Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Genetic tools to improve reproduction traits in dairy cattle

A. Capitan A B F , P. Michot A B , A. Baur A B , R. Saintilan A B , C. Hozé A B , D. Valour A D , F. Guillaume C , D. Boichon E , A. Barbat B , D. Boichard B , L. Schibler A and S. Fritz A B
+ Author Affiliations
- Author Affiliations

A UNCEIA (Union Nationale des Coopératives d’Elevage et d’Insémination Animale), 149 rue de Bercy, 75012 Paris, France.

B INRA (Institut National de la Recherche Agronomique), UMR1313 Génétique Animale et Biologie Intégrative, Domaine de Vilvert, 78352 Jouy-en-Josas, France.

C EVOLUTION, 69 rue de la Motte Brûlon, 35706 Rennes, France.

D INRA, UMR 1198 Biologie du Développement et Reproduction, Domaine de Vilvert, 78352 Jouy-en-Josas, France.

E MIDATEST, Les Nauzes, 81580 Soual, France.

F Corresponding author. Email: aurelien.capitan@unceia.fr

Reproduction, Fertility and Development 27(1) 14-21 https://doi.org/10.1071/RD14379
Published: 4 December 2014

Abstract

Fertility is a major concern in the dairy cattle industry and has been the subject of numerous studies over the past 20 years. Surprisingly, most of these studies focused on rough female phenotypes and, despite their important role in reproductive success, male- and embryo-related traits have been poorly investigated. In recent years, the rapid and important evolution of technologies in genetic research has led to the development of genomic selection. The generalisation of this method in combination with the achievements of the AI industry have led to the constitution of large databases of genotyping and sequencing data, as well as refined phenotypes and pedigree records. These resources offer unprecedented opportunities in terms of fundamental and applied research. Here we present five such examples with a focus on reproduction-related traits: (1) detection of quantitative trait loci (QTL) for male fertility and semen quality traits; (2) detection of QTL for refined phenotypes associated with female fertility; (3) identification of recessive embryonic lethal mutations by depletion of homozygous haplotypes; (4) identification of recessive embryonic lethal mutations by mining whole-genome sequencing data; and (5) the contribution of high-density single nucleotide polymorphism chips, whole-genome sequencing and imputation to increasing the power of QTL detection methods and to the identification of causal variants.


References

Adams, H. A., Sonstegard, T., VanRaden, P. M., Null, D. J., Van Tassell, C. P., and Lewin, H. (2012). Identification of a nonsense mutation in APAF1 that is causal for a decrease in reproductive efficiency in dairy cattle. In ‘Plant Anim Genome XX Conference, San Diego, CA, USA’. Abstract P0555. (Scherago International: Jersey City, NJ.)

Agerholm, J. S., and Peperkamp, K. (2007). Familial occurrence of Danish and Dutch cases of the bovine brachyspina syndrome. BMC Vet. Res. 3, 8.
Familial occurrence of Danish and Dutch cases of the bovine brachyspina syndrome.Crossref | GoogleScholarGoogle Scholar | 17488494PubMed |

Agerholm, J. S., Bendixen, C., Andersen, O., and Arnbjerg, J. (2001). Complex vertebral malformation in Holstein calves. J. Vet. Diagn. Invest. 13, 283–289.
Complex vertebral malformation in Holstein calves.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD38%2Fis1Cqtg%3D%3D&md5=27bc89ef02b49fcb36568772ef8ec49dCAS | 11478598PubMed |

Barbat, A., Le Mézec, P., Ducrocq, V., Mattalia, S., Fritz, S., Boichard, D., Ponsart, C., and Humblot, P. (2010). Female fertility in French dairy breeds: current situation and strategies for improvement. J. Reprod. Dev. 56, S15–S21.
Female fertility in French dairy breeds: current situation and strategies for improvement.Crossref | GoogleScholarGoogle Scholar | 20629212PubMed |

Beam, S. W., and Butler, W. R. (1999). Effects of energy balance on follicular development and first ovulation in postpartum dairy cows. J. Reprod. Fertil. Suppl. 54, 411–424.
| 1:CAS:528:DyaK1MXnslSit7k%3D&md5=88402bac1bf1603f358442fbbb384e93CAS | 10692872PubMed |

Blaschek, M., Kaya, A., Zwald, N., Memili, E., and Kirkpatrick, B. W. (2011). A whole-genome association analysis of noncompensatory fertility in Holstein bulls. J. Dairy Sci. 94, 4695–4699.
A whole-genome association analysis of noncompensatory fertility in Holstein bulls.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtV2gsb%2FO&md5=6c045361dcf20fd21b8ff6d779ec3460CAS | 21854943PubMed |

Boichard, D., Maignel, L., and Verrier, E. (1996). Analyse généalogique des races bovines laitières françaises. INRA Prod. Anim. 9, 323–335.

