Sperm superoxide dismutase is associated with bull fertility
Kamilah E. Grant A , Rodrigo V. de Oliveira A B H , Bettye Sue Hennington C , Aruna Govindaraju A , Andy Perkins D , John Stokes E , Dennis Rowe F , Einko Topper G , Abdullah Kaya G I , Arlindo Moura B and Erdogan Memili A JA Department of Animal and Dairy Sciences, Mississippi State University, 4025 Wise Center, Mississippi State, MS 39762, USA.
B Department of Animal Science, Federal University of Ceara, Fortaleza, 60355-970, Brazil.
C Tougaloo College, Department of Biology, 500 W County Line Rd, Tougaloo, MS 39174, USA.
D Department of Computer Science and Engineering, 665 George Perry Street, Mississippi State, MS 39762, USA.
E Department of Basic Sciences, Mississippi State University, 240 Wise Center Drive, Mississippi State, MS 39762, USA.
F Department of Plant and Soil Sciences, Mississippi State University, 32 Creelman Street, Mississippi State, MS 39762, USA.
G Alta Genetics, N8350 High Road, Watertown, WI 53094, USA.
H Present address: Department of Animal Production – Animal Sciences Institute, Federal Rural University of Rio de Janeiro – UFRRJ, Seropédica-RJ, 23890-000, Brazil.
I Present address: Department of Reproduction and Artificial Insemination, Selcuk University, Konya, 42030, Turkey.
J Corresponding author. Email: em149@ads.msstate.edu
Reproduction, Fertility and Development 28(9) 1405-1413 https://doi.org/10.1071/RD14399
Submitted: 27 July 2014 Accepted: 20 January 2015 Published: 21 April 2015
Abstract
Decreasing mammalian fertility and sperm quality have created an urgent need to find effective methods to distinguish non-viable from viable fertilising spermatozoa. The aims of the present study were to evaluate expression levels of β-tubulin 2C (TUBB2C), heat shock protein 10 (HSP10), hexokinase 1 (HXK1) and superoxide dismutase 1 (SOD1) in spermatozoa from Holstein bulls with varying fertility using western blotting and to analyse the biological networks of these key sperm proteins using a bioinformatics software (Metacore; Thomson-Reuters, Philadelphia, PA, USA). The rationales behind this study were that the sperm proteins play crucial roles in fertilisation and early embryonic development in mammals and ascertaining the biological networks of the proteins helps us better understand sperm physiology and early mammalian development. The results showed that expression of SOD1 was higher in spermatozoa from high fertility bulls (P < 0.05) and that SOD1 is the best protein to diagnose bulls based on the fertility index (P < 0.05). Using Metacore analysis, we identified an SOD1 network with pathways and linkages with other relevant molecules. We concluded that SOD1 sperm expression is associated with in vivo bull fertility. The findings are important because they illuminate molecular and cellular determinants of sperm viability and the identified protein markers can be used to determine bull fertility.
Additional keywords: protein, reproduction, semen.
References
Abu-Halima, M., Hammadeh, M., Schmitt, J., Leidinger, P., Keller, A., Meese, E., and Backes, C. (2013). Altered microRNA expression profiles of human sperm in patients with different spermatogenic impairments. Fertil. Steril. 99, 1249–1255.e16.| Altered microRNA expression profiles of human sperm in patients with different spermatogenic impairments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnslygtw%3D%3D&md5=4452b2d3214d0347d44f06d0ee91a444CAS | 23312218PubMed |
Amann, R. P. (1989). Can the fertility potential of a seminal sample be predicted accurately? J. Androl. 10, 89–98.
| 1:STN:280:DyaL1M3jtl2ksA%3D%3D&md5=737cf88e57fc9d0419bfb38f84c85137CAS | 2715106PubMed |
Amann, R. P. (2005). Weaknesses in reports of ‘fertility’ for horses and other species. Theriogenology 63, 698–715.
| Weaknesses in reports of ‘fertility’ for horses and other species.Crossref | GoogleScholarGoogle Scholar | 15629790PubMed |
Amann, R. P., and Gill, S. P. S. (2000) Correlation or diagnosis and prediction. In ‘Proceedings of the 14th International Congress on Animal Reproduction’, 2–6 July 2000, Stockholm. (Ed. M. Forsberg.) p. 69. (Elsevier Science BV: Sydney.)
