may be important for the oestrogen-mediated development of germ cells.

Additional keywords: aromatase, spermatogenesis, steroidogenesis.


References

Alessi, D. R., Sakamoto, K., and Bayascas, J. R. (2006). LKB1-dependent signalling pathways. Annu. Rev. Biochem. 75, 137–163.
LKB1-dependent signalling pathways.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XosVKhsrg%3D&md5=0bc35022cf8d386fea0c7796445ee0dbCAS | 16756488PubMed |

Bois, C., Delalande, C., Nurmio, M., Parvinen, M., Zanatta, L., Toppari, J., and Carreau, S. (2010). Age- and cell-related gene expression of aromatase and oestrogen receptors in the rat testis. J. Mol. Endocrinol. 45, 147–159.
Age- and cell-related gene expression of aromatase and oestrogen receptors in the rat testis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlGls7jJ&md5=1bdcabf22e2c48abafab33c463f9e6a8CAS | 20554652PubMed |

Brodie, A., Inkster, S., and Yue, W. (2001). Aromatase expression in the human male. Mol. Cell. Endocrinol. 178, 23–28.
Aromatase expression in the human male.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXktlWnt7k%3D&md5=f7fcf6dff04663c7a65d02f9b1410b71CAS | 11403890PubMed |

Brown, K. A., McInnes, K. J., Hunger, N. I., Oakhiil, J. S., Steinberg, G. R., and Simpson, E. R. (2009a). Subcellular localisation of cyclic AMP-responsive element-binding protein-regulated transcription co-activator 2 provides a link between obesity and breast cancer in postmenopausal women. Cancer Res. 69, 5392–5399.
Subcellular localisation of cyclic AMP-responsive element-binding protein-regulated transcription co-activator 2 provides a link between obesity and breast cancer in postmenopausal women.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnvFajsr4%3D&md5=25206325268d0f5a26f62e0e8ff3e5c0CAS | 19509226PubMed |

Bulun, S. E., Rosenthal, I. M., Brodie, A. M., Inkster, S. E., Zeller, W. P., DiGeorge, A. M., Frasier, S. D., Kilgore, M. W., and Simpson, E. R. (1993). Use of tissue-specific promoters in the regulation of aromatase cytochrome P450 gene expression in human testicular and ovarian sex-cord tumours, as well as in normal fetal and adult gonads. J. Clin. Endocrinol. Metab. 77, 1616–1621.
| 1:STN:280:DyaK2c%2Fos1Omtw%3D%3D&md5=fb2ebd2f937c98f9f8606467fd4e0505CAS | 8263150PubMed |

Cacciola, G., Chioccarelli, T., Fasano, S., Pierantoni, R., and Cobellis, G. (2013). Oestrogens and spermiogenesis: new insights from Type 1 cannabinoid receptor knockout mice. Int. J. Endocrinol. 2013, 501350.
Oestrogens and spermiogenesis: new insights from Type 1 cannabinoid receptor knockout mice.Crossref | GoogleScholarGoogle Scholar | 24324492PubMed |

Carreau, S. (1996). Paracrine control of human Leydig cell and Sertoli cell functions. Folia Histochem. Cytobiol. 34, 111–119.
| 1:STN:280:DyaK2s7it1egtw%3D%3D&md5=aba18285b16696bcc15557e9a90f4d84CAS | 8967955PubMed |

Carreau, S., Bourguiba, S., Lambard, S., Silandre, D., and Delalande, C. (2004). The promoter(s) of the aromatase gene in male testicular cells. Reprod. Biol. 4, 23–34.
| 15094793PubMed |

Carreau, S., Silandre, D., Bois, C., Bouraima, H., Galeraud-Denis, I., and Delalande, C. (2007). Oestrogens: a new player in spermatogenesis. Folia Histochem. Cytobiol. 45, S5–S10.
| 18292817PubMed |

Coen, P., Kulin, H., Ballantine, T., Zaino, R., Frauenhoffer, E., Boal, D., Inkster, S., Brodie, A., and Santen, R. (1991). An aromatase-producing sex-cord tumour resulting in prepubertal gynecomastia. N. Engl. J. Med. 324, 317–322.
An aromatase-producing sex-cord tumour resulting in prepubertal gynecomastia.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3M%2FpsV2ksA%3D%3D&md5=4879bfe70c9ea3d8c502b60411bf2594CAS | 1986290PubMed |

