Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Suppression of Sertoli cell tumour development during the first wave of spermatogenesis in inhibin α-deficient mice

Jenna T. Haverfield A B , Peter G. Stanton A C , Kate L. Loveland A B C , Heba Zahid A D , Peter K. Nicholls A C , Justine S. Olcorn A C , Yogeshwar Makanji A , Catherine M. Itman E , Evan R. Simpson A C and Sarah J. Meachem A B F
+ Author Affiliations
- Author Affiliations

A Hudson Institute of Medical Research, 27–31 Wright Street, Clayton, Vic. 3168, Australia.

B Department of Anatomy and Developmental Biology, Monash University, Wellington Road and Blackburn Road, Clayton, Vic. 3800, Australia.

C Department of Biochemistry and Molecular Biology, Monash University, Wellington Road and Blackburn Road, Clayton, Vic. 3800, Australia.

D Faculty of Applied Medical Science, Taibah University, Al Madinah Al Monawarah, Universities Road, Medina, 30001, Saudi Arabia.

E Priority Research Centres for Reproductive Science and Chemical Biology, School of Environmental and Life Sciences, Faculty of Science and Information Technology, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia.

F Corresponding author. Email: sarah.meachem@princehenrys.org

Reproduction, Fertility and Development 29(3) 609-620 https://doi.org/10.1071/RD15239

Abstract

A dynamic partnership between follicle-stimulating hormone (FSH) and activin is required for normal Sertoli cell development and fertility. Disruptions to this partnership trigger Sertoli cells to deviate from their normal developmental pathway, as observed in inhibin α-knockout (Inha-KO) mice, which feature Sertoli cell tumours in adulthood. Here, we identified the developmental windows by which adult Sertoli cell tumourigenesis is most FSH sensitive. FSH was suppressed for 7 days in Inha-KO mice and wild-type littermates during the 1st, 2nd or 4th week after birth and culled in the 5th week to assess the effect on adult Sertoli cell development. Tumour growth was profoundly reduced in adult Inha-KO mice in response to FSH suppression during Weeks 1 and 2, but not Week 4. Proliferative Sertoli cells were markedly reduced in adult Inha-KO mice following FSH suppression during Weeks 1, 2 or 4, resulting in levels similar to those in wild-type mice, with greatest effect observed at the 2 week time point. Apoptotic Sertoli cells increased in adult Inha-KO mice after FSH suppression during Week 4. In conclusion, acute FSH suppression during the 1st or 2nd week after birth in Inha-KO mice profoundly suppresses Sertoli cell tumour progression, probably by inhibiting proliferation in the adult, with early postnatal Sertoli cells being most sensitive to FSH action.

Additional keywords: FSH, cancer, testis.


References

Abel, M. H., Wootton, A. N., Wilkins, V., Huhtaniemi, I., Knight, P. G., and Charlton, H. M. (2000). The effect of a null mutation in the follicle-stimulating hormone receptor gene on mouse reproduction. Endocrinology 141, 1795–1803.
| 1:CAS:528:DC%2BD3cXlt1WnsL0%3D&md5=1a1bbbdf6c073e4704e60b8a0c8f4994CAS | 10803590PubMed |

Ahmed, E. A., Barten-van Rijbroek, A. D., Kal, H. B., Sadri-Ardekani, H., Mizrak, S. C., van Pelt, A. M. M., and de Rooij, D. G. (2009). Proliferative activity in vitro and DNA repair indicate that adult mouse and human Sertoli cells are not terminally differentiated, quiescent cells. Biol. Reprod. 80, 1084–1091.
Proliferative activity in vitro and DNA repair indicate that adult mouse and human Sertoli cells are not terminally differentiated, quiescent cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtlGmsrY%3D&md5=c12906eb5a5839b51e16e35ef8852474CAS | 19164176PubMed |

Allan, C. M., Garcia, A., Spaliviero, J., Zhang, F.-P., Jimenez, M., Huhtaniemi, I., and Handelsman, D. J. (2004). Complete Sertoli cell proliferation induced by follicle-stimulating hormone (FSH) independently of luteinizing hormone activity: evidence from genetic models of isolated FSH action. Endocrinology 145, 1587–1593.
Complete Sertoli cell proliferation induced by follicle-stimulating hormone (FSH) independently of luteinizing hormone activity: evidence from genetic models of isolated FSH action.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXis1SjurY%3D&md5=47c5e13f4e8a5edf48a89c3f1ef62ceaCAS | 14726449PubMed |

Anway, M. D., Folmer, J., Wright, W. W., and Zirkin, B. R. (2003). Isolation of Sertoli cells from adult rat testes: an approach to ex vivo studies of Sertoli cell function. Biol. Reprod. 68, 996–1002.
Isolation of Sertoli cells from adult rat testes: an approach to ex vivo studies of Sertoli cell function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhsFGks7k%3D&md5=6b7c6ca6d0f20c6cab73554ea444d7d5CAS | 12604653PubMed |

Arslan, M., Weinbauer, G. F., Schlatt, S., Shahab, M., and Nieschlag, E. (1993). FSH and testosterone, alone or in combination, initiate testicular growth and increase the number of spermatogonia and Sertoli cells in a juvenile non-human primate (Macaca mulatta). J. Endocrinol. 136, 235–243.
FSH and testosterone, alone or in combination, initiate testicular growth and increase the number of spermatogonia and Sertoli cells in a juvenile non-human primate (Macaca mulatta).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXntlyqsg%3D%3D&md5=761e7b19b60043ee4fa064f8000f85bfCAS | 8459189PubMed |