Asquith, K. L., Baleato, R. M., McLaughlin, E. A., Nixon, B., and Aitken, R. J. (2004). Tyrosine phosphorylation activates surface chaperones facilitating sperm–zona recognition. J. Cell Sci. 117, 3645–3657.
| Tyrosine phosphorylation activates surface chaperones facilitating sperm–zona recognition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntFertrc%3D&md5=6330256887e9a48eb10aff146b3bd78fCAS | 15252132PubMed |
Baker, M. A., and Aitken, R. J. (2004). The importance of redox regulated pathways in sperm cell biology. Mol. Cell. Endocrinol. 216, 47–54.
| The importance of redox regulated pathways in sperm cell biology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjsVens70%3D&md5=250ba2ce03d86a4c6d69545d46dda97fCAS | 15109744PubMed |
Belleannée, C., Labas, V., Teixeira-Gomes, A.-P., Gatti, J. L., Dacheux, J.-L., and Dacheux, F. (2011). Identification of luminal and secreted proteins in bull epididymis. J. Proteomics 74, 59–78.
| Identification of luminal and secreted proteins in bull epididymis.Crossref | GoogleScholarGoogle Scholar | 20692385PubMed |
Buffone, M. G., Calamera, J. C., Brugo-Olmedo, S., De Vincentiis, S., Calamera, M. M., Storey, B. T., Doncel, G. F., and Alvarez, J. G. (2012). Superoxide dismutase content in sperm correlates with motility recovery after thawing of cryopreserved human sperm. Fertil. Steril. 97, 293–298.
| Superoxide dismutase content in sperm correlates with motility recovery after thawing of cryopreserved human sperm.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVeru78%3D&md5=ee2e3f420bdf7d359a6789b5323ba4e4CAS | 22154371PubMed |
Cassani, P., Beconi, M. T., and O’Flaherty, C. (2005). Relationship between total superoxide dismutase activity with lipid peroxidation, dynamics and morphological parameters in canine semen. Anim. Reprod. Sci. 86, 163–173.
| Relationship between total superoxide dismutase activity with lipid peroxidation, dynamics and morphological parameters in canine semen.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhsVOhurg%3D&md5=afd14135f8e037049f47d3459debf588CAS | 15721667PubMed |
Chang, Y. M., Gianola, D., Heringstad, B., and Klemetsdal, G. (2004). Effects of trait definition on genetic parameter estimates and sire evaluation for clinical mastitis with threshold models. Anim. Sci. 79, 355–364.
D’Amours, O., Frenette, G., Fortier, M., Leclerc, P., and Sullivan, R. (2010). Proteomic comparison of detergent-extracted sperm proteins from bulls with different fertility indexes. Reproduction 139, 545–556.
| Proteomic comparison of detergent-extracted sperm proteins from bulls with different fertility indexes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtV2lsbs%3D&md5=ca06ccce162f20e747a07831d3d1ef3fCAS | 19952166PubMed |
de Lamirande, E., and Gagnon, C. (1998). Paradoxical effect of reagents for sulfhydryl and disulfide groups on human sperm capacitation and superoxide production. Free Radic. Biol. Med. 25, 803–817.
| Paradoxical effect of reagents for sulfhydryl and disulfide groups on human sperm capacitation and superoxide production.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnsVKiu7w%3D&md5=334d36d44c16ed19d8977ddb3758d0b4CAS | 9823546PubMed |
de Lamirande, E., Lamothe, G., and Villemure, M. (2009). Control of superoxide and nitric oxide formation during human sperm capacitation. Free Radic. Biol. Med. 46, 1420–1427.
