Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH FRONT

DNA methylation reprogramming during oogenesis and interference by reproductive technologies: Studies in mouse and bovine models

Ellen Anckaert A and Trudee Fair B C
+ Author Affiliations
- Author Affiliations

A Follicle Biology Laboratory and Center for Reproductive Medicine, UZ Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, Brussels 1090, Belgium.

B School of Agriculture and Food Sciences, University College Dublin, Belfield, Dublin 4, Ireland.

C Corresponding author. Email: trudee.fair@ucd.ie

Reproduction, Fertility and Development 27(5) 739-754 https://doi.org/10.1071/RD14333
Submitted: 8 September 2014  Accepted: 1 April 2015   Published: 15 May 2015

Abstract

The use of assisted reproductive technology (ART) to overcome fertility problems has continued to increase since the birth of the first baby conceived by ART over 30 years ago. Similarly, embryo transfer is widely used as a mechanism to advance genetic gain in livestock. Despite repeated optimisation of ART treatments, pre- and postnatal outcomes remain compromised. Epigenetic mechanisms play a fundamental role in successful gametogenesis and development. The best studied of these is DNA methylation; the appropriate establishment of DNA methylation patterns in gametes and early embryos is essential for healthy development. Superovulation studies in the mouse indicate that specific ARTs are associated with normal imprinting establishment in oocytes, but abnormal imprinting maintenance in embryos. A similar limited impact of ART on oocytes has been reported in cattle, whereas the majority of embryo-focused studies have used cloned embryos, which do exhibit aberrant DNA methylation. The present review discusses the impact of ART on oocyte and embryo DNA methylation with regard to data available from mouse and bovine models.

Additional keywords: epigenetic, in vitro fertilisation, mammal, oocyte development.


References

Adriaens, I., Cortvrindt, R., and Smitz, J. (2004). Differential FSH exposure in preantral follicle culture has marked effects on folliculogenesis and oocyte developmental competence. Hum. Reprod. 19, 398–408.
Differential FSH exposure in preantral follicle culture has marked effects on folliculogenesis and oocyte developmental competence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXos1entQ%3D%3D&md5=0461d9ec2b5377c37d1c5afaf956e916CAS | 14747188PubMed |

Anckaert, E., Adriaenssens, T., Romero, S., Dremier, S., and Smitz, J. (2009a). Unaltered imprinting establishment of key imprinted genes in mouse oocytes after follicle culture under variable follicle-stimulating hormone exposure. Int. J. Dev. Biol. 53, 541–548.
Unaltered imprinting establishment of key imprinted genes in mouse oocytes after follicle culture under variable follicle-stimulating hormone exposure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVSmsLbO&md5=9775ea7c0dec163bbc0828c694810e85CAS | 19247969PubMed |

Anckaert, E., Romero, S., Adriaenssens, T., and Smitz, J. (2009b). Ammonium accumulation and use of mineral oil overlay do not alter imprinting establishment at three key imprinted genes in mouse oocytes grown and matured in a long-term follicle culture. Biol. Reprod. 81, 666–673.
Ammonium accumulation and use of mineral oil overlay do not alter imprinting establishment at three key imprinted genes in mouse oocytes grown and matured in a long-term follicle culture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFyhsLjL&md5=fcbbe7a962d9c6fa5cea63693420fcdeCAS | 19494252PubMed |

Anckaert, E., Romero, S., Adriaenssens, T., and Smitz, J. (2010). Effects of low methyl donor levels in culture medium during mouse follicle culture on oocyte imprinting establishment. Biol. Reprod. 83, 377–386.
Effects of low methyl donor levels in culture medium during mouse follicle culture on oocyte imprinting establishment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVyrsrrF&md5=93909841a510139463992d1a7ca94900CAS | 20393167PubMed |

Anckaert, E., Sanchez, F., Billooye, K., and Smitz, J. (2013). Dynamics of imprinted DNA methylation and gene transcription for imprinting establishment in mouse oocytes in relation to culture duration variability. Biol. Reprod. 89, 130.
Dynamics of imprinted DNA methylation and gene transcription for imprinting establishment in mouse oocytes in relation to culture duration variability.Crossref | GoogleScholarGoogle Scholar | 24108304PubMed |

Arima, T., and Wake, N. (2006). Establishment of the primary imprint of the HYMAI/PLAGL1 imprint control region during oogenesis. Cytogenet. Genome Res. 113, 247–252.
Establishment of the primary imprint of the HYMAI/PLAGL1 imprint control region during oogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjtVSqurw%3D&md5=eb05d2aa8896604b81b46a4bf70ce8f3CAS | 16575187PubMed |

Ayyanathan, K., Lechner, M. S., Bell, P., Maul, G. G., Schultz, D. C., Yamada, Y., Tanaka, K., Torigoe, K., and Rauscher, F. J. (2003). Regulated recruitment of HP1 to a euchromatic gene induces mitotically heritable, epigenetic gene silencing: a mammalian cell culture model of gene variegation. Genes Dev. 17, 1855–1869.
Regulated recruitment of HP1 to a euchromatic gene induces mitotically heritable, epigenetic gene silencing: a mammalian cell culture model of gene variegation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmt1Sjt74%3D&md5=fe0c3fba21611a73b7af2004df3b7050CAS | 12869583PubMed |

