Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Involvement of G9A-like protein (GLP) in the development of mouse preimplantation embryos in vitro

Xian-Ju Huang A , Xueshan Ma B , Xuguang Wang C , Xiaolong Zhou A , Juan Li A , Shao-Chen Sun A and Honglin Liu A D
+ Author Affiliations
- Author Affiliations

A College of Animal Science and Technology, Nanjing Agricultural University, Weigang No. 1, Nanjing 210095, China.

B State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Peking University People’s Hospital, Beichen West Road No. 1, Chaoyang District, Beijing 100101, China.

C Animal Science College, Xinjiang Agricultural University, Nongda Road No. 311, Wulumuqi, Xinjiang 830052, China.

D Corresponding author. Email: liuhonglin@njau.edu.cn

Reproduction, Fertility and Development 28(11) 1733-1740 https://doi.org/10.1071/RD14341
Submitted: 12 September 2014  Accepted: 3 April 2015   Published: 18 May 2015

Abstract

G9A-like protein (GLP) plays an important role in mouse early embryonic development. Glp-deficient embryos exhibit severe growth retardation and defects that lead to lethality at approximately Embryonic Day 9.5. In the present study we investigated the effect of microinjection of Glp-specific short interference (si) RNA into mouse zygotes on in vitro embryonic development. Knockdown of Glp induced abnormal embryonic development and reduced blastocyst formation. Expression of the pluripotency markers octamer-binding transcription factor 4 (Oct4), SRY (sex determining region Y)-box 2 (Sox2) and Nanog was also significantly decreased in Glp-deficient embryos. The apoptotic index and expression of two pro-apoptotic genes, namely Caspase 3 and Caspase 9, were increased in Glp-deficient embryos. Moreover, methylation levels of dimethylated H3K9 (H3K9me2) were decreased in Glp-knockdown embryos. In conclusion, the results of the present study suggest that Glp deficiency suppresses H3K9me2 modification and hinders mouse embryo development in vitro.

Additional keywords: abnormal development, apoptosis, Glp deficiency.


References

Cardoso, C., Timsit, S., Villard, L., Khrestchatisky, M., Fontes, M., and Colleaux, L. (1998). Specific interaction between the XNP/ATR-X gene product and the SET domain of the human EZH2 protein. Hum. Mol. Genet. 7, 679–684.
Specific interaction between the XNP/ATR-X gene product and the SET domain of the human EZH2 protein.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXisVeqtb0%3D&md5=028d53b87f716c84e7ad6b5edf64d420CAS | 9499421PubMed |

Huang, X. J., Wang, X., Ma, X., Sun, S. C., Zhou, X., Zhu, C., and Liu, H. (2014). EZH2 is essential for development of mouse preimplantation embryos. Reprod. Fertil. Dev. 26, 1166–1175.
EZH2 is essential for development of mouse preimplantation embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhslChsb%2FM&md5=163075a01753ea27fffb69ee95f16df1CAS | 24153105PubMed |

Inoue, A., and Aoki, F. (2010). Role of the nucleoplasmin 2 C-terminal domain in the formation of nucleolus-like bodies in mouse oocytes. FASEB J. 24, 485–494.
Role of the nucleoplasmin 2 C-terminal domain in the formation of nucleolus-like bodies in mouse oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1Ghu70%3D&md5=230667f67ddf004e9a86f83941470dddCAS | 19805576PubMed |

Kamjoo, M., Brison, D. R., and Kimber, S. J. (2002). Apoptosis in the preimplantation mouse embryo: effect of strain difference and in vitro culture. Mol. Reprod. Dev. 61, 67–77.
Apoptosis in the preimplantation mouse embryo: effect of strain difference and in vitro culture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXptVejur8%3D&md5=4eb12f1821321d4c5b21d3ba33b86644CAS | 11774377PubMed |

Keramari, M., Razavi, J., Ingman, K. A., Patsch, C., Edenhofer, F., Ward, C. M., and Kimber, S. J. (2010). Sox2 is essential for formation of trophectoderm in the preimplantation embryo. PLoS One 5, e13952.
Sox2 is essential for formation of trophectoderm in the preimplantation embryo.Crossref | GoogleScholarGoogle Scholar | 21103067PubMed |