Conkright, M. D., Canettieri, G., Screaton, R., Guzman, E., Miraglia, L., Hogenesch, J. B., and Montminy, M. (2003). TORCs: transducers of regulated CREB activity. Mol. Cell 12, 413–423.
TORCs: transducers of regulated CREB activity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnt12qtLg%3D&md5=ecdf7e907d090a5a38e28d839c2a803dCAS | 1:CAS:528:DC%2BD3sXnt12qtLg%3D&md5=ecdf7e907d090a5a38e28d839c2a803dCAS | 14536081PubMed |

Correia, S., Cardoso, H. J., Cavaco, J. E., and Socorro, S. (2015). Oestrogens as apoptosis regulators in mammalian testis: angels or devils? Expert Rev. Mol. Med. 17, e2.
Oestrogens as apoptosis regulators in mammalian testis: angels or devils?Crossref | GoogleScholarGoogle Scholar | 26258687PubMed |

Fowler, K. A., Gill, K., Kirma, N., Dillehay, D. L., and Tekmal, R. R. (2000). Overexpression of aromatase leads to development of testicular Leydig cell tumours: an in vivo model for hormone-mediated testicular cancer. Am. J. Pathol. 156, 347–353.
Overexpression of aromatase leads to development of testicular Leydig cell tumours: an in vivo model for hormone-mediated testicular cancer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXns1yktA%3D%3D&md5=2c7a1aa30fa9989571a0b99a26a50410CAS | 1:CAS:528:DC%2BD3cXns1yktA%3D%3D&md5=2c7a1aa30fa9989571a0b99a26a50410CAS | 10623684PubMed |

Galardo, M. N., Riera, M. F., Pellizzari, E. H., Cigorraga, S. B., and Meroni, S. B. (2007). The AMP-activated protein kinase activator, 5-aminoimidazole-4-carboxamide-1-b-D-ribonucleoside, regulates lactate production in rat Sertoli cells. J. Mol. Endocrinol. 39, 279–288.
The AMP-activated protein kinase activator, 5-aminoimidazole-4-carboxamide-1-b-D-ribonucleoside, regulates lactate production in rat Sertoli cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlSit7%2FP&md5=0bd6ea863ff7325077fc78212e2b5a4aCAS | 1:CAS:528:DC%2BD2sXhtlSit7%2FP&md5=0bd6ea863ff7325077fc78212e2b5a4aCAS | 17909267PubMed |

Ham, S., Meachem, S. J., Choong, C. S., Charles, A. K., Baynam, G. S., Jones, T. W., Samarajeewa, N. U., Simpson, E. R., and Brown, K. A. (2013). Overexpression of aromatase associated with loss of heterozygosity of the STK11 gene accounts for prepubertal gynecomastia in boys with Peutz­–Jeghers syndrome. J. Clin. Endocrinol. Metab. 98, E1979–E1987.
Overexpression of aromatase associated with loss of heterozygosity of the STK11 gene accounts for prepubertal gynecomastia in boys with Peutz­–Jeghers syndrome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvF2ksrnK&md5=5db2971d1c2de41b6e57f6d523c12e92CAS | 24037887PubMed | 24037887PubMed |

Haverfield, J. T., Ham, S., Brown, K. A., Simpson, E. R., and Meachem, S. J. (2011). Teasing out the role of aromatase in the healthy and diseased testis. Spermatogenesis 1, 240–249.
Teasing out the role of aromatase in the healthy and diseased testis.Crossref | GoogleScholarGoogle Scholar | 22319672PubMed | 22319672PubMed |

Hawley, S. A., Boudeau, J., Reid, J. L., Mustard, K. J., Udd, L., Makela, T. P., Alessi, D. R., and Hardie, D. G. (2003). Complexes between the LKB1 tumour suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. J. Biol. 2, 28.
Complexes between the LKB1 tumour suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade.Crossref | GoogleScholarGoogle Scholar | 14511394PubMed | 14511394PubMed |

