Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Pregnancy losses in cattle: potential for improvement

M. G. Diskin A C , S. M. Waters B , M. H. Parr B and D. A. Kenny B
+ Author Affiliations
- Author Affiliations

A Teagasc, Animal and Grassland and Innovation Research Centre, Mellows Campus, Athenry, Co. Galway, H65 R718, Ireland.

B Teagasc, Animal and Grassland and Innovation Research Centre, Grange, Dunsany, Co. Meath, C15 PW93, Ireland.

C Corresponding author. Email: michael.diskin@teagasc.ie

Reproduction, Fertility and Development 28(2) 83-93 https://doi.org/10.1071/RD15366
Published: 3 December 2015

Abstract

For heifers, beef and moderate-yielding dairy cows, it appears that the fertilisation rate generally lies between 90% and 100%. For high-producing dairy cows, there is a less substantive body of literature, but it would appear that the fertilisation rate is somewhat lower and possibly more variable. In cattle, the major component of embryo loss occurs in the first 16 days following breeding (Day 0), with emerging evidence of greater losses before Day 8 in high-producing dairy cows. In cattle, late embryo mortality causes serious economic losses because it is often recognised too late to rebreed females. Systemic concentrations of progesterone during both the cycle preceding and following insemination affect embryo survival, with evidence of either excessive or insufficient concentrations being negatively associated with survival rate. The application of direct progesterone supplementation or treatments to increase endogenous output of progesterone to increase embryo survival cannot be recommended at this time. Energy balance and dry matter intake during the first 4 weeks after calving are critically important in determining pregnancies per AI when cows are inseminated at 70–100 days after calving. Level of concentrate supplementation of cows at pasture during the breeding period has minimal effects on conception rates, although sudden reductions in dietary intake should be avoided. For all systems of milk production, more balanced breeding strategies with greater emphasis on fertility and feed intake and/or energy must be developed. There is genetic variability within the Holstein breed for fertility traits, which can be exploited. Genomic technology will not only provide scientists with an improved understanding of the underlying biological processes involved in fertilisation and the establishment of pregnancy, but also, in the future, could identify genes responsible for improved embryo survival. Such information could be incorporated into breeding objectives in order to increase the rate of genetic progress for embryo survival. In addition, there is a range of easily adoptable management factors, under producer control, that can either directly increase embryo survival or ameliorate the consequences of low embryo survival rates. The correction of minor deficits in several areas can have a substantial cumulative positive effect on herd reproductive performance.

Additional keywords: cow, embryonic mortality, fertilisation, progesterone.


References

Barbat, A., Le Mézec, P., Ducrocq, V., Mattalia, S., Fritz, S., Boichard, D., Ponsart, C., and Humblot, P. (2010). Female fertility in French dairy breeds: current situation and strategies for improvement. J. Reprod. Dev. 56, S15–S21.
Female fertility in French dairy breeds: current situation and strategies for improvement.Crossref | GoogleScholarGoogle Scholar | 20629212PubMed |

Beam, S. W., and Butler, W. R. (1997). Energy balance and ovarian follicle development prior to first ovulation postpartum in dairy cows receiving three levels of dietary fat. Biol. Reprod. 56, 133–142.
Energy balance and ovarian follicle development prior to first ovulation postpartum in dairy cows receiving three levels of dietary fat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXis1Kguw%3D%3D&md5=b54e7f0c9e835cac9ec3bb9e6d701aa3CAS | 9002642PubMed |

Berglund, B., Persson, A., and Stålhammar, H. (2004). Effects of complex vertebral malformation on fertility in Swedish Holstein cattle. Acta Vet. Scand. 45, 161–165.
Effects of complex vertebral malformation on fertility in Swedish Holstein cattle.Crossref | GoogleScholarGoogle Scholar | 15663076PubMed |

Berry, D. P., Horan, B., O’Donovan, M., Buckley, F., Kennedy, E., McEvoy, M., and Dillon, P. (2007). Genetics of grass dry matter intake, energy balance, and digestibility in grazing Irish dairy cows. J. Dairy Sci. 90, 4835–4845.
Genetics of grass dry matter intake, energy balance, and digestibility in grazing Irish dairy cows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFWlsrfJ&md5=1bd0549970dafcd631e46ecffe721364CAS | 17881707PubMed |

Berry, D. P., Wall, E., and Pryce, J. E. (2014a). Genetics and genomics of reproductive performance in dairy and beef cattle. Animal 8, 105–121.
Genetics and genomics of reproductive performance in dairy and beef cattle.Crossref | GoogleScholarGoogle Scholar | 24703258PubMed |

Berry, D. P., Coffey, M. P., Pryce, J. E., de Haas, Y., Løvendahl, P., Krattenmacher, N., Crowley, J. J., Wang, Z., Spurlock, D., Weigel, K., Macdonald, K., and Veerkamp, R. F. (2014b). International genetic evaluations for feed intake in dairy cattle through the collation of data from multiple sources. J. Dairy Sci. 97, 3894–3905.
International genetic evaluations for feed intake in dairy cattle through the collation of data from multiple sources.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmtFagsr0%3D&md5=f026a79f1b7e7bccdf410453b57703dbCAS | 24731627PubMed |

BonDurant, R. H. (2007). Selected diseases and conditions associated with bovine conceptus loss in the first trimester. Theriogenology 68, 461–473.
Selected diseases and conditions associated with bovine conceptus loss in the first trimester.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2szpvVCqsA%3D%3D&md5=268ca54f24084ba6c5675111fd8c3e56CAS | 17548105PubMed |

Britt, J. H. (1994). Follicular development and fertility: Potential impacts of negative energy balance. In ‘Proceedings of the National Reproduction Symposium’, 22–23 September 1994, Pittsburgh, PA. (Ed. E. R. Jordan.) pp. 103–112. (Pittsburgh, PA.)