Bao, S., Obata, Y., Carroll, J., Domeki, I., and Kono, T. (2000). Epigenetic modifications necessary for normal development are established during oocyte growth in mice. Biol. Reprod. 62, 616–621.
Epigenetic modifications necessary for normal development are established during oocyte growth in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhsVOrsrY%3D&md5=416054ae29bf197555093277d40341a7CAS | 10684802PubMed |

Barton, S. C., Arney, K. L., Shi, W., Niveleau, A., Fundele, R., Surani, M. A., and Haaf, T. (2001). Genome-wide methylation patterns in normal and uniparental early mouse embryos. Hum. Mol. Genet. 10, 2983–2987.
Genome-wide methylation patterns in normal and uniparental early mouse embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnsVGhsQ%3D%3D&md5=a21e2779c4bcf3875980ed0296c57869CAS | 11751680PubMed |

Bay, B., Mortensen, E. L., Hvidtjorn, D., and Kesmodel, U. S. (2013). Fertility treatment and risk of childhood and adolescent mental disorders: register based cohort study. BMJ 347, f3978.
Fertility treatment and risk of childhood and adolescent mental disorders: register based cohort study.Crossref | GoogleScholarGoogle Scholar | 23833075PubMed |

Behboodi, E., Groen, W., Destrempes, M. M., Williams, J. L., Ohlrichs, C., Gavin, W. G., Broek, D. M., Ziomek, C. A., Faber, D. C., Meade, H. M., and Echelard, Y. (2001). Transgenic production from in vivo-derived embryos: effect on calf birth weight and sex ratio. Mol. Reprod. Dev. 60, 27–37.
Transgenic production from in vivo-derived embryos: effect on calf birth weight and sex ratio.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlvFWisrg%3D&md5=25cb29ae320a4d5309d8995c1c832f44CAS | 11550265PubMed |

Betsha, S., Hoelker, M., Salilew-Wondim, D., Held, E., Rings, F., Grosse-Brinkhause, C., Cinar, M. U., Havlicek, V., Besenfelder, U., Tholen, E., Looft, C., Schellander, K., and Tesfaye, D. (2013). Transcriptome profile of bovine elongated conceptus obtained from SCNT and IVP pregnancies. Mol. Reprod. Dev. 80, 315–333.
Transcriptome profile of bovine elongated conceptus obtained from SCNT and IVP pregnancies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXksFOkt70%3D&md5=f8dc982b5ce5980dd2d7680ed7fa7855CAS | 23426952PubMed |

Bortvin, A., Goodheart, M., Liao, M., and Page, D. C. (2004). Dppa3/Pgc7/stella is a maternal factor and is not required for germ cell specification in mice. BMC Dev. Biol. 4, 2.
Dppa3/Pgc7/stella is a maternal factor and is not required for germ cell specification in mice.Crossref | GoogleScholarGoogle Scholar | 15018652PubMed |

Bourc’his, D., and Bestor, T. H. (2004). Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L. Nature 431, 96–99.
Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntFCksrc%3D&md5=625015b412dddd9a789ce47ee4528a42CAS | 15318244PubMed |

Bourc’his, D., Xu, G. L., Lin, C. S., Bollman, B., and Bestor, T. H. (2001a). Dnmt3L and the establishment of maternal genomic imprints. Science 294, 2536–2539.
Dnmt3L and the establishment of maternal genomic imprints.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xns1Or&md5=a0ab69688cbbcc9b714bb7e74de40896CAS | 11719692PubMed |

Bourc’his, D., Le Bourhis, D., Patin, D., Niveleau, A., Comizzoli, P., Renard, J. P., and Viegas- Péquignot, E. (2001b). Delayed and incomplete reprogramming of chromosome methylation patterns in bovine cloned embryos. Curr. Biol. 11, 1542–1546.
Delayed and incomplete reprogramming of chromosome methylation patterns in bovine cloned embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnsF2ms7o%3D&md5=abafdbf23aa6fb2084fc129bf923bbc7CAS | 11591324PubMed |

Bruce, A. W. (2013). Generating different genetic expression patterns in the early embryo: insights from the mouse model. Reprod. Biomed. Online 27, 586–592.
Generating different genetic expression patterns in the early embryo: insights from the mouse model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpt12jtbY%3D&md5=e0952a322969b986f86bfccb4fe59950CAS | 23768616PubMed |

Cezar, G. G., Bartolomei, M. S., Forsberg, E. J., First, N. L., Bishop, M. D., and Eilertsen, K. J. (2003). Genome-wide epigenetic alterations in cloned bovine fetuses. Biol. Reprod. 68, 1009–1014.
Genome-wide epigenetic alterations in cloned bovine fetuses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhsFGks7c%3D&md5=d11acb916497523332e070422aa61e23CAS | 12604655PubMed |

Chavatte-Palmer, P., Camous, S., Jammes, H., Le Cleac’h, N., Guillomot, M., and Lee, R. S. (2012). Review: Placental perturbations induce the developmental abnormalities often observed in bovine somatic cell nuclear transfer. Placenta 33, S99–S104.
Review: Placental perturbations induce the developmental abnormalities often observed in bovine somatic cell nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 22000472PubMed |