Brøndum, R. F., Guldbrandtsen, B., Sahana, G., Lund, M. S., and Su, G. (2014). Strategies for imputation to whole genome sequence using a single or multi-breed reference population in cattle. BMC Genomics 15, 728.
Strategies for imputation to whole genome sequence using a single or multi-breed reference population in cattle.Crossref | GoogleScholarGoogle Scholar | 25164068PubMed |

Calus, M. P., Meuwissen, T. H., de Roos, A. P., and Veerkamp, R. F. (2008). Accuracy of genomic selection using different methods to define haplotypes. Genetics 178, 553–561.
Accuracy of genomic selection using different methods to define haplotypes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1c%2FkvFehtA%3D%3D&md5=021447057c8f6d4bb43523f72dfaa39bCAS | 18202394PubMed |

Charlier, C., Coppieters, W., Rollin, F., Desmecht, D., Agerholm, J. S., Cambisano, N., Carta, E., Dardano, S., Dive, M., Fasquelle, C., Frennet, J. C., Hanset, R., Hubin, X., Jorgensen, C., Karim, L., Kent, M., Harvey, K., Pearce, B. R., Simon, P., Tama, N., Nie, H., Vandeputte, S., Lien, S., Longeri, M., Fredholm, M., Harvey, R. J., and Georges, M. (2008). Highly effective SNP-based association mapping and management of recessive defects in livestock. Nat. Genet. 40, 449–454.
Highly effective SNP-based association mapping and management of recessive defects in livestock.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjslCgtbY%3D&md5=b16b852667db8a5410a1f50490eb427fCAS | 18344998PubMed |

Charlier, C., Agerholm, J. S., Coppieters, W., Karlskov-Mortensen, P., Li, W., de Jong, G., Fasquelle, C., Karim, L., Cirera, S., Cambisano, N., Ahariz, N., Mullaart, E., Georges, M., and Fredholm, M. (2012). A deletion in the bovine FANCI gene compromises fertility by causing fetal death and brachyspina. PLoS ONE 7, e43085.
A deletion in the bovine FANCI gene compromises fertility by causing fetal death and brachyspina.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht12htL%2FO&md5=b40afee910f9387eeb14625f9a41f236CAS | 22952632PubMed |

Charlier, C., Li, W., Harland, C., Littlejohn, M., Creagh, F., Keehan, M., Druet, T., Coppieters, W., Spelman, R., and Georges, M. (2014). NGS-based reverse genetic screen reveals loss-of-function variants compromising fertility in cattle. In ‘Proceedings of the 10th World Congress of Genetics Applied to Livestock Production, Vancouver, Canada’. Available at http://www.wcgalp.com/ [verified 29 August 2014].

Cooper, T. A., Wiggans, G. R., Null, D. J., Hutchison, J. L., and Cole, J. B. (2014). Genomic evaluation, breed identification, and discovery of a haplotype affecting fertility for Ayrshire dairy cattle. J. Dairy Sci. 97, 3878–3882.
Genomic evaluation, breed identification, and discovery of a haplotype affecting fertility for Ayrshire dairy cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXltFCgsLs%3D&md5=31444802d3cd2cc854f9b63da770958bCAS | 24679938PubMed |

Daetwyler, H. D., Capitan, A., Pausch, H., Stothard, P., van Binsbergen, R., Brøndum, R. F., Liao, X., Djari, A., Rodriguez, S. C., Grohs, C., Esquerré, D., Bouchez, O., Rossignol, M. N., Klopp, C., Rocha, D., Fritz, S., Eggen, A., Bowman, P. J., Coote, D., Chamberlain, A. J., Anderson, C., VanTassell, C. P., Hulsegge, I., Goddard, M. E., Guldbrandtsen, B., Lund, M. S., Veerkamp, R. F., Boichard, D. A., Fries, R., and Hayes, B. J. (2014). Whole-genome sequencing of 234 bulls facilitates mapping of monogenic and complex traits in cattle. Nat. Genet. 46, 858–865.
Whole-genome sequencing of 234 bulls facilitates mapping of monogenic and complex traits in cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFGqsbjI&md5=86f6c935d8b57928eaf211b4ac153462CAS | 25017103PubMed |