Buckley, F., Lopez-Villalobos, N., and Heins, B. J. (2014). Crossbreeding: implications for dairy cow fertility and survival. Animal 8, 122–133.
Crossbreeding: implications for dairy cow fertility and survival.Crossref | GoogleScholarGoogle Scholar | 24784768PubMed |

Cassell, B. G., Adamec, V., and Pearson, R. E. (2003). Maternal and fetal inbreeding depression for 70-day nonreturn and calving rate in Holsteins and Jerseys. J. Dairy Sci. 86, 2977–2983.
Maternal and fetal inbreeding depression for 70-day nonreturn and calving rate in Holsteins and Jerseys.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntV2rtLw%3D&md5=acd2a4d1c6a1e55fa798899f05332208CAS | 14507034PubMed |

Cerri, R. L. A., Rutigliano, H. M., Chebel, R. C., and Santos, J. E. P. (2009a). Period of dominance of the ovulatory follicle influences embryo quality in lactating dairy cows. Reproduction 137, 813–823.
Period of dominance of the ovulatory follicle influences embryo quality in lactating dairy cows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXovVKgtbw%3D&md5=5146b939eeaa7a4ba2253ee8586d1243CAS |

Cerri, R. L. A., Juchem, S. O., Chebel, R. C., Rutigliano, H. M., Bruno, R. G. S., Galvão, K. N., Thatcher, W. W., and Santos, J. E. P. (2009b). Effect of fat source differing in fatty acid profile on metabolic parameters, fertilization, and embryo quality in high-producing dairy cows. J. Dairy Sci. 92, 1520–1531.
Effect of fat source differing in fatty acid profile on metabolic parameters, fertilization, and embryo quality in high-producing dairy cows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjvFamt78%3D&md5=b9bc3868106e5a1d4f38adf23b1248f4CAS |

Cerri, R. L. A., Chebel, R. C., Rivera, F., Narciso, C. D., Oliveira, R. A., Amstalden, M., Baez-Sandoval, G. N., Oliveira, L. J., Thatcher, W. W., and Santos, J. E. P. (2011). Concentration of progesterone duringthe development of the ovulatory follicle: II Ovarian and uterine responses. J. Dairy Sci. 94, 3352–3365.
Concentration of progesterone duringthe development of the ovulatory follicle: II Ovarian and uterine responses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnvFahsrg%3D&md5=bd4ef5c9c6bca3012022abc5b1806164CAS |

Charlier, C., Agerholm, J. S., Coppieters, W., Karlskov-Mortensen, P., Li, W., de Jong, G., Fasquelle, C., Karim, L., Cirera, S., Cambisano, N., Ahariz, N., Mullaart, E., Georges, M., and Fredholm, M. (2012). A deletion in the bovine FANCI gene compromises fertility by causing fetal death and brachyspina. PLoS One 7, e43085.
A deletion in the bovine FANCI gene compromises fertility by causing fetal death and brachyspina.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht12htL%2FO&md5=30a3e087c03a2bb5980391f9642f785eCAS | 22952632PubMed |

Cunha, A. P., Guenther, J. N., Maroney, M. J., Giordano, J. O., Nascimento, A. B., Bas, S., Ayres, H., and Wiltbank, M. C. (2008). Effects of high vs. low progesterone concentrations during Ovsynch on double ovulation rate and pregnancies per AI in high producing dairy cows. J. Dairy Sci. 91, 246.

Diskin, M. G. (2008). Reproductive management of dairy cows: a review. Ir. Vet. J. 61, 233–239.

Diskin, M. G., Stronge, A. J. H., Morris, D. G., Kenny, D. A., and Sreenan, J. M. (2004). The association between early luteal phase concentrations of progesterone and embryo survival in heifers and dairy cows. J. Anim. Sci. 82, Abstract 98.

Diskin, M. G., Murphy, J. J., and Sreenan, J. M. (2006). Embryo survival in dairy cows managed under pastoral conditions. Anim. Reprod. Sci. 96, 297–311.
Embryo survival in dairy cows managed under pastoral conditions.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28nitFGgsg%3D%3D&md5=665b8ae3b11256a7904cf7d6bfe779f6CAS | 16963203PubMed |

Diskin, M. G., Parr, M. H., and Morris, D. G. (2012). Embryo death in cattle: an update. Reprod. Fertil. Dev. 24, 244–251.
Embryo death in cattle: an update.Crossref | GoogleScholarGoogle Scholar |

Drackley, J. K., and Cardoso, F. C. (2014). Prepartum and postpartum nutritional management to optimize fertility in high-yielding dairy cows in confined TMR systems. Animal 8, 5–14.
Prepartum and postpartum nutritional management to optimize fertility in high-yielding dairy cows in confined TMR systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXotF2qtrk%3D&md5=774bafc3b3b0a8be9cd5811f0738bd1cCAS | 24844126PubMed |

Dunne, L. D., Diskin, M. G., Boland, M. P., O’Farrell, K. J., and Sreenan, J. M. (1999). The effects of pre-and post-insemination plane of nutrition on embryo survival in beef heifers. Anim. Sci. 69, 411–417.

