Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Fertilisation of cryopreserved sperm and unfertilised quail ovum by intracytoplasmic sperm injection

Kyung Soo Kang A , Tae Sub Park B , Deivendran Rengaraj C , Hyung Chul Lee A , Hong Jo Lee A , Hee Jung Choi A , Shusei Mizushima D , Tamao Ono E and Jae Yong Han A F G
+ Author Affiliations
- Author Affiliations

A Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea.

B Graduate School of International Agricultural Technology and Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang-gun, Gangwon-do 232-916, Korea.

C Department of Animal Science and Technology, Chung-Ang University, Anseong 456-756, Korea.

D Department of Applied Biological Chemistry, Faculty of Agriculture, Shizuoka University, 836 Ohya, Shizuoka 422-8529, Japan.

E Division of Animal Science, Faculty of Agriculture, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano 399-4598, Japan.

F Institute for Biomedical Sciences, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano 399-4598, Japan.

G Corresponding author. Email: jaehan@snu.ac.kr

Reproduction, Fertility and Development 28(12) 1974-1981 https://doi.org/10.1071/RD15126
Submitted: 30 March 2015  Accepted: 2 June 2015   Published: 6 July 2015

Abstract

Intracytoplasmic sperm injection (ICSI) is an important technique in animal biotechnology for animal cloning and conservation of genetic resources, but has been a challenge for avian species. In the present study, we investigated the ability of cryopreserved quail spermatozoa to achieve fertilisation and embryo development. Female quail were killed 70–120 min after previous oviposition to collect unfertilised oocytes from the oviduct. Fresh or cryopreserved–thawed spermatozoa were injected into the cytoplasm of unfertilised oocytes, and the manipulated oocytes were incubated in quail surrogate eggshells. Injection of fresh spermatozoa supplemented with inositol 1,4,5-trisphosphate (IP3) resulted in a significantly increased rate of embryo development compared with injection of fresh spermatozoa alone (90% vs 13%, respectively). Although >80% of embryos stopped cell division and development before Hamburger and Hamilton (HH) Stage 3, approximately 15% of embryos from the fresh sperm injection developed to past HH Stage 4, and one embryo survived up to HH Stage 39 (11 days of incubation). In the case of cryopreserved spermatozoa, the embryo development rate was 30% after ICSI, and this increased significantly to 74% with IP3 supplementation. In conclusion, cryopreserved spermatozoa combined with ICSI followed by surrogate eggshell culture can develop quail embryos.

Additional keyword: surrogate eggshell.


References

Ainsworth, S. J., Stanley, R. L., and Evans, D. J. R. (2010). Developmental stages of the Japanese quail. J. Anat. 216, 3–15.
Developmental stages of the Japanese quail.Crossref | GoogleScholarGoogle Scholar | 19929907PubMed |

Bakst, M. R., and Sexton, T. J. (1979). Fertilizing capacity and ultrastructure of fowl and turkey spermatozoa before and after freezing. J. Reprod. Fertil. 55, 1–7.
Fertilizing capacity and ultrastructure of fowl and turkey spermatozoa before and after freezing.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE1M7jt1eisQ%3D%3D&md5=6f8aa2508eb5851d23f755edcdc349d6CAS | 423146PubMed |

Bellagamba, F., Cerolini, S., and Cavalchini, L. G. (1993). Cryopreservation of poultry semen: a review. Worlds Poult. Sci. J. 49, 157–166.
Cryopreservation of poultry semen: a review.Crossref | GoogleScholarGoogle Scholar |

Blesbois, E. (2007). Current status in avian semen cryopreservation. Worlds Poult. Sci. J. 63, 213–222.
Current status in avian semen cryopreservation.Crossref | GoogleScholarGoogle Scholar |

Blesbois, E., Grasseau, I., and Seigneurin, F. (2005). Membrane fluidity and the ability of domestic bird spermatozoa to survive cryopreservation. Reproduction 129, 371–378.
Membrane fluidity and the ability of domestic bird spermatozoa to survive cryopreservation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjslSntLc%3D&md5=408d1c1bac306431e996a014e6f999d2CAS | 15749963PubMed |

Byun, S. J., Kim, S. W., Kim, K. W., Kim, J. S., Hwang, I. S., Chung, H. K., Kan, I. S., Jeon, I. S., Chang, W. K., Park, S. B., and Yoo, J. G. (2011). Oviduct-specific enhanced green fluorescent protein expression in transgenic chickens. Biosci. Biotechnol. Biochem. 75, 646–649.
Oviduct-specific enhanced green fluorescent protein expression in transgenic chickens.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmvFGhurY%3D&md5=ac5c5542f2e0aa4d556464e12b34229eCAS | 21512248PubMed |