Dennis, J. A., Healy, P. J., Beaudet, A. L., and O’Brien, W. E. (1989). Molecular definition of bovine argininosuccinate synthetase deficiency. Proc. Natl Acad. Sci. USA 86, 7947–7951.
Molecular definition of bovine argininosuccinate synthetase deficiency.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXkt1WktL4%3D&md5=0e3977abc88054ba938ad96684f1102dCAS | 2813370PubMed |

Druet, T., Fritz, S., Sellem, E., Basso, B., Gérard, O., Salas-Cortes, L., Humblot, P., Druart, X., and Eggen, A. (2009). Estimation of genetic parameters and genome scan for 15 semen characteristics traits of Holstein bulls. J. Anim. Breed. Genet. 126, 269–277.
Estimation of genetic parameters and genome scan for 15 semen characteristics traits of Holstein bulls.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1MrgvFyjsQ%3D%3D&md5=286acc4abf81f17c5bbfca3494b3a4e1CAS | 19630877PubMed |

Duchesne, A., Gautier, M., Chadi, S., Grohs, C., Floriot, S., Gallard, Y., Caste, G., Ducos, A., and Eggen, A. (2006). Identification of a doublet missense substitution in the bovine LRP4 gene as a candidate causal mutation for syndactyly in Holstein cattle. Genomics 88, 610–621.
Identification of a doublet missense substitution in the bovine LRP4 gene as a candidate causal mutation for syndactyly in Holstein cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVOgtbnO&md5=fe6557560f0ae4b1d537711d4c5f933eCAS | 16859890PubMed |

Fortes, M. R., Deatley, K. L., Lehnert, S. A., Burns, B. M., Reverter, A., Hawken, R. J., Boe-Hansen, G., Moore, S. S., and Thomas, M. G. (2013). Genomic regions associated with fertility traits in male and female cattle: advances from microsatellites to high-density chips and beyond. Anim. Reprod. Sci. 141, 1–19.
Genomic regions associated with fertility traits in male and female cattle: advances from microsatellites to high-density chips and beyond.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1arurvP&md5=e55e9a063cd571aa892bf934a3a9e6e8CAS | 23932163PubMed |

Fritz, S., Capitan, A., Djari, A., Rodriguez, S. C., Barbat, A., Baur, A., Grohs, C., Weiss, B., Boussaha, M., Esquerré, D., Klopp, C., Rocha, D., and Boichard, D. (2013). Detection of haplotypes associated with prenatal death in dairy cattle and identification of deleterious mutations in GART, SHBG and SLC37A2. PLoS ONE 8, e65550.
Detection of haplotypes associated with prenatal death in dairy cattle and identification of deleterious mutations in GART, SHBG and SLC37A2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVSku7zM&md5=e8ea5ff5e26a80eeafc9b5ea2c9717fcCAS | 23762392PubMed |

Gentry, P. A., and Black, W. D. (1980). Prevalence and inheritance of factor XI (plasma thromboplastin antecedent) deficiency in cattle. J. Dairy Sci. 63, 616–620.
Prevalence and inheritance of factor XI (plasma thromboplastin antecedent) deficiency in cattle.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL3c3gsV2gug%3D%3D&md5=24235ad61106be99cc7e18033f5c24faCAS | 7381085PubMed |

Goddard, M. E., and Hayes, B. J. (2007). Genomic selection. J. Anim. Breed. Genet. 124, 323–330.
Genomic selection.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2sjjvFyiug%3D%3D&md5=8932b746c29e29be472aadc912c703dcCAS | 18076469PubMed |

Harper, P. A., Healy, P. J., Dennis, J. A., and Martin, A. B. (1988). Ultrastructural findings in citrullinaemia in Holstein–Friesian calves. Acta Neuropathol. 76, 306–310.
Ultrastructural findings in citrullinaemia in Holstein–Friesian calves.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1M7gt1Cjtw%3D%3D&md5=4f1ee84a666330d171925593d207cb0dCAS | 3213435PubMed |