Fonseca, F. A., Britt, J. H., McDaniel, B. T., Wilk, J. C., and Rakes, A. H. (1983). Reproductive traits of Holsteins and Jerseys: effects of age, milk yield and clinical abnormalities on involution of cervix and uterus, ovulation, estrous cycles, detection of estrus, conception rate, and days open. J. Dairy Sci. 66, 1128–1147.
Reproductive traits of Holsteins and Jerseys: effects of age, milk yield and clinical abnormalities on involution of cervix and uterus, ovulation, estrous cycles, detection of estrus, conception rate, and days open.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL3s3ms1Chsg%3D%3D&md5=2c00b5249b4818a911715274be1c8123CAS | 6683729PubMed |

Forde, N., Carter, F., Fair, T., Crowe, M. A., Evans, A. C., Spencer, T. E., Bazer, F. W., McBride, R., Boland, M. P., O’Gaora, P., Lonergan, P., and Roche, J. F. (2009). Progesterone-regulated changes in endometrial gene expression contribute to advanced conceptus development in cattle. Biol. Reprod. 81, 784–794.
Progesterone-regulated changes in endometrial gene expression contribute to advanced conceptus development in cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFyhsLbM&md5=fdff0efe89c1877c45b80279b217564cCAS | 19553605PubMed |

Fortes, M. R., Deatley, K. L., Lehnert, S. A., Burns, B. M., Reverter, A., Hawken, R. J., Boe-Hansen, G., Moore, S. S., and Thomas, M. G. (2013). Genomic regions associated with fertility traits in male and female cattle: advances from microsatellites to high-density chips and beyond. Anim. Reprod. Sci. 141, 1–19.
Genomic regions associated with fertility traits in male and female cattle: advances from microsatellites to high-density chips and beyond.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1arurvP&md5=885fd5056a48b00a8b39ceb1d107c6b1CAS | 23932163PubMed |

Fouladi-Nashta, A. A., Gutierrex, C. G., Garnsworthy, P. C., and Webb, R. (2005). Effects of dietary carbohydrate source on oocyte/embryo quality and development in high-yielding, lactating dairy cattle. Biol. Reprod. Special Issue (2005), 135–136.

Freret, S., Grimard, B., Ponter, A. A., Joly, C., Ponsart, C., and Humblot, P. (2006). Reduction of body-weight gain enhances in vitro embryo production in overfed superovulated dairy heifers. Reproduction 131, 783–794.
Reduction of body-weight gain enhances in vitro embryo production in overfed superovulated dairy heifers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XltV2jt7o%3D&md5=b76e852c2cce7111efa825cbaa792a1dCAS | 16595729PubMed |

Fricke, P. M., Reynolds, L. P., and Redmer, D. A. (1993). Effect of human chorionic gonadotropin administered early in the estrous cycle on ovulation and subsequent luteal function in cows. J. Anim. Sci. 71, 1242–1246.
| 1:CAS:528:DyaK3sXks1egtbg%3D&md5=a4e3209a7e85cc7a9290f687299b76faCAS | 7685012PubMed |

Fricke, P. M., Carvalho, P. D., Giordano, J. O., Valenza, A., Lopes, G., and Amundson, M. C. (2014). Expression and detection of estrus in dairy cows: the role of new technologies. Animal 8, 134–143.
Expression and detection of estrus in dairy cows: the role of new technologies.Crossref | GoogleScholarGoogle Scholar | 24680286PubMed |

Friggens, N. C., Disenhaus, C., and Petit, H. V. (2010). Nutritional sub-fertility in the dairy cow: towards improved reproductive management through a better biological understanding. Animal 4, 1197–1213.
Nutritional sub-fertility in the dairy cow: towards improved reproductive management through a better biological understanding.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC38vptFyrtQ%3D%3D&md5=097f49d3e4ca9d1b26969816c04b7794CAS | 22444617PubMed |

Garnsworthy, P. C., Lock, A., Mann, G. E., Sinclair, K. D., and Webb, R. (2008a). Nutrition, metabolism, and fertility in dairy cows: 1. Dietary energy source and ovarian function. J. Dairy Sci. 91, 3814–3823.
Nutrition, metabolism, and fertility in dairy cows: 1. Dietary energy source and ovarian function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1SrurrM&md5=28daaf014aed1d38b1934245ff575481CAS | 18832203PubMed |