Baker, P. J., and O’Shaughnessy, P. J. (2001). Role of gonadotrophins in regulating numbers of Leydig and Sertoli cells during fetal and postnatal development in mice. Reproduction 122, 227–234.
Role of gonadotrophins in regulating numbers of Leydig and Sertoli cells during fetal and postnatal development in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlvFWjtLo%3D&md5=c687b718ebd32e58d65dd1d61c33e1f2CAS | 11467973PubMed |

Barakat, B., O’Connor, A. E., Gold, E., de Kretser, D. M., and Loveland, K. L. (2008). Inhibin, activin, follistatin and FSH serum levels and testicular production are highly modulated during the first spermatogenic wave in mice. Reproduction 136, 345–359.
Inhibin, activin, follistatin and FSH serum levels and testicular production are highly modulated during the first spermatogenic wave in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1GmtL3O&md5=2a73564ba735d65bba236d11a7453de1CAS | 18515316PubMed |

Beumer, T. L., Roepers-Gajadien, H. L., Gademan, I. S., van Buul, P. P., Gil-Gomez, G., Rutgers, D. H., and de Rooij, D. G. (1998). The role of the tumor suppressor p53 in spermatogenesis. Cell Death Differ. 5, 669–677.
The role of the tumor suppressor p53 in spermatogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlslWgtrg%3D&md5=59c78214e3fde230c77e5f2a4f348e8fCAS | 10200522PubMed |

Boitani, C., Stefanini, M., Fragale, A., and Morena, A. R. (1995). Activin stimulates Sertoli cell proliferation in a defined period of rat testis development. Endocrinology 136, 5438–5444.
| 1:CAS:528:DyaK2MXps1Kisr8%3D&md5=3ff64665b9a1d0b60c61465ff679dc7fCAS | 7588293PubMed |

Bortolussi, M., Zanchetta, R., Belvedere, P., and Colombo, L. (1990). Sertoli and Leydig cell numbers and gonadotropin receptors in rat testis from birth to puberty. Cell Tissue Res. 260, 185–191.
Sertoli and Leydig cell numbers and gonadotropin receptors in rat testis from birth to puberty.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXit12qur0%3D&md5=faf9d48b52d2e8907f4ad726107106a1CAS | 2111226PubMed |

Burns, K. H., Agno, J. E., Chen, L., Haupt, B., Ogbonna, S. C., Korach, K. S., and Matzuk, M. M. (2003). Sexually dimorphic roles of steroid hormone receptor signaling in gonadal tumorigenesis. Mol. Endocrinol. 17, 2039–2052.
Sexually dimorphic roles of steroid hormone receptor signaling in gonadal tumorigenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXotFSrsb8%3D&md5=c94ba2b0dbe20624387bd3a5aba8079fCAS | 12855748PubMed |

Buzzard, J. J., Wreford, N. G., and Morrison, J. R. (2002). Marked extension of proliferation of rat Sertoli cells in culture using recombinant human FSH. Reproduction 124, 633–641.
Marked extension of proliferation of rat Sertoli cells in culture using recombinant human FSH.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXht1KltQ%3D%3D&md5=16fd649311baa272f0264fb05a55904eCAS | 12417001PubMed |

Buzzard, J. J., Farnworth, P. G., De Kretser, D. M., O’Connor, A. E., Wreford, N. G., and Morrison, J. R. (2003). Proliferative phase Sertoli cells display a developmentally regulated response to activin in vitro. Endocrinology 144, 474–483.
Proliferative phase Sertoli cells display a developmentally regulated response to activin in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtVWltro%3D&md5=16bee472c48677e2118528f5c05fb341CAS | 12538607PubMed |

Buzzard, J. J., Loveland, K. L., O’Bryan, M. K., O’Connor, A. E., Bakker, M., Hayashi, T., Wreford, N. G., Morrison, J. R., and de Kretser, D. M. (2004). Changes in circulating and testicular levels of inhibin A and B and activin A during postnatal development in the rat. Endocrinology 145, 3532–3541.
Changes in circulating and testicular levels of inhibin A and B and activin A during postnatal development in the rat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltFykt7s%3D&md5=63bd04334e9c1122ee25938b0ab4f29dCAS | 15070852PubMed |

Chaudhary, J., Johnson, J., Kim, G., and Skinner, M. K. (2001). Hormonal regulation and differential actions of the helix-loop-helix transcriptional inhibitors of differentiation (Id1, Id2, Id3, and Id4) in Sertoli cells. Endocrinology 142, 1727–1736.
| 1:CAS:528:DC%2BD3MXjt1akt74%3D&md5=630ae1af0b07e123af965a415b05a022CAS | 11316735PubMed |

Chaudhary, J., Sadler-Riggleman, I., Ague, J. M., and Skinner, M. K. (2005). The helix-loop-helix inhibitor of differentiation (ID) proteins induce post-mitotic terminally differentiated Sertoli cells to re-enter the cell cycle and proliferate. Biol. Reprod. 72, 1205–1217.
The helix-loop-helix inhibitor of differentiation (ID) proteins induce post-mitotic terminally differentiated Sertoli cells to re-enter the cell cycle and proliferate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjslSntrY%3D&md5=bdd4874ae5a4f6d6d55bb0c6f7ea549aCAS | 15647457PubMed |