| Control of superoxide and nitric oxide formation during human sperm capacitation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkvVWntLw%3D&md5=9d7e766fea597d91a27c7f0ae5ed9320CAS | 19268528PubMed |
Evenson, D. P. (1999). Loss of livestock breeding efficiency due to uncompensable sperm nuclear defects. Reprod. Fertil. Dev. 11, 1–15.
| Loss of livestock breeding efficiency due to uncompensable sperm nuclear defects.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3c7ktlagsA%3D%3D&md5=a7333dcffd57818e8ae5ae1052ed3ca6CAS | 10680997PubMed |
Feijó, C. M., and Esteves, S. C. (2014). Diagnostic accuracy of sperm chromatin dispersion test to evaluate sperm deoxyribonucleic acid damage in men with unexplained infertility. Fertil. Steril. 101, 58–63.e3.
| Diagnostic accuracy of sperm chromatin dispersion test to evaluate sperm deoxyribonucleic acid damage in men with unexplained infertility.Crossref | GoogleScholarGoogle Scholar | 24140035PubMed |
Gething, M. J., Blond-Elguindi, S., Buchner, J., Fourie, A., Knarr, G., Modrow, S., Nanu, L., Segal, M., and Sambrook, J. (1995). Binding sites for Hsp70 molecular chaperones in natural proteins. Cold Spring Harb. Symp. Quant. Biol. 60, 417–428.
| Binding sites for Hsp70 molecular chaperones in natural proteins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XkvVanu7o%3D&md5=6298c673254ab3e5f0974a6f2a520ce1CAS | 8824415PubMed |
Govindaraju, A., Uzun, A., Robertson, L., Atli, M., Kaya, A., Topper, E., Crate, E., Padbury, J., Perkins, A., and Memili, E. (2012). Dynamics of microRNAs in bull sperm. Reprod. Biol. Endocrinol. 10, 82.
| Dynamics of microRNAs in bull sperm.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVequ77E&md5=a5fc7edb4399ac23f2195dcdd3530c48CAS | 22978562PubMed |
Gu, W., and Hecht, N. R. (1996). Translation of a testis-specific Cu/Zn superoxide dismutase (SOD1) mRNA is regulated by a 65-kilodalton protein which binds to its 5′ untranslated region. Mol. Cell. Biol. 16, 4535–4543.
| 1:CAS:528:DyaK28XksVaktrk%3D&md5=727c8bd22b39e6b796be499f42b61d37CAS | 8754854PubMed |
Heringstad, B., Chang, Y. M., Gianola, D., and Klemetsdal, G. (2004). Multivariate threshold model analysis of clinical mastitis in multiparous Norwegian dairy cattle. J. Dairy Sci. 87, 3038–3046.
| Multivariate threshold model analysis of clinical mastitis in multiparous Norwegian dairy cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntlGjtro%3D&md5=76bce7fcd926bc1164da4c8586e79a62CAS | 15375066PubMed |
Ijiri, T. W., Merdiushev, T., Cao, W., and Gerton, G. L. (2011). Identification and validation of mouse sperm proteins correlated with epididymal maturation. Proteomics 11, 4047–4062.
| Identification and validation of mouse sperm proteins correlated with epididymal maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht12rtrzP&md5=b527991d1ac0ee198bffebfc89f5cc3dCAS | 21805633PubMed |
Kasimanickam, R., Kasimanickam, V., Thatcher, C. D., Nebel, R. L., and Cassell, B. G. (2007). Relationships among lipid peroxidation, glutathione peroxidase, superoxide dismutase, sperm parameters, and competitive index in dairy bulls. Theriogenology 67, 1004–1012.