Chen, Z., Robbins, K. M., Wells, K. D., and Rivera, R. M. (2013). Large offspring syndrome: a bovine model for the human loss-of-imprinting overgrowth syndrome Beckwith–Wiedemann. Epigenetics 8, 591–601.
Large offspring syndrome: a bovine model for the human loss-of-imprinting overgrowth syndrome Beckwith–Wiedemann.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXivFWksrw%3D&md5=d1d94351dad81ba703774c99c3255e9cCAS | 23751783PubMed |

Cheng, K. R., Fu, X. W., Zhang, R. N., Jia, G. X., Hou, Y. P., and Zhu, S. E. (2014). Effect of oocyte vitrification on deoxyribonucleic acid methylation of H19, Peg3, and Snrpn differentially methylated regions in mouse blastocysts. Fertil. Steril. 102, 1183–1190.e3.
Effect of oocyte vitrification on deoxyribonucleic acid methylation of H19, Peg3, and Snrpn differentially methylated regions in mouse blastocysts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1Squ7nP&md5=46c381a27d1093297d1227d4d9b7b5b9CAS | 25064401PubMed |

Chotalia, M., Smallwood, S. A., Ruf, N., Dawson, C., Lucifero, D., Frontera, M., James, K., Dean, W., and Kelsey, G. (2009). Transcription is required for establishment of germline methylation marks at imprinted genes. Genes Dev. 23, 105–117.
Transcription is required for establishment of germline methylation marks at imprinted genes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptFWluw%3D%3D&md5=72e2c79f8fa466330322b767a0c78e94CAS | 19136628PubMed |

Chung, Y. G., Ratnam, S., Chaillet, J. R., and Latham, K. (2003). Abnormal regulation of DNA methyltransferase expression in cloned mouse embryos. Biol. Reprod. 69, 146–153.
Abnormal regulation of DNA methyltransferase expression in cloned mouse embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkvFCnt7g%3D&md5=ec9498eaa06c38894144cc63f377ea97CAS | 12606374PubMed |

Cirio, M. C., Martel, J., Mann, M., Toppings, M., Bartolomei, M., Trasler, J., and Chaillet, J. R. (2008). DNA methyltransferase 1o functions during preimplantation development to preclude a profound level of epigenetic variation. Dev. Biol. 324, 139–150.
DNA methyltransferase 1o functions during preimplantation development to preclude a profound level of epigenetic variation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVSjs7bE&md5=614f89f1edde522be19af381ea6d6e42CAS | 18845137PubMed |

Corcoran, D., Fair, T., Park, S., Rizos, D., Patel, O. V., Smith, G. W., Coussens, P. M., Ireland, J. J., Boland, M. P., Evans, A. C., and Lonergan, P. (2006). Suppressed expression of genes involved in transcription and translation in in vitro compared with in vivo cultured bovine embryos. Reproduction 131, 651–660.
Suppressed expression of genes involved in transcription and translation in in vitro compared with in vivo cultured bovine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XltV2jtr8%3D&md5=2642caef40d4ed091bd4ec10d860a122CAS | 16595716PubMed |

Corcoran, D., Rizos, D., Fair, T., Evans, A. C., and Lonergan, P. (2007). Temporal expression of transcripts related to embryo quality in bovine embryos cultured from the two-cell to blastocyst stage in vitro or in vivo. Mol. Reprod. Dev. 74, 972–977.
Temporal expression of transcripts related to embryo quality in bovine embryos cultured from the two-cell to blastocyst stage in vitro or in vivo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXntVOhur0%3D&md5=87bdd8c05e608f651352670dca330fcbCAS | 17219429PubMed |

Cortvrindt, R. G., and Smitz, J. E. J. (2002). Follicle culture in reproductive toxicology: a tool for in-vitro testing of ovarian function. Hum. Reprod. Update 8, 243–254.
Follicle culture in reproductive toxicology: a tool for in-vitro testing of ovarian function.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD38zjs1ygsA%3D%3D&md5=b894f3d1b28fc192264c6fcb4d3b49c4CAS | 12078835PubMed |

Cortvrindt, R. G., Hu, Y., Liu, J., and Smitz, J. E. J. (1998). A timed analysis of the nuclear maturation of oocytes in recombinant gonadotropin-supplemented early preantral mouse follicle culture. Fertil. Steril. 70, 1114–1125.
A timed analysis of the nuclear maturation of oocytes in recombinant gonadotropin-supplemented early preantral mouse follicle culture.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1M%2FmtlSmsg%3D%3D&md5=6f9afb59c11566852064d3d07d28b7caCAS | 9848304PubMed |

Couldrey, C., and Lee, R. S. (2010). DNA methylation patterns in tissues from mid-gestation bovine foetuses produced by somatic cell nuclear transfer show subtle abnormalities in nuclear reprogramming. BMC Dev. Biol. 10, 27.
DNA methylation patterns in tissues from mid-gestation bovine foetuses produced by somatic cell nuclear transfer show subtle abnormalities in nuclear reprogramming.Crossref | GoogleScholarGoogle Scholar | 20205951PubMed |

Curchoe, C. L., Zhang, S., Yang, L., Page, R., and Tian, X. C. (2009). Hypomethylation trends in the intergenic region of the imprinted IGF2 and H19 genes in cloned cattle. Anim. Reprod. Sci. 116, 213–225.
Hypomethylation trends in the intergenic region of the imprinted IGF2 and H19 genes in cloned cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlWnsrfJ&md5=90ebb6aae57ca29d103bb43160aa0fe2CAS | 19282114PubMed |

de Waal, E., Yamazaki, Y., Ingale, P., Bartolomei, M. S., Yanagimachi, R., and McCarrey, J. R. (2012). Gonadotropin stimulation contributes to an increased incidence of epimutations in ICSI-derived mice. Hum. Mol. Genet. 21, 4460–4472.
Gonadotropin stimulation contributes to an increased incidence of epimutations in ICSI-derived mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVart7%2FI&md5=24ac1732ec5f35d6a508dbefde4dc743CAS | 22802074PubMed |