Chausiaux, O. E., Abel, M. H., Baxter, F. O., Khaled, W. T., Ellis, P. J. I., Charlton, H. M., and Affara, N. A. (2008). Hypogonadal mouse, a model to study the effects of the endogenous lack of gonadotropins on apoptosis. Biol. Reprod. 78, 77–90.
Hypogonadal mouse, a model to study the effects of the endogenous lack of gonadotropins on apoptosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlslE%3D&md5=e59e06be7e102d92ad12fa05ceb218deCAS | 17671269PubMed |

Choi, E. K., Lee, Y. H., Choi, Y. S., Kwon, H. M., Choi, M. S., Ro, J. Y., Park, S.-K., and Yu, E. (2002). Heterogeneous expression of Ku70 in human tissues is associated with morphological and functional alterations of the nucleus. J. Pathol. 198, 121–130.
Heterogeneous expression of Ku70 in human tissues is associated with morphological and functional alterations of the nucleus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xns1Wiu7w%3D&md5=1dc2480bb4c8008413f3e88a06dc8b80CAS | 12210072PubMed |

Chui, K., Trivedi, A., Cheng, C. Y., Cherbavaz, D. B., Dazin, P. F., Huynh, A. L. T., Mitchell, J. B., Rabinovich, G. A., Noble-Haeusslein, L. J., and John, C. M. (2011). Characterization and functionality of proliferative human Sertoli cells. Cell Transplant. 20, 619–635.
Characterization and functionality of proliferative human Sertoli cells.Crossref | GoogleScholarGoogle Scholar | 21054948PubMed |

Crépieux, P., Marion, S., Martinat, N., Fafeur, V., Vern, Y. L., Kerboeuf, D., Guillou, F., and Reiter, E. (2001). The ERK-dependent signalling is stage-specifically modulated by FSH, during primary Sertoli cell maturation. Oncogene 20, 4696–4709.
The ERK-dependent signalling is stage-specifically modulated by FSH, during primary Sertoli cell maturation.Crossref | GoogleScholarGoogle Scholar | 11498792PubMed |

Griswold, M. D. (1998). The central role of Sertoli cells in spermatogenesis. Semin. Cell Dev. Biol. 9, 411–416.
The central role of Sertoli cells in spermatogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlvFyl&md5=171e22e4b3599291d36c604081bff1e6CAS | 9813187PubMed |

Hamer, G., Roepers-Gajadien, H. L., van Duyn-Goedhart, A., Gademan, I. S., Kal, H. B., van Buul, P. P. W., Ashley, T., and de Rooij, D. G. (2003). Function of DNA–protein kinase catalytic subunit during the early meiotic prophase without Ku70 and Ku86. Biol. Reprod. 68, 717–721.
Function of DNA–protein kinase catalytic subunit during the early meiotic prophase without Ku70 and Ku86.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhsFGlurw%3D&md5=c980e6e2e99a7395c2a3c69e043c6ea9CAS | 12604618PubMed |

Hamer, G., Kal, H. B., Westphal, C. H., Ashley, T., and de Rooij, D. G. (2004). Ataxia telangiectasia mutated expression and activation in the testis. Biol. Reprod. 70, 1206–1212.
Ataxia telangiectasia mutated expression and activation in the testis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXis1Shsrc%3D&md5=2755419458318b8b554d6f4ee5e3c06aCAS | 14681204PubMed |

Haverfield, J. T., Ham, S., Brown, K. A., Simpson, E. R., and Meachem, S. J. (2011). Teasing out the role of aromatase in the healthy and diseased testis. Spermatogenesis 1, 240–249.
Teasing out the role of aromatase in the healthy and diseased testis.Crossref | GoogleScholarGoogle Scholar | 22319672PubMed |

Haverfield, J. T., Meachem, S. J., O’Bryan, M. K., McLachlan, R. I., and Stanton, P. G. (2013). Claudin-11 and connexin-43 display altered spatial patterns of organization in men with primary seminiferous tubule failure compared with controls. Fertil. Steril. 100, 658–666.e3.
Claudin-11 and connexin-43 display altered spatial patterns of organization in men with primary seminiferous tubule failure compared with controls.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXovVCgsL8%3D&md5=001e903386ac52fc072c9660ab64d18aCAS | 23706332PubMed |

Haverfield, J. T., Meachem, S. J., Nicholls, P. K., Rainczuk, K. E., Simpson, E. R., and Stanton, P. G. (2014). Differential permeability of the blood–testis barrier during re-initiation of spermatogenesis in adult male rats. Endocrinology 155, 1131–1144.
Differential permeability of the blood–testis barrier during re-initiation of spermatogenesis in adult male rats.Crossref | GoogleScholarGoogle Scholar | 24424039PubMed |

Hazra, R., Corcoran, L., Robson, M., McTavish, K. J., Upton, D., Handelsman, D. J., and Allan, C. M. (2013). Temporal role of Sertoli cell androgen receptor expression in spermatogenic development. Mol. Endocrinol. 27, 12–24.
Temporal role of Sertoli cell androgen receptor expression in spermatogenic development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlvVymsg%3D%3D&md5=a4882ccea6c82475b571ebfefaa36117CAS | 23160479PubMed |