| Relationships among lipid peroxidation, glutathione peroxidase, superoxide dismutase, sperm parameters, and competitive index in dairy bulls.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitFOgu7k%3D&md5=e22f9ff0153fd31bc403e288b2985331CAS | 17188744PubMed |
Kennedy, C. E., Krieger, K. B., Sutovsky, M., Xu, W., Vargovič, P., Didion, B. A., Ellersieck, M. R., Hennessy, M. E., Verstegen, J., Oko, R., and Sutovsky, P. (2014). Protein expression pattern of PAWP in bull spermatozoa is associated with sperm quality and fertility following artificial insemination. Mol. Reprod. Dev. 81, 436–449.
| Protein expression pattern of PAWP in bull spermatozoa is associated with sperm quality and fertility following artificial insemination.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXjtVGmtbo%3D&md5=4f45c1f676378b706ec9ccda3bf41077CAS | 24488940PubMed |
Killian, G. J., Chapman, D. A., and Rogowski, L. A. (1993). Fertility-associated proteins in Holstein bull seminal plasma. Biol. Reprod. 49, 1202–1207.
| 1:CAS:528:DyaK2cXivVaitg%3D%3D&md5=7c96999d4a966b88e06985731c27fde0CAS | 8286602PubMed |
Lee, R., Ullery, B. W., Ehrlich, J., Razzano, R. A., Callahan, M. A., and Goldstein, M. (2007). Construction of ROC curves to assess the value of antisperm antibodies in distinguishing obstructive from nonobstructive azoospermia. Fertil. Steril. 88, S58–S59.
| Construction of ROC curves to assess the value of antisperm antibodies in distinguishing obstructive from nonobstructive azoospermia.Crossref | GoogleScholarGoogle Scholar |
Nakamura, N., Shibata, H., O’Brien, D. A., Mori, C., and Eddy, E. M. (2008). Spermatogenic cell-specific type 1 hexokinase is the predominant hexokinase in sperm. Mol. Reprod. Dev. 75, 632–640.
| Spermatogenic cell-specific type 1 hexokinase is the predominant hexokinase in sperm.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjtFClu7w%3D&md5=8c9c0bfe7a7fd6400b654ef636a89c09CAS | 17924400PubMed |
Nichi, M., Bols, P. E. J., Züge, R. M., Barnabe, V. H., Goovaerts, I. G. F., Barnabe, R. C., and Cortada, C. N. M. (2006). Seasonal variation in semen quality in Bos indicus and Bos taurus bulls raised under tropical conditions. Theriogenology 66, 822–828.
| Seasonal variation in semen quality in Bos indicus and Bos taurus bulls raised under tropical conditions.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1cvltVyhsw%3D%3D&md5=61d1a54a9407295c2915c2e546e91ea3CAS | 16529802PubMed |
Nixon, B., Ecroyd, H. W., Dacheux, J. L., and Jones, R. C. (2011). Monotremes provide a key to understanding the evolutionary significance of epididymal sperm maturation. J. Androl. 32, 665–671.
| Monotremes provide a key to understanding the evolutionary significance of epididymal sperm maturation.Crossref | GoogleScholarGoogle Scholar | 21441429PubMed |
O’Flaherty, C. M., Beorlegui, N. B., and Beconi, M. T. (1999). Reactive oxygen species requirements for bovine sperm capacitation and acrosome reaction. Theriogenology 52, 289–301.
| Reactive oxygen species requirements for bovine sperm capacitation and acrosome reaction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlvVKms7w%3D&md5=aab0f03a67ada26ace9aad97f1748cc1CAS | 10734395PubMed |
O’Flaherty, C., Breininger, E., Beorlegui, N., and Beconi, M. T. (2005). Acrosome reaction in bovine sperm: role of reactive oxygen species and lactate dehydrogenase C4. Biochim. Biophys. Acta 1726, 96–101.
| Acrosome reaction in bovine sperm: role of reactive oxygen species and lactate dehydrogenase C4.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFKnsLzL&md5=3ef3e1a787b954fbcd74780d53656f37CAS | 16112812PubMed |
Oehninger, S., Franken, D. R., and Ombelet, W. (2014). Sperm functional tests. Fertil. Steril. 102, 1528–1533.