Garnsworthy, P. C., Sinclair, K. D., and Webb, R. (2008b). Integration of physiological mechanisms that influence fertility in dairy cows. Animal 2, 1144–1152.
Integration of physiological mechanisms that influence fertility in dairy cows.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC38vptFSitw%3D%3D&md5=95d00face1cb689734b32abea6b53b64CAS | 22443726PubMed |

Garnsworthy, P. C., Fouladi-Nashta, A. A., Mann, G. E., Sinclair, K. D., and Webb, R. (2009). Effect of diet induced changes in plasma insulin concentrations during the early post partum period on pregnancy rate in dairy cows. Reproduction 137, 759–768.
Effect of diet induced changes in plasma insulin concentrations during the early post partum period on pregnancy rate in dairy cows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXosl2nur4%3D&md5=993337f56fbdad59dd432970341ea64cCAS | 19129370PubMed |

Garrett, J. E., Geisert, R. D., Zavy, M. T., and Morgan, G. L. (1988). Evidence for maternal regulation of early conceptus growth and development in beef cattle. J. Reprod. Fert. 84, 437–466.
Evidence for maternal regulation of early conceptus growth and development in beef cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXhtFKh&md5=4b524429e373875976df0c63129c18aeCAS |

Givens, M. D., and Marley, M. S. (2008). Infectious causes of embryonic and fetal mortality. Theriogenology 70, 270–285.
Infectious causes of embryonic and fetal mortality.Crossref | GoogleScholarGoogle Scholar | 18502494PubMed |

Gong, J. G., Lee, W. J., Garnsworthy, P. C., and Webb, R. (2002). Effect of dietary-induced increases in circulating insulin concentrations during the early postpartum period on reproductive function in dairy cows. Reproduction 123, 419–427.
Effect of dietary-induced increases in circulating insulin concentrations during the early postpartum period on reproductive function in dairy cows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xit1Cls74%3D&md5=552781e13ddbc328a45d1f47a5aac2b3CAS | 11882019PubMed |

Grimard, B., Freret, S., Chevallier, A., Pinto, A., Ponsart, C., and Humblot, P. (2006). Genetic and environmental factors influencing first service conception rate and late embryonic/foetal mortality in low fertility dairy herds. Anim. Reprod. Sci. 91, 31–44.
Genetic and environmental factors influencing first service conception rate and late embryonic/foetal mortality in low fertility dairy herds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Gns7nJ&md5=10e1f8a67e76dbae793e4ad8bb6fa298CAS | 16310097PubMed |

Gustavsson, I. (1979). Distribution and effects of the 1/29 Robertsonian translocation in cattle. J. Dairy Sci. 62, 825–835.
Distribution and effects of the 1/29 Robertsonian translocation in cattle.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE1M3hslSitw%3D%3D&md5=21d4654f45d5ed4ebb73e000eb2af3c1CAS | 379063PubMed |

Harris, B. L., and Kolver, E. S. (2001). Review of Holsteinization on intensive pastoral dairy farming in New Zealand. J. Dairy Sci. 84, E56–E61.
Review of Holsteinization on intensive pastoral dairy farming in New Zealand.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlvFals7g%3D&md5=073d99b33c0cfbc6c7b4c9f4f3a6d0faCAS |

Horan, B., Mee, J. F., Rath, M., O’Connor, P., and Dillon, P. (2004). The effect of strain of Holstein–Friesian cow and feeding system on reproductive performance in seasonal-calving milk production systems. Anim. Sci. 79, 453–467.

Humblot, P. (2001). Use of pregnancy specific proteins and progesterone assays to monitor pregnancy and determine the timing, frequencies and sources of embryonic mortality. Theriogenology 56, 1417–1433.
Use of pregnancy specific proteins and progesterone assays to monitor pregnancy and determine the timing, frequencies and sources of embryonic mortality.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjslyqsA%3D%3D&md5=1b1d3892780c5a67f2dbd95eb7494337CAS | 11768808PubMed |

Kennedy, J., Dillon, P., O’Sullivan, K., Buckley, F., and Rath, M. (2003). The effect of genetic merit for milk production and concentrate feeding level on reproductive performance of Holstein–Friesian cows in a grass-based system. Anim. Sci. 76, 297–308.

Kerbler, T. L., Buhr, M. M., Jordan, L. T., Leslie, K. E., and Walton, J. S. (1997). Relationship between maternal plasma progesterone concentration and interferon-tau synthesis by the conceptus in cattle. Theriogenology 47, 703–714.
Relationship between maternal plasma progesterone concentration and interferon-tau synthesis by the conceptus in cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhvFCltL8%3D&md5=716dc09ea05b3b02a0de39ea28d45a12CAS | 16728022PubMed |

Kuhn, M. T., Hutchison, J. L., and Wiggans, G. R. (2006). Characterization of Holstein heifer fertility in the United States. J. Dairy Sci. 89, 4907–4920.
Characterization of Holstein heifer fertility in the United States.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlWgsrnJ&md5=f9c02d5ae937fac8923aa6cd92df56acCAS | 17106123PubMed |

LeBlanc, S. J. (2008). Postpartum uterine disease and dairy herd reproductive performance: a review. Vet. J. 176, 102–114.
Postpartum uterine disease and dairy herd reproductive performance: a review.Crossref | GoogleScholarGoogle Scholar | 18328749PubMed |