Hedger, M. P., and Winnall, W. R. (2012). Regulation of activin and inhibin in the adult testis and the evidence for functional roles in spermatogenesis and immunoregulation. Mol. Cell. Endocrinol. 359, 30–42.
Regulation of activin and inhibin in the adult testis and the evidence for functional roles in spermatogenesis and immunoregulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XnslOjs7k%3D&md5=a9c34715a2c307e2db63d9aa5b2bb53aCAS | 21964464PubMed |

Hu, J., Shima, H., and Nakagawa, H. (1999). Glial cell line-derived neurotropic factor stimulates sertoli cell proliferation in the early postnatal period of rat testis development. Endocrinology 140, 3416–3421.
Glial cell line-derived neurotropic factor stimulates sertoli cell proliferation in the early postnatal period of rat testis development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXkslKrtb8%3D&md5=8dead86420877588c77639fbe278fac1CAS | 10433195PubMed |

Itman, C., Small, C., Griswold, M., Nagaraja, A. K., Matzuk, M. M., Brown, C. W., Jans, D. A., and Loveland, K. L. (2009). Developmentally regulated SMAD2 and SMAD3 utilization directs activin signaling outcomes. Dev. Dyn. 238, 1688–1700.
Developmentally regulated SMAD2 and SMAD3 utilization directs activin signaling outcomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXovV2nu78%3D&md5=9a066baa422087d533521c9460bfcce1CAS | 19517569PubMed |

Kanematsu, T., Irahara, M., Miyake, T., Shitsukawa, K., and Aono, T. (1991). Effect of insulin-like growth factor I on gonadotropin release from the hypothalamus–pituitary axis in vitro. Acta Endocrinol. (Copenh.) 125, 227–233.
| 1:CAS:528:DyaK3MXlvF2ltr8%3D&md5=efb13bbcc2a1a862b0039fd8662cab04CAS | 1910244PubMed |

Ketelslegers, J.-M., Hetzel, W. D., Sherins, R. J., and Catt, K. J. (1978). Developmental changes in testicular gonadotropin receptors: plasma gonadotropins and plasma testosterone in the rat. Endocrinology 103, 212–222.
Developmental changes in testicular gonadotropin receptors: plasma gonadotropins and plasma testosterone in the rat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXlt1KktbY%3D&md5=e437f2ebd97b55aa9fab7eb8dd46ea15CAS | 217637PubMed |

Kluin, P. M., Kramer, M. F., and Rooij, D. G. (1984). Proliferation of spermatogonia and Sertoli cells in maturing mice. Anat. Embryol. (Berl.) 169, 73–78.
Proliferation of spermatogonia and Sertoli cells in maturing mice.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2c3gtFSmsA%3D%3D&md5=c10080b84bd857a2df4b808a85ad6d6eCAS | 6721222PubMed |

Knight, P. G., Muttukrishna, S., and Groome, N. P. (1996). Development and application of a two-site enzyme immunoassay for the determination of ‘total’ activin-A concentrations in serum and follicular fluid. J. Endocrinol. 148, 267–279.
Development and application of a two-site enzyme immunoassay for the determination of ‘total’ activin-A concentrations in serum and follicular fluid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhtVCrsrg%3D&md5=8e305a3b3948aa42df8d0df36ea37771CAS | 8699141PubMed |

Kumar, T. R., Wang, Y., and Matzuk, M. M. (1996). Gonadotropins are essential modifier factors for gonadal tumor development in inhibin-deficient mice. Endocrinology 137, 4210–4216.
| 1:CAS:528:DyaK28XlvVSntbs%3D&md5=65364a976de3eea27d75c4d44044e342CAS | 8828479PubMed |

Kumar, T. R., Palapattu, G., Wang, P., Woodruff, T. K., Boime, I., Byrne, M. C., and Matzuk, M. M. (1999). Transgenic models to study gonadotropin function: the role of follicle-stimulating hormone in gonadal growth and tumorigenesis. Mol. Endocrinol. 13, 851–865.
Transgenic models to study gonadotropin function: the role of follicle-stimulating hormone in gonadal growth and tumorigenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjs1ynsro%3D&md5=6c690655fcba74d60142ac1fa07586e5CAS | 10379885PubMed |

Li, Q., Graff, J. M., O’Connor, A. E., Loveland, K. L., and Matzuk, M. M. (2007a). SMAD3 regulates gonadal tumorigenesis. Mol. Endocrinol. 21, 2472–2486.
SMAD3 regulates gonadal tumorigenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFGhu7bE&md5=5fc981135f358b9c8d0d150d8772cb33CAS | 17595316PubMed |

Li, Q., Kumar, R., Underwood, K., O’Connor, A. E., Loveland, K. L., Seehra, J. S., and Matzuk, M. M. (2007b). Prevention of cachexia-like syndrome development and reduction of tumor progression in inhibin-deficient mice following administration of a chimeric activin receptor type II-murine Fc protein. Mol. Hum. Reprod. 13, 675–683.
Prevention of cachexia-like syndrome development and reduction of tumor progression in inhibin-deficient mice following administration of a chimeric activin receptor type II-murine Fc protein.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVSgtL7M&md5=6932d6f72ac42f03a967d04c7e6ec50bCAS | 17704537PubMed |

Lin, C. Y., Lovén, J., Rahl, P. B., Paranal, R. M., Burge, C. B., Bradner, J. E., Lee, T. I., and Young, R. A. (2012). Transcriptional amplification in tumor cells with elevated c-Myc. Cell 151, 56–67.
Transcriptional amplification in tumor cells with elevated c-Myc.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsValsLjO&md5=582f1e077c407e410a8ceed686960504CAS | 23021215PubMed |