Kadri, N. K., Sahana, G., Charlier, C., Iso-Touru, T., Guldbrandtsen, B., Karim, L., Nielsen, U. S., Panitz, F., Aamand, G. P., Schulman, N., Georges, M., Vilkki, J., Lund, M. S., and Druet, T. (2014). A 660-Kb deletion with antagonistic effects on fertility and milk production segregates at high frequency in Nordic Red cattle: additional evidence for the common occurrence of balancing selection in livestock. PLoS Genet. 10, e1004049.
A 660-Kb deletion with antagonistic effects on fertility and milk production segregates at high frequency in Nordic Red cattle: additional evidence for the common occurrence of balancing selection in livestock.Crossref | GoogleScholarGoogle Scholar | 24391517PubMed |

Khatib, H., Monson, R. L., Huang, W., Khatib, R., Schutzkus, V., Khateeb, H., and Parrish, J. J. (2010). Short communication: validation of in vitro fertility genes in a Holstein bull population. J. Dairy Sci. 93, 2244–2249.
Short communication: validation of in vitro fertility genes in a Holstein bull population.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnvVansL4%3D&md5=3fd52586fc31de84d88c700bdf69921fCAS | 20412940PubMed |

Lan, X. Y., Penagaricano, F., DeJung, L., Weigel, K. A., and Khatib, H. (2013). Short communication: a missense mutation in the PROP1 (prophet of Pit 1) gene affects male fertility and milk production traits in the US Holstein population. J. Dairy Sci. 96, 1255–1257.
Short communication: a missense mutation in the PROP1 (prophet of Pit 1) gene affects male fertility and milk production traits in the US Holstein population.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVCku7zK&md5=42449884787fbfc366a228850ad8114dCAS | 23245960PubMed |

Lander, E. S., and Botstein, D. (1987). Homozygosity mapping: a way to map human recessive traits with the DNA of inbred children. Science 236, 1567–1570.
Homozygosity mapping: a way to map human recessive traits with the DNA of inbred children.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXksFKntb8%3D&md5=f5d4d263b2fb7db7c42779fa60d0a189CAS | 2884728PubMed |

Lefebvre, R., Fritz, S., Ledoux, D., Gatien, J., Genestout, L., Rossignol, M. N., Grimard, B., Boichard, D., Humblot, P., and Ponsart, C. (2011). GENIFER cartographie fine et effets de QTL de fertilité en race bovine Holstein. In ‘18èmes Rencontres Recherches Ruminants, Paris’. (Ed. Institut de l’Elevage.) p. 415 [Abstract]. (Rencontres autour des Recherches sur les Ruminants: Paris.)

Marchini, J., and Howie, B. (2010). Genotype imputation for genome-wide association studies Nat. Rev. Genet. 11, 499–511.
Genotype imputation for genome-wide association studiesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXovVekurs%3D&md5=092bf299d758ed75b74202b0fa2bd0a4CAS | 20517342PubMed |

Marron, B. M., Robinson, J. L., Gentry, P. A., and Beever, J. E. (2004). Identification of a mutation associated with factor XI deficiency in Holstein cattle. Anim. Genet. 35, 454–456.
Identification of a mutation associated with factor XI deficiency in Holstein cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjslGnsQ%3D%3D&md5=1495c2f692b5dc4e360e75a05a27d5e0CAS | 15566468PubMed |

McClure, M. C., Bickhart, D., Null, D., Vanraden, P., Xu, L., Wiggans, G., Liu, G., Schroeder, S., Glasscock, J., Armstrong, J., Cole, J. B., Van Tassell, C. P., and Sonstegard, T. S. (2014). Bovine exome sequence analysis and targeted SNP genotyping of recessive fertility defects BH1, HH2, and HH3 reveal a putative causative mutation in SMC2 for HH3. PLoS ONE 9, e92769.
Bovine exome sequence analysis and targeted SNP genotyping of recessive fertility defects BH1, HH2, and HH3 reveal a putative causative mutation in SMC2 for HH3.Crossref | GoogleScholarGoogle Scholar | 24667746PubMed |