Hemminki, A., Tomlinson, I., Markie, D., Jarvinen, H., Sistonen, P., Bjorkqvist, A. M., Knuutila, S., Salovaara, R., Bodmer, W., Shibata, D., de la Chapelle, A., and Aaltonen, L. A. (1997). Localisation of a susceptibility locus for Peutz–Jeghers syndrome to 19p using comparative genomic hybridisation and targeted linkage analysis. Nat. Genet. 15, 87–90.
Localisation of a susceptibility locus for Peutz–Jeghers syndrome to 19p using comparative genomic hybridisation and targeted linkage analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjsFamuw%3D%3D&md5=057be9d37d6a8c736d4e5a4078382d03CAS | 8988175PubMed | 8988175PubMed |

Inkster, S., Yue, W., and Brodie, A. (1995). Human testicular aromatase: immunocytochemical and biochemical studies. J. Clin. Endocrinol. Metab. 80, 1941–1947.
| 1:CAS:528:DyaK2MXmtFOmsLY%3D&md5=c418384c23a71d95a22de725e4c5c757CAS | 7539819PubMed | 7539819PubMed |

Jeghers, H., Mc, K. V., and Katz, K. H. (1949). Generalised intestinal polyposis and melanin spots of the oral mucosa, lips and digits; a syndrome of diagnostic significance. N. Engl. J. Med. 241, 1031–1036.
Generalised intestinal polyposis and melanin spots of the oral mucosa, lips and digits; a syndrome of diagnostic significance.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaG3c%2FgslyktQ%3D%3D&md5=42c5c2e1e9bccb236a57d6bb01f08c28CAS | 1:STN:280:DyaG3c%2FgslyktQ%3D%3D&md5=42c5c2e1e9bccb236a57d6bb01f08c28CAS | 15398245PubMed | 15398245PubMed |

Khan, S. A., Ndjountche, L., Pratchard, L., Spicer, L. J., and Davis, J. S. (2002). Follicle-stimulating hormone amplifies insulin-like growth factor I-mediated activation of AKT/protein kinase B signalling in immature rat sertoli cells. Endocrinology 143, 2259–2267.
Follicle-stimulating hormone amplifies insulin-like growth factor I-mediated activation of AKT/protein kinase B signalling in immature rat sertoli cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjvFKjtbw%3D&md5=ddafcef9080e4ce9c74cb7abd408e338CAS | 1:CAS:528:DC%2BD38XjvFKjtbw%3D&md5=ddafcef9080e4ce9c74cb7abd408e338CAS | 12021190PubMed | 12021190PubMed |

Lambard, S., Galeraud Denis, I., Bouraïma, H., Bourguiba, S., Chocat, A., and Carreau, S. (2003). Expression of aromatase in human ejaculated spermatozoa: a putative marker of motility. Mol. Hum. Reprod. 9, 117–124.
Expression of aromatase in human ejaculated spermatozoa: a putative marker of motility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjslygtLs%3D&md5=8413988d408b94c8af629257e0fcfc48CAS | 1:CAS:528:DC%2BD3sXjslygtLs%3D&md5=8413988d408b94c8af629257e0fcfc48CAS | 12606587PubMed | 12606587PubMed |

Lardone, M. C., Castillo, P., Valdevenito, R., Ebensperger, M., Ronco, A. M., Pommer, R., Piottante, A., and Castro, A. (2010). P450-aromatase activity and expression in human testicular tissues with severe spermatogenic failure. Int. J. Androl. 33, 650–660.
| 1:CAS:528:DC%2BC3cXhtVOntbvI&md5=5259c5442430a7e7064e2aefa95931d3CAS |
| 1:CAS:528:DC%2BC3cXhtVOntbvI&md5=5259c5442430a7e7064e2aefa95931d3CAS | 19906189PubMed | 19906189PubMed |

Levallet, J., Mittre, H., Delarue, B., and Carreau, S. (1998). Alternative splicing events in the coding region of the cytochrome P450 aromatase gene in male rat germ cells. J. Mol. Endocrinol. 20, 305–312.
Alternative splicing events in the coding region of the cytochrome P450 aromatase gene in male rat germ cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXks1Kksrg%3D&md5=dd0c9ffcbb229097f1ccd7060bb21480CAS | 1:CAS:528:DyaK1cXks1Kksrg%3D&md5=dd0c9ffcbb229097f1ccd7060bb21480CAS | 9687153PubMed | 9687153PubMed |