Looyenga, B. D., and Hammer, G. D. (2007). Genetic removal of Smad3 from inhibin-null mice attenuates tumor progression by uncoupling extracellular mitogenic signals from the cell cycle machinery. Mol. Endocrinol. 21, 2440–2457.
Genetic removal of Smad3 from inhibin-null mice attenuates tumor progression by uncoupling extracellular mitogenic signals from the cell cycle machinery.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFGhu7bK&md5=45c743b360a1a7d35673aebbb6d73555CAS | 17652186PubMed |

Ludlow, H., Phillips, D. J., Myers, M., McLachlan, R. I., de Kretser, D. M., Allan, C. A., Anderson, R. A., Groome, N. P., Hyvönen, M., Duncan, W. C., and Muttukrishna, S. (2009). A new ‘total’ activin B enzyme-linked immunosorbent assay (ELISA): development and validation for human samples. Clin. Endocrinol. (Oxf.) 71, 867–873.
A new ‘total’ activin B enzyme-linked immunosorbent assay (ELISA): development and validation for human samples.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1Sjtb3I&md5=a77907390babbef99062c28bd6c4b6eaCAS | 19486020PubMed |

Matson, C. K., Murphy, M. W., Sarver, A. L., Griswold, M. D., Bardwell, V. J., and Zarkower, D. (2011). DMRT1 prevents female reprogramming in the postnatal mammalian testis. Nature 476, 101–104.
DMRT1 prevents female reprogramming in the postnatal mammalian testis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptV2itrY%3D&md5=278357003c9ced92403f6a0b229d55f0CAS | 21775990PubMed |

Matzuk, M. M., Finegold, M. J., Su, J. G., Hsueh, A. J., and Bradley, A. (1992). Alpha-inhibin is a tumour-suppressor gene with gonadal specificity in mice. Nature 360, 313–319.
Alpha-inhibin is a tumour-suppressor gene with gonadal specificity in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXhs1Gitw%3D%3D&md5=8e9c9a2d58decd9820b8d19edef4daa0CAS | 1448148PubMed |

Mazeyrat, S., Saut, N., Grigoriev, V., Mahadevaiah, S. K., Ojarikre, O. A., Rattigan, Á., Bishop, C., Eicher, E. M., Mitchell, M. J., and Burgoyne, P. S. (2001). A Y-encoded subunit of the translation initiation factor Eif2 is essential for mouse spermatogenesis. Nat. Genet. 29, 49–53.
A Y-encoded subunit of the translation initiation factor Eif2 is essential for mouse spermatogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmvFGmsbY%3D&md5=7f88a02c884227b4f56fc10ed7601592CAS | 11528390PubMed |

McCabe, M. J., Tarulli, G. A., Meachem, S. J., Robertson, D. M., Smooker, P. M., and Stanton, P. G. (2010). Gonadotropins regulate rat testicular tight junctions in vivo. Endocrinology 151, 2911–2922.
Gonadotropins regulate rat testicular tight junctions in vivo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnsVyqtbc%3D&md5=064c517ce7a52ce3d8f7f57f229415cbCAS | 20357222PubMed |

McDonald, C. A., Millena, A. C., Reddy, S., Finlay, S., Vizcarra, J., Khan, S. A., and Davis, J. S. (2006). Follicle-stimulating hormone-induced aromatase in immature rat Sertoli cells requires an active phosphatidylinositol 3-kinase pathway and is inhibited via the mitogen-activated protein kinase signaling pathway. Mol. Endocrinol. 20, 608–618.
Follicle-stimulating hormone-induced aromatase in immature rat Sertoli cells requires an active phosphatidylinositol 3-kinase pathway and is inhibited via the mitogen-activated protein kinase signaling pathway.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xit1SnsLY%3D&md5=ee6d8fda450e60d693418e6c8e0c7ba8CAS | 16269516PubMed |

McLachlan, R. I., Wreford, N. G., de Kretser, D. M., and Robertson, D. M. (1995). The effects of recombinant follicle-stimulating hormone on the restoration of spermatogenesis in the gonadotropin-releasing hormone-immunized adult rat. Endocrinology 136, 4035–4043.
| 1:CAS:528:DyaK2MXns1WgtLc%3D&md5=4bdb8f7c59127aeab615ace722e7bdf8CAS | 7649112PubMed |

Meachem, S. J., McLachlan, R. I., de Kretser, D. M., Robertson, D. M., and Wreford, N. G. (1996). Neonatal exposure of rats to recombinant follicle stimulating hormone increases adult Sertoli and spermatogenic cell numbers. Biol. Reprod. 54, 36–44.
Neonatal exposure of rats to recombinant follicle stimulating hormone increases adult Sertoli and spermatogenic cell numbers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXhtVSisLrP&md5=40a99bf4e350756154d9564da6901ef6CAS | 8837998PubMed |

Meachem, S. J., Wreford, N. G., Robertson, D. M., and McLachlan, R. I. (1997). Androgen action on the restoration of spermatogenesis in adult rats: effects of human chorionic gonadotrophin, testosterone and flutamide administration on germ cell number. Int. J. Androl. 20, 70–79.
Androgen action on the restoration of spermatogenesis in adult rats: effects of human chorionic gonadotrophin, testosterone and flutamide administration on germ cell number.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlvFaqtLo%3D&md5=8166c4d31eef4064931c83a1bbd09a6cCAS | 9292316PubMed |