Lefebvre, R., Fritz, S., Ledoux, D., Gatien, J., Genestout, L., Rossignol, M. N., Grimard, B., Boichard, D., Humblot, P., and Ponsart, C. (2011). GENIFER: cartographie fine et effets de QTL de fertilité en race bovine Holstein. 18. Rencontres autour des Recherches sur les Ruminants, Paris, France. Institut de l’Elevage, 18, p. 415. [Abstract]

Leroy, J. L. M. R., Van Soom, A., Opsomer, G., and Bols, R. E. J. (2008). The consequences of metabolic changes in high-yielding dairy cows on oocyte and embryo quality. Animal 2, 1120–1127.
The consequences of metabolic changes in high-yielding dairy cows on oocyte and embryo quality.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC38vptFSisA%3D%3D&md5=2605d73e0046c47f8f9c0f60178e6ad6CAS |

McClure, M. C., Bickhart, D., Null, D., Vanraden, P., Xu, L., Wiggans, G., Liu, G., Schroeder, S., Glasscock, J., Armstrong, J., Cole, J. B., Van Tassell, C. P., and Sonstegard, T. S. (2014). Bovine exome sequence analysis and targeted SNP genotyping of recessive fertility defects BH1, HH2, and HH3 reveal a putative causative mutation in SMC2 for HH3. PLoS One 9, e92769.
Bovine exome sequence analysis and targeted SNP genotyping of recessive fertility defects BH1, HH2, and HH3 reveal a putative causative mutation in SMC2 for HH3.Crossref | GoogleScholarGoogle Scholar | 24667746PubMed |

McNeill, R. E., Sreenan, J. M., Diskin, M. G., Cairns, M. T., Fitzpatrick, R., Smith, T. J., and Morris, D. M. (2006). Effect of progesterone concentration on the expression of progesterone-responsive genes in the bovine endometrium during the early luteal phase. Reprod. Fertil. Dev. 18, 573–583.
Effect of progesterone concentration on the expression of progesterone-responsive genes in the bovine endometrium during the early luteal phase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XltVWnt7o%3D&md5=50c44861b7952e7928a839d8e106c053CAS | 16836964PubMed |

McParland, S., Kearney, J. F., Rath, M., and Berry, D. P. (2007). Inbreeding effects on milk production, calving performance, fertility, and conformation in Irish Holstein–Friesians. J. Dairy Sci. 90, 4411–4419.
Inbreeding effects on milk production, calving performance, fertility, and conformation in Irish Holstein–Friesians.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpslCjs7g%3D&md5=373524fcf634bf809ef38a7a7d735f29CAS |

Monteiro, P. L. J., Ribeiro, E. S., Maciel, R. P., Dias, A. L. G., Solé, E., Lima, F. S., Bisinotto, R. S., Thatcher, W. W., Sartori, R., and Sanos, J. E. P. (2014). Effects of supplemental progesterone after artificial insemination on expression of interferon-stimulated genes and fertility in dairy cows. J. Dairy Sci. 97, 4907–4921.
Effects of supplemental progesterone after artificial insemination on expression of interferon-stimulated genes and fertility in dairy cows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXpslCls78%3D&md5=28a05a8072035d17e3c0de49752dda24CAS |

Morris, D. G., Waters, S., McCarthy, S., Patton, J., Earley, B., Fitzpatrick, R., Murphy, J. J., Diskin, M. G., Kenny, D., Brass, A., and Wathes, D. A. (2009). Pleiotropic effects of negative energy balance in the post partum dairy cow on splenic gene expression: repercussions for innate and adaptive immunity. Physiol. Genomics 39, 28–37.
Pleiotropic effects of negative energy balance in the post partum dairy cow on splenic gene expression: repercussions for innate and adaptive immunity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlakt7rN&md5=062b772fc966ef60ea65ab0771e8893eCAS | 19567785PubMed |

Mullen, M. P., Berry, D. P., Howard, D. J., Diskin, M. G., Lynch, C. O., Berkowicz, E. W., Magee, D. A., MacHugh, D. E., and Waters, S. M. (2010). Associations between novel single nucleotide polymorphisms in the Bos taurus growth hormone gene and performance traits in Holstein–Friesian dairy cattle. J. Dairy Sci. 93, 5959–5969.
Associations between novel single nucleotide polymorphisms in the Bos taurus growth hormone gene and performance traits in Holstein–Friesian dairy cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjs1KisLc%3D&md5=24a5a67ec88e42430ec81ebb90670a1bCAS | 21094770PubMed |

Mullen, M. P., Lynch, C. O., Waters, S. M., Howard, D. J., O’Boyle, P., Kenny, D. A., Buckley, F., Horan, B., and Diskin, M. G. (2011). Single nucleotide polymorphisms in the growth hormone and insulin-like growth factor-1 genes are associated with milk production, body condition score and fertility traits in dairy cows. Genet. Mol. Res. 10, 1819–1830.
Single nucleotide polymorphisms in the growth hormone and insulin-like growth factor-1 genes are associated with milk production, body condition score and fertility traits in dairy cows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1GjurrJ&md5=fd88515922de9b8a2e2fd7282437c8d2CAS | 21948746PubMed |