Dean, W., Santos, F., Stojkovic, M., Zakhartchenko, V., Walter, J., Wolf, E., and Reik, W. (2001). Conservation of methylation reprogramming in mammalian development: aberrant reprogramming in cloned embryos. Proc. Natl Acad. Sci. USA 98, 13 734–13 738.
Conservation of methylation reprogramming in mammalian development: aberrant reprogramming in cloned embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXovVyntrs%3D&md5=c3bcb7eb0264dfd5be31c4ac1a6abd26CAS |

Denomme, M. M., Zhang, L., and Mann, M. R. (2011). Embryonic imprinting perturbations do not originate from superovulation-induced defects in DNA methylation acquisition. Fertil. Steril. 96, 734–738e2.
Embryonic imprinting perturbations do not originate from superovulation-induced defects in DNA methylation acquisition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFarsrrN&md5=ac02cbeb55d35d6b0d8f3da8d5892bdfCAS | 21782164PubMed |

Denomme, M. M., White, C. R., Gillio-Meina, C., Macdonald, W. A., Deroo, B. J., Kidder, G. M., and Mann, M. R. (2012). Compromised fertility disrupts Peg1 but not Snrpn and Peg3 imprinted methylation acquisition in mouse oocytes. Front. Genet. 3, 129.
Compromised fertility disrupts Peg1 but not Snrpn and Peg3 imprinted methylation acquisition in mouse oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1ejtLrF&md5=306d8dd30d60fd2e3c28d9df9d177101CAS | 22798963PubMed |

Dindot, S. V., Farin, P. W., Farin, C. E., Romano, J., Walker, S., Long, C., and Piedrahita, J. A. (2004). Epigenetic and genomic imprinting analysis in nuclear transfer derived Bos gaurus/Bos taurus hybrid fetuses. Biol. Reprod. 71, 470–478.
Epigenetic and genomic imprinting analysis in nuclear transfer derived Bos gaurus/Bos taurus hybrid fetuses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtFWgtb4%3D&md5=ae94eccdec517d45a359e134919f5a9eCAS | 15044262PubMed |

Dobbs, K. B., Rodriguez, M., Sudano, M. J., Ortega, M. S., and Hansen, P. J. (2013). Dynamics of DNA methylation during early development of the preimplantation bovine embryo. PLoS One 8, e66230.
Dynamics of DNA methylation during early development of the preimplantation bovine embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVemsLvJ&md5=cbd2e0330457a0984803bfbb2692a5e0CAS | 23799080PubMed |

Doherty, A. S., Mann, M. R., Tremblay, K. D., Bartolomei, M. S., and Schultz, R. M. (2000). Differential effects of culture on imprinted H19 expression in the preimplantation mouse embryo. Biol. Reprod. 62, 1526–1535.
Differential effects of culture on imprinted H19 expression in the preimplantation mouse embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjsF2hsrc%3D&md5=5ff5f158822d55068d4ba24d6a2ae533CAS | 10819752PubMed |

Durcova-Hills, G., Hajkova, P., Sullivan, S., Barton, S., Surani, M. A., and McLaren, A. (2006). Influence of sex chromosome constitution on the genomic imprinting of germ cells. Proc. Natl Acad. Sci. USA 103, 11 184–11 188.
Influence of sex chromosome constitution on the genomic imprinting of germ cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnvVCmtr8%3D&md5=944f5686ef598f5872d418dbd8578b6dCAS |

Edwards, J. L., Schrick, F. N., McCracken, M. D., van Amstel, S. R., Hopkins, F. M., Welborn, M. G., and Davies, C. J. (2003). Cloning adult farm animals: a review of the possibilities and problems associated with somatic cell nuclear transfer. Am. J. Reprod. Immunol. 50, 113–123.
Cloning adult farm animals: a review of the possibilities and problems associated with somatic cell nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3szhslaltA%3D%3D&md5=065c94b7fb4fbe05c9d27a6bba5e185fCAS | 12846674PubMed |

El Hajj, N., Trapphoff, T., Linke, M., May, A., Hansmann, T., Kuhtz, J., Reifenberg, K., Heinzmann, J., Niemann, H., Daser, A., Eichenlaub-Ritter, U., Zechner, U., and Haaf, T. (2011). Limiting dilution bisulfite (pyro)sequencing reveals parent-specific methylation patterns in single early mouse embryos and bovine oocytes. Epigenetics 6, 1176–1188.
Limiting dilution bisulfite (pyro)sequencing reveals parent-specific methylation patterns in single early mouse embryos and bovine oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XivFOntrs%3D&md5=e56d4c75d3eebb277c0382b121897215CAS | 21937882PubMed |