Meachem, S. J., Wreford, N. G., Stanton, P. G., Robertson, D. M., and McLachlan, R. I. (1998). Follicle-stimulating hormone is required for the initial phase of spermatogenic restoration in adult rats following gonadotropin suppression. J. Androl. 19, 725–735.
| 1:CAS:528:DyaK1MXktlKrsg%3D%3D&md5=bdf4d67e8532af3dfc8155ab3ecf5505CAS | 9876024PubMed |

Meachem, S. J., Mclachlan, R. I., Stanton, P. G., Robertson, D. M., and Wreford, N. G. (1999). FSH immunoneutralization acutely impairs spermatogonial development in normal adult rats. J. Androl. 20, 756–762.
| 1:CAS:528:DyaK1MXotVOrtLY%3D&md5=84744c8cf39357b8f6bf21d8722a2d9aCAS | 10591615PubMed |

Meachem, S. J., Ruwanpura, S. M., Ziolkowski, J., Ague, J. M., Skinner, M. K., and Loveland, K. L. (2005a). Developmentally distinct in vivo effects of FSH on proliferation and apoptosis during testis maturation. J. Endocrinol. 186, 429–446.
Developmentally distinct in vivo effects of FSH on proliferation and apoptosis during testis maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVygt7%2FE&md5=6389c9acfe21d913bdd00e50568210b8CAS | 16135663PubMed |

Meachem, S. J., Stanton, P. G., and Schlatt, S. (2005b). Follicle-stimulating hormone regulates both sertoli cell and spermatogonial populations in the adult photoinhibited Djungarian hamster testis. Biol. Reprod. 72, 1187–1193.
Follicle-stimulating hormone regulates both sertoli cell and spermatogonial populations in the adult photoinhibited Djungarian hamster testis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjslSntrg%3D&md5=e749a0eb5f24f7fdd2772bbc416b0587CAS | 15659702PubMed |

Meehan, T., Schlatt, S., O’Bryan, M. K., de Kretser, D. M., and Loveland, K. L. (2000). Regulation of germ cell and Sertoli cell development by activin, follistatin, and FSH. Dev. Biol. 220, 225–237.
Regulation of germ cell and Sertoli cell development by activin, follistatin, and FSH.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXit1ClsL4%3D&md5=61549610f1c222acbc66e016ba30c189CAS | 10753512PubMed |

Muffly, K. E., Nazian, S. J., and Cameron, D. F. (1994). Effects of follicle-stimulating hormone on the junction-related Sertoli cell cytoskeleton and daily sperm production in testosterone-treated hypophysectomized rats. Biol. Reprod. 51, 158–166.
Effects of follicle-stimulating hormone on the junction-related Sertoli cell cytoskeleton and daily sperm production in testosterone-treated hypophysectomized rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXkt1OgtLs%3D&md5=5e4b1f99964c3b63f61802351f027814CAS | 7918871PubMed |

Nicholls, P. K., Stanton, P. G., Chen, J. L., Olcorn, J. S., Haverfield, J. T., Qian, H., Walton, K. L., Gregorevic, P., and Harrison, C. A. (2012). Activin signaling regulates Sertoli cell differentiation and function. Endocrinology 153, 6065–6077.
Activin signaling regulates Sertoli cell differentiation and function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVahtbbM&md5=f6445740356872316889bd2e7879c771CAS | 23117933PubMed |

O’Shaughnessy, P. J., Monteiro, A., and Abel, M. (2012). Testicular development in mice lacking receptors for follicle stimulating hormone and androgen. PLoS One 7, e35136.
Testicular development in mice lacking receptors for follicle stimulating hormone and androgen.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xmt1ehtr4%3D&md5=d41094071ddb6af547d663797382e781CAS | 22514715PubMed |

Okuma, Y., O’Connor, A. E., Hayashi, T., Loveland, K. L., de Kretser, D. M., and Hedger, M. P. (2006). Regulated production of activin A and inhibin B throughout the cycle of the seminiferous epithelium in the rat. J. Endocrinol. 190, 331–340.
Regulated production of activin A and inhibin B throughout the cycle of the seminiferous epithelium in the rat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xpt1WjtLw%3D&md5=6db37bd505a5ad46269bcde3697cb449CAS | 16899566PubMed |

Orth, J. M. (1982). Proliferation of Sertoli cells in fetal and postnatal rats: a quantitative autoradiographic study. Anat. Rec. 203, 485–492.
Proliferation of Sertoli cells in fetal and postnatal rats: a quantitative autoradiographic study.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL3s%2Fks1eqsg%3D%3D&md5=abded53ce2e8ce4cbf8f87761923db1dCAS | 7137603PubMed |

Orth, J. M. (1984). The role of follicle-stimulating hormone in controlling Sertoli cell proliferation in testes of fetal rats. Endocrinology 115, 1248–1255.
The role of follicle-stimulating hormone in controlling Sertoli cell proliferation in testes of fetal rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXlvVCntL8%3D&md5=9acf895b2e5103caa8887a93e67dfaf0CAS | 6090096PubMed |