McDaneld, T. G., Kuehn, L. A., Thomas, M. G., Snelling, W. M., Sonstegard, T. S., Matukumalli, L. K., Smith, T. P., Pollak, E. J., and Keele, J. W. (2012). Y are you not pregnant: identification of Y chromosome segments in female cattle with decreased reproductive efficiency. J. Anim. Sci. 90, 2142–2151.
Y are you not pregnant: identification of Y chromosome segments in female cattle with decreased reproductive efficiency.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFehsbrP&md5=8fc5eb0007293ac2cd181ceb5f2079d3CAS | 22408089PubMed |

Miglior, F. (2000). Impact of inbreeding: managing a declining Holstein gene pool. In ‘Proceedings of the 10th World Holstein Friesian Federation Conference, Sydney, Australia’. pp. 108–113.

Pausch, H., Kölle, S., Wurmser, C., Schwarzenbacher, H., Emmerling, R., Jansen, S., Trottmann, M., Fuerst, C., Götz, K. U., and Fries, R. (2014). A nonsense mutation in TMEM95 encoding a nondescript transmembrane protein causes idiopathic male subfertility in cattle. PLoS Genet. 10, e1004044.
A nonsense mutation in TMEM95 encoding a nondescript transmembrane protein causes idiopathic male subfertility in cattle.Crossref | GoogleScholarGoogle Scholar | 24391514PubMed |

Peñagaricano, F., Weigel, K. A., and Khatib, H. (2012). Genome-wide association study identifies candidate markers for bull fertility in Holstein dairy cattle. Anim. Genet. 43, 65–71.
Genome-wide association study identifies candidate markers for bull fertility in Holstein dairy cattle.Crossref | GoogleScholarGoogle Scholar | 22742504PubMed |

Sahana, G., Nielsen, U. S., Aamand, G. P., Lund, M. S., and Guldbrandtsen, B. (2013). Novel harmful recessive haplotypes identified for fertility traits in nordic holstein cattle. PLoS ONE 8, e82909.
Novel harmful recessive haplotypes identified for fertility traits in nordic holstein cattle.Crossref | GoogleScholarGoogle Scholar | 24376603PubMed |

Schwarzenbacher, H., Fuerst, C., Fuerst-Waltl, B., and Dolezal, M. (2012). A genome-wide search for harmful recessive haplotypes in Brown Swiss and Fleckvieh cattle. In ‘63rd EAAP Meeting Book of Abstracts, Bratislava, Slovakia’. p. 170. (Wageningen Academic Publishers: Wageningen, The Netherlands.)

Schwenger, B., Schöber, S., and Simon, D. (1993). DUMPS cattle carry a point mutation in the uridine monophosphate synthase gene. Genomics 16, 241–244.
DUMPS cattle carry a point mutation in the uridine monophosphate synthase gene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXkvVyjtLY%3D&md5=8f7a6b75f9e13a56ea1d84c3b5312475CAS | 8486364PubMed |

Shuster, D. E., Kehrli, M. E., Ackermann, M. R., and Gilbert, R. O. (1992). Identification and prevalence of a genetic defect that causes leukocyte adhesion deficiency in Holstein cattle. Proc. Natl Acad. Sci. USA 89, 9225–9229.
Identification and prevalence of a genetic defect that causes leukocyte adhesion deficiency in Holstein cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXkslSitLc%3D&md5=2512baac923573ec6c0e6ed5d7a9bd3bCAS | 1384046PubMed |

Sonstegard, T. S., Cole, J. B., VanRaden, P. M., Van Tassell, C. P., Null, D. J., Schroeder, S. G., Bickhart, D., and McClure, M. C. (2013). Identification of a nonsense mutation in CWC15 associated with decreased reproductive efficiency in Jersey cattle. PLoS ONE 8, e54872.
Identification of a nonsense mutation in CWC15 associated with decreased reproductive efficiency in Jersey cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvF2gtLo%3D&md5=a63737016ddc32ed752bc657c1403fafCAS | 23349982PubMed |

VanRaden, P. M., Olson, K. M., Null, D. J., and Hutchison, J. L. (2011). Harmful recessive effects on fertility detected by absence of homozygous haplotypes. J. Dairy Sci. 94, 6153–6161.
Harmful recessive effects on fertility detected by absence of homozygous haplotypes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFClsbjM&md5=e3cb4e128c22f9eed0d6e8a1a2526079CAS | 22118103PubMed |