Eppig, J. J., O’Brien, M. J., Wigglesworth, K., Nicholson, A., Zhang, W., and King, B. A. (2009). Effect of in vitro maturation of mouse oocytes on the health and lifespan of adult offspring. Hum. Reprod. 24, 922–928.
Effect of in vitro maturation of mouse oocytes on the health and lifespan of adult offspring.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1M3htlyrsw%3D%3D&md5=3d24da18496fe6f2b5df06fda327845fCAS | 19151027PubMed |

Fair, T. (2003). Follicular oocyte growth and acquisition of developmental competence. Anim. Reprod. Sci. 78, 203–216.
Follicular oocyte growth and acquisition of developmental competence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXksF2gtrw%3D&md5=dc2e6ec4b4cd63023cd03792cdaf99b7CAS | 12818645PubMed |

Fair, T. (2010). Mammalian oocyte development: checkpoints for competence. Reprod. Fertil. Dev. 22, 13–20.
Mammalian oocyte development: checkpoints for competence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitlagurg%3D&md5=f92cf51341106064c29e61146d5d1dabCAS | 20003841PubMed |

Fair, T., Hulshof, S. C., Hyttel, P., Greve, T., and Boland, M. (1997). Oocyte ultrastructure in bovine primordial to early tertiary follicles. Anat. Embryol. (Berl.) 195, 327–336.
Oocyte ultrastructure in bovine primordial to early tertiary follicles.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2s3mtFOrtg%3D%3D&md5=e889192c564ba7d8a1887dc4704928d5CAS | 9108198PubMed |

Farin, C. E., Farin, P. W., and Piedrahita, J. A. (2004). Development of fetuses from in vitro-produced and cloned bovine embryos. J. Anim. Sci. 82, E53–E62.
| 15471815PubMed |

Farin, P. W., Piedrahita, J. A., and Farin, C. E. (2006). Errors in development of fetuses and placentas from in vitro-produced bovine embryos. Theriogenology 65, 178–191.
Errors in development of fetuses and placentas from in vitro-produced bovine embryos.Crossref | GoogleScholarGoogle Scholar | 16266745PubMed |

Fortier, A. L., Lopes, F. L., Darricarrère, N., Martel, J., and Trasler, J. M. (2008). Superovulation alters the expression of imprinted genes in the midgestation mouse placenta. Hum. Mol. Genet. 17, 1653–1665.
Superovulation alters the expression of imprinted genes in the midgestation mouse placenta.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmvFSrtL8%3D&md5=71edcd3159981ec15c7aa06b889c6bf8CAS | 18287259PubMed |

Gad, A., Hoelker, M., Besenfelder, U., Havlicek, V., Cinar, U., Rings, F., Held, E., Dufort, I., Sirard, M. A., Schellander, K., and Tesfaye, D. (2012). Molecular mechanisms and pathways involved in bovine embryonic genome activation and their regulation by alternative in vivo and in vitro culture conditions. Biol. Reprod. 87, 100.
Molecular mechanisms and pathways involved in bovine embryonic genome activation and their regulation by alternative in vivo and in vitro culture conditions.Crossref | GoogleScholarGoogle Scholar | 22811576PubMed |

Geuns, E., De Rycke, M., Van Steirteghem, A., and Liebaers, I. (2003). Methylation imprints of the imprint control region of the SNRPN-gene in human gametes and preimplantation embryos. Hum. Mol. Genet. 12, 2873–2879.
Methylation imprints of the imprint control region of the SNRPN-gene in human gametes and preimplantation embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXovVWqtLs%3D&md5=13cfe0614256908167f17bb59872f1bbCAS | 14500540PubMed |

Geuns, E., Hilven, P., Van Steirteghem, A., Liebaers, I., and De Rycke, M. (2007a). Methylation analysis of KvDMR1 in human oocytes. J. Med. Genet. 44, 144–147.
Methylation analysis of KvDMR1 in human oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjt1Snt70%3D&md5=269395366a3bbbd0b8b0060381ea892aCAS | 16950814PubMed |

Geuns, E., De Temmerman, N., Hilven, P., Van Steirteghem, A., Liebaers, I., and De Rycke, M. (2007b). Methylation analysis of the intergenic differentially methylated region of DLK1-GTL2 in human. Eur. J. Hum. Genet. 15, 352–361.
Methylation analysis of the intergenic differentially methylated region of DLK1-GTL2 in human.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhvF2isrk%3D&md5=8873738407941d377bc4bbb0f22e801cCAS | 17213841PubMed |

Golding, M. C., Williamson, G. L., Stroud, T. K., Westhusin, M. E., and Long, C. R. (2011). Examination of DNA methyltransferase expression in cloned embryos reveals an essential role for Dnmt1 in bovine development. Mol. Reprod. Dev. 78, 306–317.
Examination of DNA methyltransferase expression in cloned embryos reveals an essential role for Dnmt1 in bovine development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtVGht7w%3D&md5=3da78423d93c23adbc3efea112b3492cCAS | 21480430PubMed |

Goll, M. G., and Bestor, T. H. (2005). Eukaryotic cytosine methyltransferases. Annu. Rev. Biochem. 74, 481–514.
Eukaryotic cytosine methyltransferases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpsVensLw%3D&md5=05f349e374ee914f330a4c8f6f1aad13CAS | 15952895PubMed |

Grunau, C., Clark, S. J., and Rosenthal, A. (2001). Bisulfite genomic sequencing: systematic investigation of critical experimental parameters. Nucleic Acids Res. 29, e65.
Bisulfite genomic sequencing: systematic investigation of critical experimental parameters.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MzovF2qsw%3D%3D&md5=fa5e68d62aed6747c916fa9a1cdfd9a0CAS | 11433041PubMed |