Petersen, C., Boitani, C., Fröysa, B., and Söder, O. (2002). Interleukin-1 is a potent growth factor for immature rat sertoli cells. Mol. Cell. Endocrinol. 186, 37–47.
Interleukin-1 is a potent growth factor for immature rat sertoli cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xht1ait7g%3D&md5=8c4beb9813a09c206701aefd058c11f0CAS | 11850120PubMed |

Pitetti, J.-L., Calvel, P., Zimmermann, C., Conne, B., Papaioannou, M. D., Aubry, F., Cederroth, C., Urner, F., Fumel, B., Crausaz, M., Docquier, M., Herrera, P. L., Pralong, F., Germond, M., Guillou, F., Jégou, B., and Nef, S. (2013). An essential role for insulin and IGF1 receptors in regulating Sertoli cells proliferation, testis size and FSH action in mice. Mol. Endocrinol. 27, 814–827.
An essential role for insulin and IGF1 receptors in regulating Sertoli cells proliferation, testis size and FSH action in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnsFSisL4%3D&md5=203d8b6898dcab53894d5c5acbcf71e1CAS | 23518924PubMed |

Raivio, T., Toppari, J., Perheentupa, A., McNeilly, A. S., and Dunkel, L. (1997). Treatment of prepubertal gonadotrophin-deficient boys with recombinant human follicle-stimulating hormone. Lancet 350, 263–264.
Treatment of prepubertal gonadotrophin-deficient boys with recombinant human follicle-stimulating hormone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlsVGhsLs%3D&md5=67a3a40d84057e75426ccd3109a3be50CAS | 9242808PubMed |

Raivio, T., Wikström, A. M., and Dunkel, L. (2007). Treatment of gonadotropin-deficient boys with recombinant human FSH: long-term observation and outcome. Eur. J. Endocrinol. 156, 105–111.
Treatment of gonadotropin-deficient boys with recombinant human FSH: long-term observation and outcome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXntlyqur8%3D&md5=0495c98ab40b259d0110208849f4e85bCAS | 17218732PubMed |

Riera, M. F., Regueira, M., Galardo, M. N., Pellizzari, E. H., Meroni, S. B., and Cigorraga, S. B. (2012). Signal transduction pathways in FSH regulation of rat Sertoli cell proliferation. Am. J. Physiol. Endocrinol. Metab. 302, E914–E923.
Signal transduction pathways in FSH regulation of rat Sertoli cell proliferation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xmsl2gtL4%3D&md5=9b1eebd22b4d6ac6c27b89bf88a9d71eCAS | 22275758PubMed |

Robertson, D. M., Foulds, L. M., Leversha, L., Morgan, F. J., Hearn, M. T., Burger, H. G., Wettenhall, R. E., and de Kretser, D. M. (1985). Isolation of inhibin from bovine follicular fluid. Biochem. Biophys. Res. Commun. 126, 220–226.
Isolation of inhibin from bovine follicular fluid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXhtVKmtbs%3D&md5=5409aed7cfedc43dafdd692cb3b9ff89CAS | 3918529PubMed |

Russell, L. D., and Clermont, Y. (1977). Degeneration of germ cells in normal, hypophysectomized and hormone treated hypophysectomized rats. Anat. Rec. 187, 347–365.
Degeneration of germ cells in normal, hypophysectomized and hormone treated hypophysectomized rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXktVSmsrg%3D&md5=be018db72d97c7ee37b1ba0673d290d2CAS | 851237PubMed |

Sablitzky, F., Moore, A., Bromley, M., Deed, R., Newton, J., and Norton, J. (1998). Stage- and subcellular-specific expression of Id proteins in male germ and Sertoli cells implicates distinctive regulatory roles for Id proteins during meiosis, spermatogenesis, and Sertoli cell function. Cell Growth Differ. 9, 1015–1024.
| 1:CAS:528:DyaK1MXitlOk&md5=77632d140937de6f4d4ae9498f63a236CAS | 9869302PubMed |

Schlatt, S., Arslan, M., Weinbauer, G. F., Behre, H. M., and Nieschlag, E. (1995). Endocrine control of testicular somatic and premeiotic germ cell development in the immature testis of the primate Macaca mulatta. Eur. J. Endocrinol. 133, 235–247.
Endocrine control of testicular somatic and premeiotic germ cell development in the immature testis of the primate Macaca mulatta.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXnsFGjtrs%3D&md5=473a553fb26e5d949e701ed49bce40e6CAS | 7655650PubMed |

Sertoli, E. (1878). Sulla sturttura dei canalicoli seminiferi dei testicolo. Arch. Sci. Med. (Torino) 2, 107–146, 267–295.

Sharpe, R. M., McKinnell, C., Kivlin, C., and Fisher, J. S. (2003). Proliferation and functional maturation of Sertoli cells, and their relevance to disorders of testis function in adulthood. Reproduction 125, 769–784.
Proliferation and functional maturation of Sertoli cells, and their relevance to disorders of testis function in adulthood.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXltFelt7c%3D&md5=37a446babf7b1da6681cb5d807983e1bCAS | 12773099PubMed |

Shou, W., Woodruff, T. K., and Matzuk, M. M. (1997). Role of androgens in testicular tumor development in inhibin-deficient mice. Endocrinology 138, 5000–5005.
| 1:CAS:528:DyaK2sXmslGrtrg%3D&md5=4a02d4f870bc5fa229408b6903369e5dCAS | 9348231PubMed |