Kleefstra, T., Brunner, H. G., Amiel, J., Oudakker, A. R., Nillesen, W. M., Magee, A., Genevieve, D., Cormier-Daire, V., van Esch, H., Fryns, J. P., Hamel, B. C., Sistermans, E. A., de Vries, B. B., and van Bokhoven, H. (2006). Loss-of-function mutations in euchromatin histone methyl transferase 1 (EHMT1) cause the 9q34 subtelomeric deletion syndrome. Am. J. Hum. Genet. 79, 370–377.
Loss-of-function mutations in euchromatin histone methyl transferase 1 (EHMT1) cause the 9q34 subtelomeric deletion syndrome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnsVOktb4%3D&md5=c2585f5bfe5bd0cf47de2966b6e414dfCAS | 16826528PubMed |

Livak, K. J., and Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(–Delta Delta C(T)) method. Methods 25, 402–408.
Analysis of relative gene expression data using real-time quantitative PCR and the 2(–Delta Delta C(T)) method.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtFelt7s%3D&md5=6db539426b70529f14f65734e4c1d0f6CAS | 11846609PubMed |

Mamo, S., Gal, A. B., Bodo, S., and Dinnyes, A. (2007). Quantitative evaluation and selection of reference genes in mouse oocytes and embryos cultured in vivo and in vitro. BMC Dev. Biol. 7, 14.
Quantitative evaluation and selection of reference genes in mouse oocytes and embryos cultured in vivo and in vitro.Crossref | GoogleScholarGoogle Scholar | 17341302PubMed |

Masui, S., Nakatake, Y., Toyooka, Y., Shimosato, D., Yagi, R., Takahashi, K., Okochi, H., Okuda, A., Matoba, R., Sharov, A. A., Ko, M. S., and Niwa, H. (2007). Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells. Nat. Cell Biol. 9, 625–635.
Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtVSmtLo%3D&md5=0fb873ab83d913fb61b2a1f53c9ba4f9CAS | 17515932PubMed |

Mitsui, K., Tokuzawa, Y., Itoh, H., Segawa, K., Murakami, M., Takahashi, K., Maruyama, M., Maeda, M., and Yamanaka, S. (2003). The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113, 631–642.
The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXksFehur4%3D&md5=a25a109be135ac7d54897e4fae8b8c06CAS | 12787504PubMed |

Nichols, J., Evans, E. P., and Smith, A. G. (1990). Establishment of germ-line-competent embryonic stem (ES) cells using differentiation inhibiting activity. Development 110, 1341–1348.
| 1:STN:280:DyaK3MzgtFSmug%3D%3D&md5=956c830d7af1b8616c94772ad59f8bc9CAS | 2129226PubMed |

Nichols, J., Chambers, I., and Smith, A. (1994). Derivation of germline competent embryonic stem cells with a combination of interleukin-6 and soluble interleukin-6 receptor. Exp. Cell Res. 215, 237–239.
Derivation of germline competent embryonic stem cells with a combination of interleukin-6 and soluble interleukin-6 receptor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmslOmsLw%3D&md5=957d87d5a6ce3ca71b31503e63a334c5CAS | 7957676PubMed |

Nichols, J., Zevnik, B., Anastassiadis, K., Niwa, H., Klewe-Nebenius, D., Chambers, I., Scholer, H., and Smith, A. (1998). Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95, 379–391.
Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXntlCqt74%3D&md5=9a478dd2bd2facd0ee174019c3f4a0a5CAS | 9814708PubMed |

Nishio, H., and Walsh, M. J. (2004). CCAAT displacement protein/cut homolog recruits G9a histone lysine methyltransferase to repress transcription. Proc. Natl Acad. Sci. USA 101, 11 257–11 262.
CCAAT displacement protein/cut homolog recruits G9a histone lysine methyltransferase to repress transcription.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmvVKgt7w%3D&md5=b95c79bdc5a210a693fef26860959787CAS |