McCabe, M. J., Tarulli, G. A., Meachem, S. J., Robertson, D. M., Smooker, P. M., and Stanton, P. G. (2010). Gonadotrophins regulate rat testicular tight junctions in vivo. Endocrinology 151, 2911–2922.
Gonadotrophins regulate rat testicular tight junctions in vivo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnsVyqtbc%3D&md5=7bb7d78bb83027ee65de69e49bb25ee0CAS | 20357222PubMed | 20357222PubMed |

McLachlan, R. I., O’Donnell, L., Stanton, P. G., Balourdos, G., Frydenberg, M., de Kretser, D. M., and Robertson, D. M. (2002). Effects of testosterone plus medroxyprogesterone acetate on semen quality, reproductive hormones and germ-cell populations in normal young men. J. Clin. Endocrinol. Metab. 87, 546–556.
Effects of testosterone plus medroxyprogesterone acetate on semen quality, reproductive hormones and germ-cell populations in normal young men.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhsVSjur8%3D&md5=87f1a4dee5331ce46f3c72dc3fe322aaCAS | 11836283PubMed | 11836283PubMed |

Meachem, S. J., Stanton, P. G., and Schlatt, S. (2005). Follicle-stimulating hormone regulates both Sertoli cell and spermatogonial populations in the adult photoinhibited Djungarian hamster testis. Biol. Reprod. 72, 1187–1193.
Follicle-stimulating hormone regulates both Sertoli cell and spermatogonial populations in the adult photoinhibited Djungarian hamster testis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjslSntrg%3D&md5=e7e7daca5b515e1ea4cddffbd520f35eCAS | 1:CAS:528:DC%2BD2MXjslSntrg%3D&md5=e7e7daca5b515e1ea4cddffbd520f35eCAS | 15659702PubMed | 15659702PubMed |

Mehenni, H., Gehrig, C., Nezu, J., Oku, A., Shimane, M., Rossier, C., Guex, N., Blouin, J. L., Scott, H. S., and Antonarakis, S. E. (1998). Loss of LKB1 kinase activity in Peutz–Jeghers syndrome and evidence for allelic and locus heterogeneity. Am. J. Hum. Genet. 63, 1641–1650.
Loss of LKB1 kinase activity in Peutz–Jeghers syndrome and evidence for allelic and locus heterogeneity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXltF2qtg%3D%3D&md5=af0a17f04dec37b7ef0386c27cb0584aCAS | 9837816PubMed | 9837816PubMed |

Bhasin, S., and Basson, R. (2011). Sexual dysfunction in men and women. In ‘Williams Textbook of Endocrinology. 12th edn’. (Eds S. Melmed, K. S. Polonsky, P. R. Larsen and H. M. Kronenberg.) pp. 785–786. (Elsevier/Saunders: Philadelphia.)

Nakada, Y., Stewart, T. G., Pena, C. G., Zhang, S., Zhao, N., Bardeesy, N., Sharpless, N. E., Wong, K. K., Hayes, D. N., and Castrillon, D. H. (2013). The LKB1 tumour suppressor as a biomarker in mouse and human tissues. PLoS One 8, e73449.
The LKB1 tumour suppressor as a biomarker in mouse and human tissues.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFKitL%2FF&md5=b8135518424aa0eede04c6b0b2ca6145CAS | 24086281PubMed | 24086281PubMed |

Rommerts, F. F. G. (2004). Testosterone: an overview of biosynthesis, transport, metabolism and non-genomic actions. In ‘Testosterone: Action, Deficiency, Substitution’. (Eds E. Nieschlag and H. M. Behre) pp. 1–19. (Cambridge University Press: Cambridge.)

Papadopoulos, V., Carreau, S., Szerman-Joly, E., Drosdowsky, M. A., Dehennin, L., and Scholler, R. (1986). Rat testis 17 beta-oestradiol: identification by gas chromatography–mass spectrometry and age related cellular distribution. J. Steroid Biochem. 24, 1211–1216.
Rat testis 17 beta-oestradiol: identification by gas chromatography–mass spectrometry and age related cellular distribution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XkvFWlsLY%3D&md5=8169f28b820341be4c973958fc7c9e06CAS | 3736047PubMed | 3736047PubMed |

Parvinen, M. (1982). Regulation of the seminiferous epithelium. Endocr. Rev. 3, 404–417.
Regulation of the seminiferous epithelium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXivVSguw%3D%3D&md5=e9ab8e08cdb9fb4fc3aa080772c0cd14CAS | 6295753PubMed | 6295753PubMed |