| Sperm functional tests.Crossref | GoogleScholarGoogle Scholar | 25450304PubMed |
Ogorevc, J., Dovc, P., and Kunej, T. (2011). Comparative genomics approach to identify candidate genetic loci for male fertility. Reprod. Domest. Anim. 46, 229–239.
| Comparative genomics approach to identify candidate genetic loci for male fertility.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3M3lvV2itw%3D%3D&md5=6451b38c67e3043925fa875eebdddeb3CAS | 20546184PubMed |
Peddinti, D., Nanduri, B., Kaya, A., Feugang, J., Burgess, S., and Memili, E. (2008). Comprehensive proteomic analysis of bovine sperm of varying fertility rates and identification of biomarkers associated with fertility. BMC Syst. Biol. 2, 19.
| Comprehensive proteomic analysis of bovine sperm of varying fertility rates and identification of biomarkers associated with fertility.Crossref | GoogleScholarGoogle Scholar | 18294385PubMed |
Pipan, M. Z., Mrkun, J., Kosec, M., Nemec Svete, A., and Zrimsek, P. (2014). Superoxide dismutase: a predicting factor for boar semen characteristics for short-term preservation. BioMed Res. Int. 2014, 105280.
| Superoxide dismutase: a predicting factor for boar semen characteristics for short-term preservation.Crossref | GoogleScholarGoogle Scholar |
Rajoriya, J. S., Prasad, J. K., Ghosh, S. K., Perumal, P., Kumar, A., Kaushal, S., and Singh, M. (2013). Effects of seasons on enzymatic changes and cholesterol efflux in relation to freezability in Tharparkar bull semen. APJR 2, 280–288.
| Effects of seasons on enzymatic changes and cholesterol efflux in relation to freezability in Tharparkar bull semen.Crossref | GoogleScholarGoogle Scholar |
Ramya, T., Misro, M. M., Sinha, D., Nandan, D., and Mithal, S. (2011). Altered levels of seminal nitric oxide, nitric oxide synthase, and enzymatic antioxidants and their association with sperm function in infertile subjects. Fertil. Steril. 95, 135–140.
| Altered levels of seminal nitric oxide, nitric oxide synthase, and enzymatic antioxidants and their association with sperm function in infertile subjects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFynu7%2FP&md5=828fb91c45d995e57667347a7d18cbfcCAS | 20684956PubMed |
Roy, S. C., and Atreja, S. K. (2008). Effect of reactive oxygen species on capacitation and associated protein tyrosine phosphorylation in buffalo (Bubalus bubalis) sperm. Anim. Reprod. Sci. 107, 68–84.
| Effect of reactive oxygen species on capacitation and associated protein tyrosine phosphorylation in buffalo (Bubalus bubalis) sperm.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtlyhs78%3D&md5=8ccb357531ccf436cacf0a707cdcc878CAS | 17646064PubMed |
Saacke, R. G., DeJarnette, J. M., Bame, J. H., Karabinus, D. S., and Whitman, S. S. (1998). Can sperm with abnormal heads gain access to the ovum in artificially inseminated super- and single-ovulating cattle? Theriogenology 50, 117–128.
| Can sperm with abnormal heads gain access to the ovum in artificially inseminated super- and single-ovulating cattle?Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3c7pvVKmtw%3D%3D&md5=7327344842de972115b1667d26754b0fCAS | 10734480PubMed |
Sheldon, I. M., and Dobson, H. (2003). Reproductive challenges facing the cattle industry at the beginning of the 21st century. Reprod. Suppl. 61, 1–13.