Nascimento, A. B., Souza, A. H., Guenther, J. N., Costa, F. P. D., Sartori, R., and Wiltbank, M. C. (2013a). Effects of treatment with human chorionic gonadotrophin or intravaginal progesterone-releasing device after AI on circulating progesterone concentrations in lactating dairy cows. Reprod. Fertil. Dev. 25, 818–824.
Effects of treatment with human chorionic gonadotrophin or intravaginal progesterone-releasing device after AI on circulating progesterone concentrations in lactating dairy cows.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3s%2FksFSrtg%3D%3D&md5=3738473c38c04880265f52c4e2443965CAS | 23058209PubMed |

Nascimento, A. B., Bender, R. W., Souza, A. H., Ayres, H., Araujo, R. R., Guenther, J. N., Sartori, R., and Wiltbank, M. C. (2013b). Effect of treatment with human chorionic gonadotropin on Day 5 after timed artificial insemination on fertility of lactating dairy cows. J. Dairy Sci. 96, 2873–2882.
Effect of treatment with human chorionic gonadotropin on Day 5 after timed artificial insemination on fertility of lactating dairy cows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjtlyqtbk%3D&md5=e8a5ee19f6d9d8b57172c5716694552bCAS | 23453519PubMed |

Nebel, R. L., and McGilliard, M. L. (1993). Interactions of high milk yield and reproductive performance in dairy cows. J. Dairy Sci. 76, 3257–3268.
Interactions of high milk yield and reproductive performance in dairy cows.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2c%2FksVSrtw%3D%3D&md5=d6d291af4681150372e78118aaa5b0f6CAS | 8227645PubMed |

Parr, M. H. (2013). Studies investigating the endocrine and nutritional factors affecting pregnancy per insemination in cattle. PhD Thesis, National University of Ireland, Dublin.

Parr, M. H., Mullen, M. P., Crowe, M. A., Roche, J. F., Lonergan, P., Evans, A. C. O., and Diskin, M. G. (2012). Relationship between pregnancy per artificial insemination and early luteal concentrations of progesterone and establishment of repeatability estimates for these traits in Holstein–Friesian heifers. J. Dairy Sci. 95, 2390–2396.
Relationship between pregnancy per artificial insemination and early luteal concentrations of progesterone and establishment of repeatability estimates for these traits in Holstein–Friesian heifers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlvFyksr0%3D&md5=84acf143daa15fb5131340fe80a2a7a7CAS | 22541467PubMed |

Parr, M. H., Crowe, M. A., Lonergan, P., Evans, A. C. O., Rizos, D., and Diskin, M. G. (2014). Effects of exogenous progesterone supplementation in the early luteal phase post-insemination on pregnancy per artificial insemination in Holstein–Friesian cows. Anim. Reprod. Sci. 150, 7–14.
Effects of exogenous progesterone supplementation in the early luteal phase post-insemination on pregnancy per artificial insemination in Holstein–Friesian cows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsV2nsbvM&md5=b152b134a5655a477a994eae2845fb8fCAS | 25205297PubMed |

Parr, M. H., Crowe, M. A., Lonergan, P., Evans, A. C., Fair, T., and Diskin, M. G. (2015). The concurrent and carry over effects of long term changes in energy intake before insemination on pregnancy per artificial insemination in heifers. Anim. Reprod. Sci. 157, 87–94.
The concurrent and carry over effects of long term changes in energy intake before insemination on pregnancy per artificial insemination in heifers.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC2Mjms1GmsQ%3D%3D&md5=a4c967c0a386c4d489766f9c37765595CAS | 25899522PubMed |

Patton, J., Kenny, D. A., McNamara, S., Mee, J. F., O’Mara, F. P., Diskin, M. G., and Murphy, J. J. (2007). Relationships between milk production, energy balance, plasma analytes and reproduction in Holstein–Friesian cows. J. Dairy Sci. 90, 649–658.
Relationships between milk production, energy balance, plasma analytes and reproduction in Holstein–Friesian cows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1Snu7s%3D&md5=965e8f0c403d9fe83a22295a641882d7CAS | 17235140PubMed |

Pryce, J. E., Wales, W. J., de Haas, Y., Veerkamp, R. F., and Hayes, B. J. (2014). Genomic selection for feed efficiency in dairy cattle. Animal 8, 1–10.
Genomic selection for feed efficiency in dairy cattle.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC2c%2FltVehsQ%3D%3D&md5=592b20a2019e35c65c1e9631dda9087eCAS | 24128704PubMed |

Rizos, D., Kenny, D. A., Griffin, W., Quinn, K. M., Duffy, P., Mulligan, F. J., Roche, J. F., Boland, M. P., and Lonergan, P. (2008). The effect of feeding propylene glycol to dairy cows during the early postpartum period on follicular dynamics and on metabolic parameters related to fertility. Theriogenology 69, 688–699.
The effect of feeding propylene glycol to dairy cows during the early postpartum period on follicular dynamics and on metabolic parameters related to fertility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjtVWhsL4%3D&md5=9fb3eecc781da758f569abaddde010cdCAS | 18262261PubMed |