Catt, J. W., and Rhodes, S. L. (1995). Comparative intracytoplasmic sperm injection (ICSI) in human and domestic species. Reprod. Fertil. Dev. 7, 161–167.
Comparative intracytoplasmic sperm injection (ICSI) in human and domestic species.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK28%2FjvVGitw%3D%3D&md5=88a0b62041de8a4f16b45aef5a3437fdCAS | 7480834PubMed |

Cayan, S., Lee, D., Conaghan, J., Givens, C. A., Ryan, I. P., Schriock, E. D., and Turek, P. J. (2001). A comparison of ICSI outcomes with fresh and cryopreserved epididymal spermatozoa from the same couples. Hum. Reprod. 16, 495–499.
A comparison of ICSI outcomes with fresh and cryopreserved epididymal spermatozoa from the same couples.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3M3jsFSnuw%3D%3D&md5=a301b7a78ff3a3c4269dc034c63ab6e8CAS | 11228218PubMed |

Chalah, T., Seigneurin, F., Blesbois, E., and Brillard, J. P. (1999). In vitro comparison of fowl sperm viability in ejaculates frozen by three different techniques and relationship with subsequent fertility in vivo. Cryobiology 39, 185–191.
In vitro comparison of fowl sperm viability in ejaculates frozen by three different techniques and relationship with subsequent fertility in vivo.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3c%2Fgt1Citw%3D%3D&md5=55b89a50128c9f89068b95d90b212686CAS | 10529312PubMed |

Daniels, G. L. (1968). Ovulation and longevity in the Japanese quail (Coturnix coturnix japonica) under constant illumination. Poult. Sci. 47, 1875–1878.
Ovulation and longevity in the Japanese quail (Coturnix coturnix japonica) under constant illumination.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaF1M7ktVKntA%3D%3D&md5=e008a40e4e5eeab3b8db26cf9aa374c6CAS | 5716661PubMed |

Desai, N., AbdelHafez, F., Sabanegh, E., and Goldfarb, J. (2009). Paternal effect on genomic activation, clinical pregnancy and live birth rate after ICSI with cryopreserved epididymal versus testicular spermatozoa. Reprod. Biol. Endocrinol. 7, 142.
Paternal effect on genomic activation, clinical pregnancy and live birth rate after ICSI with cryopreserved epididymal versus testicular spermatozoa.Crossref | GoogleScholarGoogle Scholar | 19958524PubMed |

Donoghue, A. M., and Wishart, G. J. (2000). Storage of poultry semen. Anim. Reprod. Sci. 62, 213–232.
Storage of poultry semen.Crossref | GoogleScholarGoogle Scholar |

Eyal-Giladi, H., and Kochav, S. (1976). From cleavage to primitive streak formation: a complementary normal table and a new look at the first stages of development of chick. 1. General morphology. Dev. Biol. 49, 321–337.
From cleavage to primitive streak formation: a complementary normal table and a new look at the first stages of development of chick. 1. General morphology.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE287ovVantw%3D%3D&md5=c523be64cea5cfa4d3dd6ea8170584f9CAS | 944662PubMed |

Farstad, W. (2000). Current state in biotechnology in canine and feline reproduction. Anim. Reprod. Sci. 60–61, 375–387.
Current state in biotechnology in canine and feline reproduction.Crossref | GoogleScholarGoogle Scholar | 10844209PubMed |

Hamburger, V., and Hamilton, H. L. (1951). A series of normal stages in the development of the chick embryo. J. Morphol. 88, 49–92.
A series of normal stages in the development of the chick embryo.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaG3M%2FpvV2jtQ%3D%3D&md5=53778f648277b92a073ba659f5798c24CAS | 24539719PubMed |

Hrabia, A., Takagi, S., Ono, T., and Shimada, K. (2003). Fertilization and development of quail oocytes after intracytoplasmic sperm injection. Biol. Reprod. 69, 1651–1657.
Fertilization and development of quail oocytes after intracytoplasmic sperm injection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXosV2rsrg%3D&md5=19ea89046737217b5f5623cd36fc2f0aCAS | 12855595PubMed |

Kang, S. J., Choi, J. W., Kim, S. Y., Park, K. J., Kim, T. M., Lee, Y. M., Kim, H., Lim, J. M., and Han, J. Y. (2008). Reproduction of wild birds via interspecies germ cell transplantation. Biol. Reprod. 79, 931–937.
Reproduction of wild birds via interspecies germ cell transplantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlSrtLvF&md5=b648be043ce7afa41a93c1a57b5c50deCAS | 18685127PubMed |