| 1:STN:280:DC%2BD3srlsFymuw%3D%3D&md5=4a674032a9cae40cd0d24c7500d298f7CAS | 14635922PubMed |
Smith, T. B., Baker, M. A., Connaughton, H. S., Habenicht, U., and Aitken, R. J. (2013). Functional deletion of Txndc2 and Txndc3 increases the susceptibility of sperm to age-related oxidative stress. Free Radic. Biol. Med. 65, 872–881.
| Functional deletion of Txndc2 and Txndc3 increases the susceptibility of sperm to age-related oxidative stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFylsbfP&md5=e9ca8d78fd3ad8d541b77131c658d57cCAS | 23707457PubMed |
Souza, C. E., Rego, J. P., Lobo, C. H., Oliveira, J. T., Nogueira, F. C., Domont, G. B., Fioramonte, M., Gozzo, F. C., Moreno, F. B., Monteiro-Moreira, A. C., Figueiredo, J. R., and Moura, A. A. (2012). Proteomic analysis of the reproductive tract fluids from tropically-adapted Santa Ines rams. J. Proteomics 75, 4436–4456.
| Proteomic analysis of the reproductive tract fluids from tropically-adapted Santa Ines rams.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XoslGqtbw%3D&md5=d21f820e67543e3c8de162fe42eb8d3fCAS | 22659383PubMed |
Tomlinson, M. J., Kessopoulou, E., and Barratt, C. L. R. (1999). The diagnostic and prognostic value of traditional semen parameters. J. Androl. 20, 588–593.
| The diagnostic and prognostic value of traditional semen parameters.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1MvkvVyrsg%3D%3D&md5=2ed655d1ace60cd760d90e1be86ee164CAS | 10520570PubMed |
Vjugina, U., and Evans, J. P. (2008). New insights into the molecular basis of mammalian sperm–egg membrane interactions. Front. Biosci. 13, 462–476.
| New insights into the molecular basis of mammalian sperm–egg membrane interactions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhs1Chsbc%3D&md5=7dc7be3705ff844bc87e60a4c53e5407CAS | 17981561PubMed |
Walsh, A., Whelan, D., Bielanowicz, A., Skinner, B., Aitken, R. J., O’Bryan, M. K., and Nixon, B. (2008). Identification of the molecular chaperone, heat shock protein 1 (chaperonin 10), in the reproductive tract and in capacitating sperm in the male mouse. Biol. Reprod. 78, 983–993.
| Identification of the molecular chaperone, heat shock protein 1 (chaperonin 10), in the reproductive tract and in capacitating sperm in the male mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmsVWktLw%3D&md5=35d432610ec0ba3359e18a86bd2d8f23CAS | 18276932PubMed |
Yan, W. (2009). Male infertility caused by spermiogenic defects: lessons from gene knockouts. Mol. Cell. Endocrinol. 306, 24–32.
| Male infertility caused by spermiogenic defects: lessons from gene knockouts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXms1ait7s%3D&md5=b3944b092979d994cee0f7374619177eCAS | 19481682PubMed |
Zwald, N. R., Weigel, K. A., Chang, Y. M., Welper, R. D., and Clay, J. S. (2004a). Genetic selection for health traits using producer-recorded data. I. Incidence rates, heritability estimates, and sire breeding values. J. Dairy Sci. 87, 4287–4294.
| Genetic selection for health traits using producer-recorded data. I. Incidence rates, heritability estimates, and sire breeding values.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVCjtrbF&md5=c93c8702f78e9f06b48dcee645590c7cCAS | 15545392PubMed |
Zwald, N. R., Weigel, K. A., Chang, Y. M., Welper, R. D., and Clay, J. S. (2004b). Genetic selection for health traits using producer-recorded data. II. Genetic correlations, disease probabilities, and relationships with existing traits. J. Dairy Sci. 87, 4295–4302.
| Genetic selection for health traits using producer-recorded data. II. Genetic correlations, disease probabilities, and relationships with existing traits.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVCjtrfM&md5=f6cd96cee8c413ae0467c80d3f0dd048CAS | 15545393PubMed |