Guo, H., Zhu, P., Yan, L., Li, R., Hu, B., Lian, Y., Yan, J., Ren, X., Lin, S., Li, J., Jin, X., Shi, X., Liu, P., Wang, X., Wang, W., Wei, Y., Li, X., Guo, F., Wu, X., Fan, X., Yong, J., Wen, L., Xie, S. X., Tang, F., and Qiao, J. (2014). The DNA methylation landscape of human early embryos. Nature 511, 606–610.
The DNA methylation landscape of human early embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1ChurbK&md5=1257f3afa4dd277251651fd463d11e06CAS | 25079557PubMed |

Hales, B. F., Grenier, L., Lalancette, C., and Robaire, B. (2011). Epigenetic programming: from gametes to blastocyst. Birth Defects Res. A Clin. Mol. Teratol. 91, 652–665.
Epigenetic programming: from gametes to blastocyst.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpvVyhurs%3D&md5=2eaa21ba5bf626f9ef1d382b806e76a2CAS | 21425433PubMed |

Hanna, C. W., and Kelsey, G. (2014). The specification of imprints in mammals. Heredity 113, 176–183.
The specification of imprints in mammals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXpslCms78%3D&md5=6bdc2754566d20f4057d2dfa52b18447CAS | 24939713PubMed |

Hata, K., Okano, M., Lei, H., and Li, E. (2002). Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice. Development 129, 1983–1993.
| 1:CAS:528:DC%2BD38XjslSls70%3D&md5=82d4ce903946c5206068d16f26f0555aCAS | 11934864PubMed |

Heinzmann, J., Hansmann, T., Herrmann, D., Wrenzycki, C., Zechner, U., Haaf, T., and Niemann, H. (2011). Epigenetic profile of developmentally important genes in bovine oocytes. Mol. Reprod. Dev. 78, 188–201.
Epigenetic profile of developmentally important genes in bovine oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsVKmsL8%3D&md5=a236810dbe4c2ab26e0dd3f0541fb012CAS | 21290475PubMed |

Hill, J. R., Burghardt, R. C., Jones, K., Long, C. R., Looney, C. R., Shin, T., Spencer, T. E., Thompson, J. A., Winger, Q. A., and Westhusin, M. E. (2000). Evidence for placental abnormality as the major cause of mortality in first-trimester somatic cell cloned bovine fetuses. Biol. Reprod. 63, 1787–1794.
Evidence for placental abnormality as the major cause of mortality in first-trimester somatic cell cloned bovine fetuses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXosVKhtL4%3D&md5=101d2caf79ec39f64bca3e4621dd50abCAS | 11090450PubMed |

Hirasawa, R., Chiba, H., Kaneda, M., Tajima, S., Li, E., Jaenisch, R., and Sasaki, H. (2008). Maternal and zygotic Dnmt1 are necessary and sufficient for the maintenance of DNA methylation imprints during preimplantation development. Genes Dev. 22, 1607–1616.
Maternal and zygotic Dnmt1 are necessary and sufficient for the maintenance of DNA methylation imprints during preimplantation development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnvVWmsb0%3D&md5=477f7b03c8cc7b4e3e8966e0bbb4356aCAS | 18559477PubMed |

Hiura, H., Obata, Y., Komiyama, J., Shirai, M., and Kono, T. (2006). Oocyte growth-dependent progression of maternal imprinting in mice. Genes Cells 11, 353–361.
Oocyte growth-dependent progression of maternal imprinting in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xkt1Gktr8%3D&md5=76b77bff8e7daf446811a16832333e4dCAS | 16611239PubMed |

Ho, S. M., Tang, W. Y., Belmonte de Frausto, J., and Prins, G. S. (2006). Developmental exposure to estradiol and bisphenol A increases susceptibility to prostate carcinogenesis and epigenetically regulates phosphodiesterase type 4 variant 4. Cancer Res. 66, 5624–5632.
Developmental exposure to estradiol and bisphenol A increases susceptibility to prostate carcinogenesis and epigenetically regulates phosphodiesterase type 4 variant 4.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XltFyjt70%3D&md5=1325416eb9578d939d953cb17832c7a4CAS | 16740699PubMed |

Hori, N., Nagai, M., Hirayama, M., Hirai, T., Matsuda, K., Hayashi, M., Tanaka, T., Ozawa, T., and Horike, S. (2010). Aberrant CpG methylation of the imprinting control region KvDMR1 detected in assisted reproductive technology-produced calves and pathogenesis of large offspring syndrome. Anim. Reprod. Sci. 122, 303–312.
Aberrant CpG methylation of the imprinting control region KvDMR1 detected in assisted reproductive technology-produced calves and pathogenesis of large offspring syndrome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFahs7vP&md5=cad770742a4fe04d54f61dc37d3d5726CAS | 21035970PubMed |

Howell, C. Y., Bestor, T. H., Ding, F., Latham, K. E., Mertineit, C., Trasler, J. M., and Chaillet, J. R. (2001). Genomic imprinting disrupted by a maternal effect mutation in the Dnmt1 gene. Cell 104, 829–838.
Genomic imprinting disrupted by a maternal effect mutation in the Dnmt1 gene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXisVyisrc%3D&md5=26a97e66f4a491f82bd994a38cbbdcd8CAS | 11290321PubMed |