Kim, N. H., Lee, J. W., Jun, S. H., Lee, H. T., and Chung, K. S. (1998). Fertilization of porcine oocytes following intracytoplasmic spermatozoon or isolated sperm head injection. Mol. Reprod. Dev. 51, 436–444.
Fertilization of porcine oocytes following intracytoplasmic spermatozoon or isolated sperm head injection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnt1Ortrc%3D&md5=5defa85046229ea7212b3b527179e885CAS | 9820203PubMed |

Lake, P. E. (1986). The history and future of the cryopreservation of avian germ plasm. Poult. Sci. 65, 1–15.
The history and future of the cryopreservation of avian germ plasm.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL287nslehtA%3D%3D&md5=0d8865e5cc9cf412708ce381f390baa2CAS | 3960808PubMed |

Lake, P. E., Ravie, O., and McAdam, J. (1981). Preservation of fowl semen in liquid nitrogen: application to breeding programmes. Br. Poult. Sci. 22, 71–77.
Preservation of fowl semen in liquid nitrogen: application to breeding programmes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL3M3lsl2qsg%3D%3D&md5=4f9d9566948ac001e55cb34ce7a5c021CAS | 7260699PubMed |

LaRue, A. C., Mironov, V.A., Argraves, W. S., Czirok, A., Fleming, P. A., and Drake, C. J. (2003). Patterning of embryonic blood vessels. Dev. Dyn. 228, 21–29.
Patterning of embryonic blood vessels.Crossref | GoogleScholarGoogle Scholar | 12950076PubMed |

Lee, H. J., Kim, S. K., Jang, H. J., Kang, K. S., Kim, J. H., Choi, S. B., and Han, J. Y. (2012). Cryopreservation of Korean Oge chicken semen using N-methylacetamide. Cryo Letters 33, 427–434.
| 23250402PubMed |

Liu, C., Khazanehdari, K. A., Baskar, V., Saleem, S., Kinne, J., Wernery, U., and Chang, I. K. (2012). Production of chicken progeny (Gallus gallus domesticus) from interspecies germline chimeric duck (Anas domesticus) by primordial germ cell transfer. Biol. Reprod. 86, 101.
Production of chicken progeny (Gallus gallus domesticus) from interspecies germline chimeric duck (Anas domesticus) by primordial germ cell transfer.Crossref | GoogleScholarGoogle Scholar | 22190706PubMed |

Miyahara, D., Mori, T., Makino, R., Nakamura, Y., Oishi, I., Ono, T., Nirasawa, K., Tagami, T., and Kagami, H. (2014). Culture conditions for maintain propagation, long-term survival and germline transmission of chicken primordial germ cell-like cells. Jpn. Poult. Sci. 51, 87–95.
Culture conditions for maintain propagation, long-term survival and germline transmission of chicken primordial germ cell-like cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXosVeju7w%3D&md5=97b2412668fbf0062f5e7475d6e57cabCAS |

Mizushima, S., Takagi, S., Ono, T., Atsumi, Y., Tsukada, A., Saito, N., and Shimada, K. (2007). Possible role of calcium on oocyte development after intracytoplasmic sperm injection in quail (Coturnix japonica). J. Exp. Zool. A Ecol. Genet. Physiol. 307A, 647–653.
Possible role of calcium on oocyte development after intracytoplasmic sperm injection in quail (Coturnix japonica).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1yitbfN&md5=7fe39576e7562dbc98bacd898828f0caCAS |

Mizushima, S., Takagi, S., Ono, T., Atsumi, Y., Tsukada, A., Saito, N., and Shimada, K. (2008). Developmental enhancement of intracytoplasmic sperm injection (ICSI)-generated quail embryos by phospholipase C zeta cRNA. Jpn. Poult. Sci. 45, 152–158.
Developmental enhancement of intracytoplasmic sperm injection (ICSI)-generated quail embryos by phospholipase C zeta cRNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmsFejtrg%3D&md5=16a4fd73496d5513cfb78492cecf5720CAS |

Mizushima, S., Takagi, S., Ono, T., Atsumi, Y., Tsukada, A., Saito, N., and Shimada, K. (2009). Phospholipase C zeta mRNA expression and its potency during spermatogenesis for activation of quail oocyte as a sperm factor. Mol. Reprod. Dev. 76, 1200–1207.
Phospholipase C zeta mRNA expression and its potency during spermatogenesis for activation of quail oocyte as a sperm factor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht12msbjM&md5=b74b235b496fe7e254ac2bda45843baeCAS | 19697361PubMed |