Pesce, M., Wang, X., Wolgemuth, D. J., and Scholer, H. (1998). Differential expression of the Oct-4 transcription factor during mouse germ cell differentiation. Mech. Dev. 71, 89–98.
Differential expression of the Oct-4 transcription factor during mouse germ cell differentiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhs1Ggtrg%3D&md5=ecedcc34457df56db9d0afce7db17c84CAS | 9507072PubMed |

Roopra, A., Qazi, R., Schoenike, B., Daley, T. J., and Morrison, J. F. (2004). Localized domains of G9a-mediated histone methylation are required for silencing of neuronal genes. Mol. Cell 14, 727–738.
Localized domains of G9a-mediated histone methylation are required for silencing of neuronal genes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlslemtr4%3D&md5=05ccd78c03d8c5906f079d777ee0f371CAS | 15200951PubMed |

Rougeulle, C., Chaumeil, J., Sarma, K., Allis, C. D., Reinberg, D., Avner, P., and Heard, E. (2004). Differential histone H3 Lys-9 and Lys-27 methylation profiles on the X chromosome. Mol. Cell. Biol. 24, 5475–5484.
Differential histone H3 Lys-9 and Lys-27 methylation profiles on the X chromosome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXkvFOqtLc%3D&md5=548724b58559fc46aadda21569177f0eCAS | 15169908PubMed |

Shinkai, Y., and Tachibana, M. (2011). H3K9 methyltransferase G9a and the related molecule GLP. Genes Dev. 25, 781–788.
H3K9 methyltransferase G9a and the related molecule GLP.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltlKntrg%3D&md5=49d601a801396d0224e9fb1aa5d501a0CAS | 21498567PubMed |

Tachibana, M., Sugimoto, K., Fukushima, T., and Shinkai, Y. (2001). Set domain-containing protein, G9a, is a novel lysine-preferring mammalian histone methyltransferase with hyperactivity and specific selectivity to lysines 9 and 27 of histone H3. J. Biol. Chem. 276, 25 309–25 317.
Set domain-containing protein, G9a, is a novel lysine-preferring mammalian histone methyltransferase with hyperactivity and specific selectivity to lysines 9 and 27 of histone H3.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlt1ans7s%3D&md5=544cf80b0ff557d42d803e8daad80bc0CAS |

Tachibana, M., Ueda, J., Fukuda, M., Takeda, N., Ohta, T., Iwanari, H., Sakihama, T., Kodama, T., Hamakubo, T., and Shinkai, Y. (2005). Histone methyltransferases G9a and GLP form heteromeric complexes and are both crucial for methylation of euchromatin at H3–K9. Genes Dev. 19, 815–826.
Histone methyltransferases G9a and GLP form heteromeric complexes and are both crucial for methylation of euchromatin at H3–K9.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjt1OjtLc%3D&md5=d3e8c845028dd6d1ac74326c91e66509CAS | 15774718PubMed |

Tan, M. H., Au, K. F., Leong, D. E., Foygel, K., Wong, W. H., and Yao, M. W. (2013). An Oct4–Sall4–Nanog network controls developmental progression in the pre-implantation mouse embryo. Mol. Syst. Biol. 9, 632.
An Oct4–Sall4–Nanog network controls developmental progression in the pre-implantation mouse embryo.Crossref | GoogleScholarGoogle Scholar | 23295861PubMed |

Ueda, J., Tachibana, M., Ikura, T., and Shinkai, Y. (2006). Zinc finger protein Wiz links G9a/GLP histone methyltransferases to the co-repressor molecule CtBP. J. Biol. Chem. 281, 20 120–20 128.
Zinc finger protein Wiz links G9a/GLP histone methyltransferases to the co-repressor molecule CtBP.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmvFeqtr0%3D&md5=27b073937a35df5eea043cd8991694c1CAS |

Wossidlo, M., Nakamura, T., Lepikhov, K., Marques, C. J., Zakhartchenko, V., Boiani, M., Arand, J., Nakano, T., Reik, W., and Walter, J. (2011). 5-Hydroxymethylcytosine in the mammalian zygote is linked with epigenetic reprogramming. Nat. Commun. 2, 241.
5-Hydroxymethylcytosine in the mammalian zygote is linked with epigenetic reprogramming.Crossref | GoogleScholarGoogle Scholar | 21407207PubMed |