Singh, J., and Handelsman, D. J. (1996). Neonatal administration of FSH increases Sertoli cell numbers and spermatogenesis in gonadotropin-deficient (hpg) mice. J. Endocrinol. 151, 37–48.
Neonatal administration of FSH increases Sertoli cell numbers and spermatogenesis in gonadotropin-deficient (hpg) mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmvVentL4%3D&md5=0cc424ca5dd31ab84941cb32350c68d4CAS | 8943767PubMed |

Soldani, R., Cagnacci, A., and Yen, S. S. (1994). Insulin, insulin-like growth factor I (IGF-I) and IGF-II enhance basal and gonadotrophin-releasing hormone-stimulated luteinizing hormone release from rat anterior pituitary cells in vitro. Eur. J. Endocrinol. 131, 641–645.
Insulin, insulin-like growth factor I (IGF-I) and IGF-II enhance basal and gonadotrophin-releasing hormone-stimulated luteinizing hormone release from rat anterior pituitary cells in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXivVGgs7o%3D&md5=dc289f734e932dd0b2a00ce1e82d8d1eCAS | 7804448PubMed |

Steinberger, A., and Steinberger, E. (1971). Replication pattern of Sertoli cells in maturing rat testis in vivo and in organ culture. Biol. Reprod. 4, 84–87.
| 1:STN:280:DyaE38%2FitVWksg%3D%3D&md5=80a8430ce136fa87dbea8c0e95184744CAS | 5110903PubMed |

Tarulli, G. A., Stanton, P. G., Lerchl, A., and Meachem, S. J. (2006). Adult sertoli cells are not terminally differentiated in the Djungarian hamster: effect of FSH on proliferation and junction protein organization. Biol. Reprod. 74, 798–806.
Adult sertoli cells are not terminally differentiated in the Djungarian hamster: effect of FSH on proliferation and junction protein organization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xjsl2jtb8%3D&md5=e5803141a05d50f19627205d68e9faecCAS | 16407497PubMed |

Tarulli, G. A., Stanton, P. G., and Meachem, S. J. (2012). Is the adult Sertoli cell terminally differentiated? Biol. Reprod. 87, 13.
Is the adult Sertoli cell terminally differentiated?Crossref | GoogleScholarGoogle Scholar | 22492971PubMed |

Tarulli, G. A., Stanton, P. G., Loveland, K. L., Meyts, E. R.-D., McLachlan, R. I., and Meachem, S. J. (2013). A survey of Sertoli cell differentiation in men after gonadotropin suppression and in testicular cancer. Spermatogenesis 3, e24014.
A survey of Sertoli cell differentiation in men after gonadotropin suppression and in testicular cancer.Crossref | GoogleScholarGoogle Scholar | 23687617PubMed |

Tesarik, J., Guido, M., Mendoza, C., and Greco, E. (1998). Human spermatogenesis in vitro: respective effects of follicle-stimulating hormone and testosterone on meiosis, spermiogenesis, and Sertoli cell apoptosis. J. Clin. Endocrinol. Metab. 83, 4467–4473.
Human spermatogenesis in vitro: respective effects of follicle-stimulating hormone and testosterone on meiosis, spermiogenesis, and Sertoli cell apoptosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnvFOrurk%3D&md5=f68f3bb71db06b4b063f97575d0d0c27CAS | 9851795PubMed |

Vergouwen, R. P. F. A., Jacobs, S. G. P. M., Huiskamp, R., Davids, J. G., and de Rooij, D. G. (1991). Proliferative activity of gonocytes, Sertoli cells and interstitial cells during testicular development in mice. J. Reprod. Fertil. 93, 233–243.
Proliferative activity of gonocytes, Sertoli cells and interstitial cells during testicular development in mice.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK38%2FhsFSmsg%3D%3D&md5=647c2c38f256affaec56ec3f6f1e25d7CAS |

Walker, W. H., and Cheng, J. (2005). FSH and testosterone signaling in Sertoli cells. Reproduction 130, 15–28.
FSH and testosterone signaling in Sertoli cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXnt1ynsrk%3D&md5=b96ae9bcc93148e3e116eab854836717CAS | 15985628PubMed |

Wreford, N. G., Kumar, T. R., Matzuk, M. M., and de Kretser, D. M. (2001). Analysis of the testicular phenotype of the follicle-stimulating hormone β-subunit knockout and the activin type II receptor knockout mice by stereological analysis. Endocrinology 142, 2916–2920.
| 1:CAS:528:DC%2BD3MXkslelsb4%3D&md5=551efe809e5f4c5f3485bdd230f82b98CAS | 11416011PubMed |

Xiao, G.-Q., Granato, R. C., and Unger, P. D. (2012). Bilateral Sertoli cell tumors of the testis: a likely new extracolonic manifestation of familial adenomatous polyposis. Virchows Arch. 461, 713–715.
| 1:CAS:528:DC%2BC38XhslKgtrnN&md5=6ea5c631b8510bac428536fce06afd35CAS | 23090627PubMed |

Yagi, M., Takenaka, M., Suzuki, K., and Suzuki, H. (2007). Reduced mitotic activity and increased apoptosis of fetal Sertoli Cells in rat hypogonadic (hgn/hgn) testes. J. Reprod. Dev. 53, 581–589.
Reduced mitotic activity and increased apoptosis of fetal Sertoli Cells in rat hypogonadic (hgn/hgn) testes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXosVylsLo%3D&md5=4fde10af9c2269383419ced70c7e6b64CAS | 17310077PubMed |