Robinson, J. L., Dombrowski, D. B., Harpestad, G. W., and Shanks, R. D. (1984). Detection and prevalence of UMP systhase deficiency among dairy cattle. J. Hered. 75, 277–280.
| 1:STN:280:DyaL2c3msFyqsg%3D%3D&md5=19c79c2da30a44ec77370ba516da85d9CAS | 6547737PubMed |

Ryan, D. P., Prichard, J. F., Kopel, E., and Godke, R. A. (1993). Comparing early embryo mortality in dairy cows during hot and cool seasons of the year. Theriogenology 39, 719–737.
Comparing early embryo mortality in dairy cows during hot and cool seasons of the year.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28zgtVSisg%3D%3D&md5=75707dca255fd3222b0539e076b0d819CAS | 16727249PubMed |

Sangsritavong, S., Combs, D. K., Sartori, R. F., Armentano, L. E., and Wiltbank, M. C. (2002). High feed intake increases liver blood flow and metabolism of progesterone and estradiol 17β in dairy cattle. J. Dairy Sci. 85, 2831–2842.
High feed intake increases liver blood flow and metabolism of progesterone and estradiol 17β in dairy cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xptlagsbc%3D&md5=48808bfd27e5a9c2dcf5dcc0ece59b0aCAS | 12487450PubMed |

Santos, J. E., Thatcher, W. W., Chebel, R. C., Cerri, R. L., and Galvão, K. N. (2004). The effect of embryonic death rates in cattle on the efficacy of estrus synchronization programs. Anim. Reprod. Sci. 82–83, 513–535.
The effect of embryonic death rates in cattle on the efficacy of estrus synchronization programs.Crossref | GoogleScholarGoogle Scholar | 15271477PubMed |

Sartori, R., Sartori-Bergfelt, R., Mertens, S. A., Guenther, J. N., Parish, J. J., and Wiltbank, M. C. (2002). Fertilization and early embryonic development in heifers and lactating cows in summer and lactating and dry cows in winter. J. Dairy Sci. 85, 2803–2812.
Fertilization and early embryonic development in heifers and lactating cows in summer and lactating and dry cows in winter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xptlagsbg%3D&md5=691292693cd0cfde2650e69f9821e7dfCAS | 12487447PubMed |

Shanks, R. D., and Robinson, J. L. (1989). Embryonic mortality attributed to inherited deficiency of uridine monophosphate synthase. J. Dairy Sci. 72, 3035–3039.
Embryonic mortality attributed to inherited deficiency of uridine monophosphate synthase.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3c7ntFartA%3D%3D&md5=2452560b5b71c2d5feb5d7b16f79752eCAS | 2625493PubMed |

Silke, V., Diskin, M. G., Kenny, D. A., Boland, M. P., Dillon, P., Mee, J. F., and Sreenan, J. M. (2002). Extent, pattern and factors associated with late embryonic loss in dairy cows. Anim. Reprod. Sci. 71, 1–12.
| 1:STN:280:DC%2BD383kvFSkuw%3D%3D&md5=c8c5b07ab4ae1faf2897025ac41f616eCAS | 11988367PubMed |

Sreenan, J. M., and Diskin, M. G. (1986). The extent and timing of embryonic mortality in cattle. In ‘Embryonic Mortality in Farm Animals’. (Eds J. M. Sreenan and M. G. Diskin.) pp. 142–158. (Martinus Nijhoff, CEC: Brussels.)

Starbuck, G. R., Darwash, A. O., Mann, G. E., and Lamming, G. E. (2001). The detection and treatment of post-insemination progesterone insufficiency in dairy cows. BSAS Occas. Pub 26, 447–450.

Sterry, R. A., Welle, M. L., and Fricke, P. M. (2006). Treatment with gonadotropin-releasing hormone after first times AI improve fertility in noncycling lactating dairy cows. J. Dairy Sci. 89, 4237–4245.
Treatment with gonadotropin-releasing hormone after first times AI improve fertility in noncycling lactating dairy cows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFensrbM&md5=138cbd8a15591f999181d531e39783a0CAS | 17033010PubMed |

Stevenson, J. S., Pursley, J. R., Garverick, H. A., Fricke, P. M., Kesler, D. J., Ottobre, J. S., and Wiltbank, M. C. (2006). Treatment of ccling and noncycling lactating dairy cows with progesterone during Ovsynch. J. Dairy Sci. 89, 2567–2578.
Treatment of ccling and noncycling lactating dairy cows with progesterone during Ovsynch.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmsVOlt7Y%3D&md5=d3ee98568b5575ea32d7dfbd11d0337dCAS | 16772576PubMed |

Stronge, A. J. H., Sreenan, J. M., Diskin, M. G., Mee, J. F., Kenny, D. A., and Morris, D. G. (2005). Post-insemination milk progesterone concentration and embryo survival in dairy cows. Theriogenology 64, 1212–1224.
Post-insemination milk progesterone concentration and embryo survival in dairy cows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpsVCgt7o%3D&md5=ed3000598522b95a95caf3791c5e5d4dCAS |