Huntriss, J., Hinkins, M., Oliver, B., Harris, S. E., Beazley, J. C., Rutherford, A. J., Gosden, R. G., Lanzendorf, S. E., and Picton, H. M. (2004). Expression of mRNAs for DNA methyltransferases and methyl-CpG-binding proteins in the human female germ line, preimplantation embryos, and embryonic stem cells. Mol. Reprod. Dev. 67, 323–336.
Expression of mRNAs for DNA methyltransferases and methyl-CpG-binding proteins in the human female germ line, preimplantation embryos, and embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtlKisL8%3D&md5=6380da4741e7f8fd041c29c5546d30bdCAS | 14735494PubMed |

Imamura, T., Kerjean, A., Heams, T., Kupiec, J. J., Thenevin, C., and Paldi, A. (2005). Dynamic CpG and non-CpG methylation of the Peg1/Mest gene in the mouse oocyte and preimplantation embryo. J. Biol. Chem. 280, 20 171–20 175.
Dynamic CpG and non-CpG methylation of the Peg1/Mest gene in the mouse oocyte and preimplantation embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktFyksrY%3D&md5=eba52597269f453ec3ef7377e61faf27CAS |

Iyengar, S., and Farnham, P. J. (2011). KAP1 protein: an enigmatic master regulator of the genome. J. Biol. Chem. 286, 26 267–26 276.
KAP1 protein: an enigmatic master regulator of the genome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpt1Kkt7w%3D&md5=810f21fc7139a8467d335d1e71f7a67fCAS |

Kaneda, M., Okano, M., Hata, K., Sado, T., Tsujimoto, N., Li, E., and Sasaki, H. (2004). Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting. Nature 429, 900–903.
Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltVKltL8%3D&md5=7eae10a5512f37a27bb4d4b90b0e68a1CAS | 15215868PubMed |

Katz-Jaffe, M. G., McCallie, B. R., Preis, K. A., Filipovits, J., and Gardner, D. K. (2009). Transcriptome analysis of in vivo and in vitro matured bovine MII oocytes. Theriogenology 71, 939–946.
Transcriptome analysis of in vivo and in vitro matured bovine MII oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXivVWltLg%3D&md5=ffc980f26f324681783f13c32723ba16CAS | 19150733PubMed |

Kerjean, A., Couvert, P., Heams, T., Chalas, C., Poirier, K., Chelly, J., Jouannet, P., Paldi, A., and Poirot, C. (2003). In vitro follicular growth affects oocyte imprinting establishment in mice. Eur. J. Hum. Genet. 11, 493–496.
In vitro follicular growth affects oocyte imprinting establishment in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkvVegtrs%3D&md5=fda53bea4dadce171f302ecad28b442aCAS | 12825069PubMed |

Khosla, S., Dean, W., Brown, D., Reik, W., and Feil, R. (2001). Culture of preimplantation mouse embryos affects fetal development and the expression of imprinted genes. Biol. Reprod. 64, 918–926.
Culture of preimplantation mouse embryos affects fetal development and the expression of imprinted genes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhsVKjtrc%3D&md5=7ddf0f1cd89d4b8356ee25312c6d10c5CAS | 11207209PubMed |

Kobayashi, H., Yamada, K., Morita, S., Hiura, H., Fukuda, A., Kagami, M., Ogata, T., Hata, K., Sotomaru, Y., and Kono, T. (2009). Identification of the mouse paternally expressed imprinted gene Zdbf2 on chromosome 1 and its imprinted human homolog ZDBF2 on chromosome 2. Genomics 93, 461–472.
Identification of the mouse paternally expressed imprinted gene Zdbf2 on chromosome 1 and its imprinted human homolog ZDBF2 on chromosome 2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXks12jurg%3D&md5=49b46912a5123bbab4e39cba7dcf17a6CAS | 19200453PubMed |

Kriaucionis, S., and Heintz, N. (2009). The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 324, 929–930.
The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlslWnurk%3D&md5=493b98b5cd0f639106b654340eacac36CAS | 19372393PubMed |

Kuhtz, J., Romero, S., De Vos, M., Smitz, J., Haaf, T., and Anckaert, E. (2014). Human in vitro oocyte maturation is not associated with increased imprinting error rates at LIT1, SNRPN, PEG3 and GTL2. Hum. Reprod. 29, 1995–2005.
Human in vitro oocyte maturation is not associated with increased imprinting error rates at LIT1, SNRPN, PEG3 and GTL2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtl2gtb3J&md5=e9f4f4e38e1005b1c28013d46d92ac57CAS | 24963167PubMed |

Lane, M., and Gardner, D. K. (2003). Ammonium induces aberrant blastocyst differentiation, metabolism, pH regulation, gene expression and subsequently alters fetal development in the mouse. Biol. Reprod. 69, 1109–1117.
Ammonium induces aberrant blastocyst differentiation, metabolism, pH regulation, gene expression and subsequently alters fetal development in the mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnsV2nsr8%3D&md5=ceee6ac9e9311f4df0f42efcfbcad626CAS | 12773416PubMed |