Mizushima, S., Takagi, S., Ono, T., Atsumi, Y., Tsukada, A., Saito, N., Sasanami, T., Okabe, M., and Shimada, K. (2010). Novel method of gene transfer in birds: intracytoplasmic sperm injection for green fluorescent protein expression in quail blastoderms. Biol. Reprod. 83, 965–969.
Novel method of gene transfer in birds: intracytoplasmic sperm injection for green fluorescent protein expression in quail blastoderms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFahu77O&md5=0ffc6535a47169f3db9007553693c54bCAS | 20720168PubMed |

Mizushima, S., Hiyama, G., Shiba, K., Inaba, K., Dohra, H., Ono, T., Shimada, K., and Sasanami, T. (2014). The birth of quail chicks after intracytoplasmic sperm injection. Development 141, 3799–3806.
The birth of quail chicks after intracytoplasmic sperm injection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvFWhtrzJ&md5=982349e8575375f673525930a927c7efCAS | 25249465PubMed |

Ono, T., and Wakasugi, N. (1984). Mineral content of quail embryos cultured in mineral-rich and mineral-free conditions. Poult. Sci. 63, 159–166.
Mineral content of quail embryos cultured in mineral-rich and mineral-free conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXhtVSht78%3D&md5=4e98e2de339ab951627da473579a1176CAS | 6701139PubMed |

Palermo, G., Joris, H., Devroey, P., and Vansteirteghem, A. C. (1992). Pregnancies after intracytoplasmic injection of single spermatozoon into an oocyte. Lancet 340, 17–18.
Pregnancies after intracytoplasmic injection of single spermatozoon into an oocyte.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK38zgtFWrsA%3D%3D&md5=2da5760cb8f8caff1706c5aaea49c57eCAS | 1351601PubMed |

Palermo, G. D., Cohen, J., Alikani, M., Adler, A., and Rosenwaks, Z. (1995). Development and implementation of intracytoplasmic sperm injection (ICSI). Reprod. Fertil. Dev. 7, 211–217.
Development and implementation of intracytoplasmic sperm injection (ICSI).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK28%2FjvVGhsg%3D%3D&md5=53716eb924dedef455c3baa1a11b9f38CAS | 7480839PubMed |

Peláez, J., Bongalhardo, D. C., and Long, J. A. (2011). Characterizing the glycocalyx of poultry spermatozoa: III. Semen cryopreservation methods alter the carbohydrate component of rooster sperm membrane glycoconjugates. Poult. Sci. 90, 435–443.
Characterizing the glycocalyx of poultry spermatozoa: III. Semen cryopreservation methods alter the carbohydrate component of rooster sperm membrane glycoconjugates.Crossref | GoogleScholarGoogle Scholar | 21248342PubMed |

Perry, M. M. (1988). A complete culture system for the chick embryo. Nature 331, 70–72.
A complete culture system for the chick embryo.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1c7it1Ggug%3D%3D&md5=02e1f1d287fc9d2df25bb9482db3de62CAS | 3340149PubMed |

Perry, A. C. F., Wakayama, T., Kishikawa, H., Kasai, T., Okabe, M., Toyoda, Y., and Yanagimachi, R. (1999). Mammalian transgenesis by intracytoplasmic sperm injection. Science 284, 1180–1183.
Mammalian transgenesis by intracytoplasmic sperm injection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjtlajsbk%3D&md5=47f4fb95e40aa124bce5267a82f1b165CAS |

Polge, C. (1951). Functional survival of fowl spermatozoa after freezing at –79 degrees C. Nature 167, 949–950.
Functional survival of fowl spermatozoa after freezing at –79 degrees C.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaG3M%2Fnt1KktA%3D%3D&md5=edc88b4ff141faab47e1116cd721550cCAS | 14843126PubMed |

Rikimaru, K., Nakamura, Y., Takahashi, D., Komatsu, M., Ito, N., Matsubara, K., and Tagami, T. (2014). Production of pure Hinai-dori with normal reproductive capability from transferred primordial germ cells. Jpn. Poult. Sci. 51, 297–306.
Production of pure Hinai-dori with normal reproductive capability from transferred primordial germ cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvVentrnL&md5=91019098b5b0d4626dc9179e8f31e9deCAS |