Sun, C., VanRaden, P. M., O’Connell, J. R., Weigel, K. A., and Gianola, D. (2013). Mating programs including genomic relationships and dominance effects. J. Dairy Sci. 96, 8014–8023.
Mating programs including genomic relationships and dominance effects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1Wiu7zE&md5=5464a89ade578b91cfaac3ea5acf8f5dCAS | 24119810PubMed |

Valour, D., Michot, P., Ecozenou, C., Lefebvre, R., Bonnet, A., Capitan, S., Uzbekova, S., Sellem, E., Ponsart, C., and Schibler, L. (2015). Dairy cattle reproduction is a tightly regulated genetic process: highlights on genes, pathways, and biological processes. Anim. Front. 5, 32–41.
Dairy cattle reproduction is a tightly regulated genetic process: highlights on genes, pathways, and biological processes.Crossref | GoogleScholarGoogle Scholar |

van Knegsel, A. T. M., van den Brand, H., Dijkstra, J., Tamminga, S., and Kemp, B. (2005). Effect of dietary energy source on energy balance, production, metabolic disorders and reproduction in lactating dairy cattle. Reprod. Nutr. Dev. 45, 665–688.
Effect of dietary energy source on energy balance, production, metabolic disorders and reproduction in lactating dairy cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVOjsro%3D&md5=b1a53a79b91961359a05fe1cb52a5b90CAS |

VanRaden, P. M., and Miller, R. H. (2006). Effects of nonadditive genetic interactions, inbreeding and recessive defects on embryo and fetal loss by seventy days. J. Dairy Sci. 89, 2716–2721.
Effects of nonadditive genetic interactions, inbreeding and recessive defects on embryo and fetal loss by seventy days.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmsVOltbw%3D&md5=2093e2493ec1de1a39d1587c0a6a10e5CAS | 16772590PubMed |

VanRaden, P. M., Olson, K. M., Null, D. J., and Hutchinson, J. L. (2011). Harmful recessive effects on fertility detected by absence of homozygous haplotypes. J. Dairy Sci. 94, 6153–6161.
Harmful recessive effects on fertility detected by absence of homozygous haplotypes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFClsbjM&md5=144369140a9cc0ddbbccf9aaeac8c0dbCAS | 22118103PubMed |

Vasconcelos, J. L. M., Silcox, R. W., Lacerda, J. A., Pursley, J. R., and Wiltbank, M. C. (1997). Pregnancy rate, pregnancy loss and response to heat stress after AI at 2 different times from ovulation in dairy cows. Biol. Reprod. 56, 140.

Wall, E., Brotherstone, S., Kearney, J. F., Wolliams, J. A., and Coffey, M. P. (2003). Effect of including inbreeding, heterosis and recombination loss in prediction of breeding values for fertility traits. Interbull Bull. 31, 117–121.

Waters, S. M., McCabe, M. S., Howard, D. J., Giblin, L., Magee, D. A., MacHugh, D. E., and Berry, D. P. (2011). Associations between newly discovered polymorphisms in the Bos taurus growth hormone receptor gene and performance traits in Holstein–Friesian dairy cattle. Anim. Genet. 42, 39–49.
Associations between newly discovered polymorphisms in the Bos taurus growth hormone receptor gene and performance traits in Holstein–Friesian dairy cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisFagsLY%3D&md5=23875d549328c8687fe898931f20f497CAS | 20528848PubMed |

Waters, S. M., Berry, D. P., and Mullen, M. P. (2012). Polymorphisms in genes of the somatotrophic axis are independently associated with milk production, udder health, survival and animal size in Holstein–Friesian dairy cattle. J. Anim. Breed. Genet. 129, 70–78.
Polymorphisms in genes of the somatotrophic axis are independently associated with milk production, udder health, survival and animal size in Holstein–Friesian dairy cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjtVKgurw%3D&md5=d067265546d64cc571e14826f2105e5bCAS | 22225586PubMed |

Wathes, D. C., Cheng, Z., Chowdhury, W., Fenwick, M. A., Fitzpatrick, R., Morris, D. G., Patton, J., and Murphy, J. J. (2009). Negative energy balance alters global gene expression and immune responses in the uterus of postpartum dairy cows. Physiol. Genomics 39, 1–13.
Negative energy balance alters global gene expression and immune responses in the uterus of postpartum dairy cows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlakt73F&md5=978c2257e8d5a09543cb6f64e0d4a207CAS | 19567787PubMed |

Wiebold, J. L. (1988). Embryonic mortality and the uterine environment in first service lactating dairy cows. J. Reprod. Fertil. 84, 393–399.
Embryonic mortality and the uterine environment in first service lactating dairy cows.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1M%2FmvVGntQ%3D%3D&md5=0faba81aa351537b6fb553155c88f04aCAS | 3199356PubMed |

Wiltbank, M. C., Souza, A. H., Cavalho, P. D., Cunha, A. P., O’Giordano, J. O., Fricke, P. M., Baez, G. M., and Diskin, M. G. (2014). Physiological and practical effects of progesterone on reproduction in dairy cattle. Animal 8, 70–81.
Physiological and practical effects of progesterone on reproduction in dairy cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXotF2qt74%3D&md5=4b97b3b39a653dbf5b955546dcadf403CAS | 24703103PubMed |