Robertson, K. M., Simpson, E. R., Lacham-Kaplan, O., and Jones, M. E. (2001). Characterisation of the fertility of male aromatase knockout mice. J. Androl. 22, 825–830.
| 1:CAS:528:DC%2BD3MXnt1Sqtr4%3D&md5=a24a119f9e05bec49bdc4d19ea75cc66CAS | 11545296PubMed | 11545296PubMed |

Sasano, H., Edwards, D. P., Anderson, T. J., Silverberg, S. G., Evans, D. B., Santen, R. J., Ramage, P., Simpson, E. R., Bhatnagar, A. S., and Miller, W. R. (2003). Validation of new aromatase monoclonal antibodies for immunohistochemistry: progress report. J. Steroid Biochem. Mol. Biol. 86, 239–244.
Validation of new aromatase monoclonal antibodies for immunohistochemistry: progress report.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXptVemsrw%3D&md5=d0308ddb414c96698bc0328c609d9a7cCAS | 14623517PubMed | 14623517PubMed |

Schulze, W., and Rehder, U. (1984). Organisation and morphogenesis of the human seminiferous epithelium. Cell Tissue Res. 237, 395–407.
Organisation and morphogenesis of the human seminiferous epithelium.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2M%2FisVOrsA%3D%3D&md5=ca034455b989cc258b3ecdebfb7334dcCAS | 6488283PubMed | 6488283PubMed |

Shaw, R. J., Lamia, K. A., Vasquez, D., Koo, S. H., Bardeesy, N., Depinho, R. A., Montminy, M., and Cantley, L. C. (2005). The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 310, 1642–1646.
The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlSntb7E&md5=5f917c9ee267bdf0ea3accfc989ae7acCAS | 16308421PubMed | 16308421PubMed |

Simpson, E. R. (1998). Genetic mutations resulting in oestrogen insufficiency in the male. Mol. Cell. Endocrinol. 145, 55–59.
Genetic mutations resulting in oestrogen insufficiency in the male.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnt1eit7k%3D&md5=9c424901629deb95aef2b46574c3c54aCAS | 9922099PubMed | 9922099PubMed |

Tarulli, G. A., Stanton, P. G., Lerchl, A., and Meachem, S. J. (2006). Adult Sertoli cells are not terminally differentiated in the Djungarian hamster: effect of FSH on proliferation and junction protein organisation. Biol. Reprod. 74, 798–806.
Adult Sertoli cells are not terminally differentiated in the Djungarian hamster: effect of FSH on proliferation and junction protein organisation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xjsl2jtb8%3D&md5=40f4b4a1172adabcd6f362bd21a4fab3CAS | 16407497PubMed | 16407497PubMed |

Tiainen, M., Vaahtomeri, K., Ylikorkala, A., and Makela, T. P. (2002). Growth arrest by the LKB1 tumour suppressor: induction of p21(WAF1/CIP1). Hum. Mol. Genet. 11, 1497–1504.
Growth arrest by the LKB1 tumour suppressor: induction of p21(WAF1/CIP1).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XltVyrs7Y%3D&md5=e186ef3a54224af41b6ed6046ffc482aCAS | 12045203PubMed | 12045203PubMed |

Towler, M. C., Fogarty, S., Hawley, S. A., Pan, D. A., Martin, D. M., Morrice, N. A., McCarthy, A., Galardo, M. N., Meroni, S. B., Cigorraga, S. B., Ashworth, A., Sakamoto, K., and Hardie, D. G. (2008). A novel short splice variant of the tumour suppressor LKB1 is required for spermiogenesis. Biochem. J. 416, 1–14.
A novel short splice variant of the tumour suppressor LKB1 is required for spermiogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht12gt7zF&md5=d7c0c6cc4aa20ac2bc13479fd07b3f08CAS | 18774945PubMed | 18774945PubMed |

Udd, L., and Makela, T. P. (2011). LKB1 signalling in advancing cell differentiation. Fam. Cancer 10, 425–435.
LKB1 signalling in advancing cell differentiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtF2rs7%2FN&md5=d7c26319b3575b110fb6c40be2e35ca2CAS | 21519908PubMed | 21519908PubMed |