Sato, M. S., Yoshitomo, M., Mohri, T., and Miyazaki, S. (1999). Spatiotemporal analysis of [Ca2+]i rises in mouse eggs after intracytoplasmic sperm injection (ICSI). Cell Calcium 26, 49–58.
Spatiotemporal analysis of [Ca2+]i rises in mouse eggs after intracytoplasmic sperm injection (ICSI).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmvFagsb8%3D&md5=c1462e9979c676b035a4dd514355e31fCAS | 10892570PubMed |

Shaffner, C. S., Henderson, E. W., and Card, G. C. (1941). Viability of spermatozoa of the chicken under various environmental conditions. Poult. Sci. 20, 259–265.
Viability of spermatozoa of the chicken under various environmental conditions.Crossref | GoogleScholarGoogle Scholar |

Stricker, S. A. (1997). Intracellular injections of a soluble sperm factor trigger calcium oscillations and meiotic maturation in unfertilized oocytes of a marine worm. Dev. Biol. 186, 185–201.
Intracellular injections of a soluble sperm factor trigger calcium oscillations and meiotic maturation in unfertilized oocytes of a marine worm.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXktlWktr0%3D&md5=92c9dcc4e83269b1230af236f7036f00CAS | 9205139PubMed |

Stricker, S. A. (1999). Comparative biology of calcium signaling during fertilization and egg activation in animals. Dev. Biol. 211, 157–176.
Comparative biology of calcium signaling during fertilization and egg activation in animals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXkt1Ghu78%3D&md5=dac51094f54b4c03bed607dbe033d1b1CAS | 10395780PubMed |

Surai, P. F., and Wishart, G. J. (1996). Poultry artificial insemination technology in the countries of the former USSR. Worlds Poult. Sci. J. 52, 27–43.
Poultry artificial insemination technology in the countries of the former USSR.Crossref | GoogleScholarGoogle Scholar |

Tselutin, K., Narubina, L., Mavrodina, T., and Tur, B. (1995). Cryopreservation of poultry semen. Br. Poult. Sci. 36, 805–811.
Cryopreservation of poultry semen.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK28zktFOhsA%3D%3D&md5=679415c9f62535ca244ca7276316a765CAS | 8746982PubMed |

Tselutin, K., Seigneurin, F., and Blesbois, E. (1999). Comparison of cryoprotectants and methods of cryopreservation of fowl spermatozoa. Poult. Sci. 78, 586–590.
Comparison of cryoprotectants and methods of cryopreservation of fowl spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1M3ksF2ntw%3D%3D&md5=041c34626e2ea67df990a72285d8a7ebCAS | 10230914PubMed |

Uehara, T., and Yanagimachi, R. (1976). Microsurgical injection of spermatozoa into hamster eggs with subsequent transformation of sperm nuclei into male pronuclei. Biol. Reprod. 15, 467–470.
Microsurgical injection of spermatozoa into hamster eggs with subsequent transformation of sperm nuclei into male pronuclei.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE2s%2Fit1ektA%3D%3D&md5=b840e585952d9e042d857c9dc1663a7aCAS | 974199PubMed |

Wald, M., Ross, L. S., Prins, G. S., Cieslak-Janzen, J., Wolf, G., and Niederberger, C. S. (2006). Analysis of outcomes of cryopreserved surgically retrieved sperm for IVF/ICSI. J. Androl. 27, 60–65.
Analysis of outcomes of cryopreserved surgically retrieved sperm for IVF/ICSI.Crossref | GoogleScholarGoogle Scholar | 16400079PubMed |

Wernery, U., Liu, C., Baskar, V., Guerineche, Z., Khazanehdari, K. A., Saleem, S., Kinne, J., Wernery, R., Griffin, D. K., and Chang, I. K. (2010). Primordial germ cell-mediated chimera technology produces viable pure-line houbara bustard offspring: potential for repopulating an endangered species. PLoS One 5, e15824.
Primordial germ cell-mediated chimera technology produces viable pure-line houbara bustard offspring: potential for repopulating an endangered species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltVaksQ%3D%3D&md5=781076ead111e13c337017ef126d75b5CAS | 21209914PubMed |

Westfall, F. D., and Harris, G. C. (1975). The ability of cryopreservatives to prevent motility loss and freeze-thaw damage to the acrosome of chicken spermatozoa. Cryobiology 12, 89–92.
The ability of cryopreservatives to prevent motility loss and freeze-thaw damage to the acrosome of chicken spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXhtV2ht7c%3D&md5=f965f8c9b50e4247e7640a1d2e3a9e2cCAS | 1109874PubMed |

Yanagimachi, R. (2005). Intracytoplasmic injection of spermatozoa and spermatogenic cells: its biology and applications in humans and animals. Reprod. Biomed. Online 10, 247–288.
| 15823233PubMed |