Lee, R. S., Peterson, A. J., Donnison, M. J., Ravelich, S., Ledgard, A. M., Li, N., Oliver, J. E., Miller, A. L., Tucker, F. C., Breier, B., and Wells, D. N. (2004). Cloned cattle fetuses with the same nuclear genetics are more variable than contemporary half-siblings resulting from artificial insemination and exhibit fetal and placental growth deregulation even in the first trimester. Biol. Reprod. 70, 1–11.
Cloned cattle fetuses with the same nuclear genetics are more variable than contemporary half-siblings resulting from artificial insemination and exhibit fetal and placental growth deregulation even in the first trimester.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhvVOm&md5=24a81f06ead8eeafd9aad30ee5abf724CAS | 13679311PubMed |

Lee, K., Hamm, J., Whitworth, K., Spate, L., Park, K. W., Murphy, C. N., and Prather, R. S. (2014). Dynamics of TET family expression in porcine preimplantation embryos is related to zygotic genome activation and required for the maintenance of NANOG. Dev. Biol. 386, 86–95.
Dynamics of TET family expression in porcine preimplantation embryos is related to zygotic genome activation and required for the maintenance of NANOG.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFOhsbjE&md5=011cbb1f701ffd49b326665a0a6ef09dCAS | 24315853PubMed |

Lees-Murdock, D. J., Lau, H. T., Castrillon, D. H., De Felici, M., and Walsh, C. P. (2008). DNA methyltransferase loading, but not de novo methylation, is an oocyte-autonomous process stimulated by SCF signalling. Dev. Biol. 321, 238–250.
DNA methyltransferase loading, but not de novo methylation, is an oocyte-autonomous process stimulated by SCF signalling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVSgtL3N&md5=9dbd66a8e60a92ae1de3e6eb5ba7bafbCAS | 18616936PubMed |

Li, E., Beard, C., and Jaenisch, R. (1993). Role for DNA methylation in genomic imprinting. Nature 366, 362–365.
Role for DNA methylation in genomic imprinting.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXlsFCm&md5=1e88b96cce4d1e56498d2eb27f6dd7feCAS | 8247133PubMed |

Li, X., Ito, M., Zhou, F., Youngson, N., Zuo, X., Leder, P., and Ferguson-Smith, A. C. (2008). A maternal-zygotic effect gene, Zfp57, maintains both maternal and paternal imprints. Dev. Cell 15, 547–557.
A maternal-zygotic effect gene, Zfp57, maintains both maternal and paternal imprints.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1ymu7rL&md5=ad6939c5bdb42f2d24e7cc33884ab92fCAS | 18854139PubMed |

Liang, X. W., Zhu, J. Q., Miao, Y. L., Liu, J. H., Wei, L., Lu, S. S., Hou, Y., Schatten, H., Lu, K. H., and Sun, Q. Y. (2008). Loss of methylation imprint of Snrpn in postovulatory aging mouse oocyte. Biochem. Biophys. Res. Commun. 371, 16–21.
Loss of methylation imprint of Snrpn in postovulatory aging mouse oocyte.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlvVWgtr8%3D&md5=e523e38e02404ec750a47fb473065cd0CAS | 18381202PubMed |

Liu, J., Liang, X., Zhu, J., Wei, L., Hou, Y., Chen, D. Y., and Sun, Q. Y. (2008). Aberrant DNA methylation in 5′ regions of DNA methyltransferase genes in aborted bovine clones. J. Genet. Genomics 35, 559–568.
Aberrant DNA methylation in 5′ regions of DNA methyltransferase genes in aborted bovine clones.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1aitbrE&md5=9632fc0fd3fce7066555eaf7115d2accCAS | 18804075PubMed |

Lonergan, P., and Fair, T. (2008). In vitro-produced bovine embryos: dealing with the warts. Theriogenology 69, 17–22.
In vitro-produced bovine embryos: dealing with the warts.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2sjhvVOqtg%3D%3D&md5=674c3f22d5754e49f702e6dbd80776b7CAS | 17950823PubMed |

Lonergan, P., Faerge, I., Hyttel, P. M., Boland, M., and Fair, T. (2003). Ultrastructural modifications in bovine oocytes maintained in meiotic arrest in vitro using roscovitine or butyrolactone. Mol. Reprod. Dev. 64, 369–378.
Ultrastructural modifications in bovine oocytes maintained in meiotic arrest in vitro using roscovitine or butyrolactone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXos1Wgsw%3D%3D&md5=6c0e6bc50c1403aa2704c0c4bf8d612fCAS | 12548669PubMed |

Lonergan, P., Fair, T., Corcoran, D., and Evans, A. C. (2006). Effect of culture environment on gene expression and developmental characteristics in IVF-derived embryos. Theriogenology 65, 137–152.
Effect of culture environment on gene expression and developmental characteristics in IVF-derived embryos.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2MnjtFSlsw%3D%3D&md5=a5785b95ea77e893aad6c1cec376b781CAS | 16289260PubMed |

Lucifero, D., Mertineit, C., Clarke, H. J., Bestor, T. H., and Trasler, J. M. (2002). Methylation dynamics of imprinted genes in mouse germ cells. Genomics 79, 530–538.
Methylation dynamics of imprinted genes in mouse germ cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xis1yhu7o%3D&md5=d77a77c5e6610e383bd52f55044bc482CAS | 11944985PubMed |

Lucifero, D., Mann, M. R., Bartolomei, M. S., and Trasler, J. M. (2004). Gene-specific timing and epigenetic memory in oocyte imprinting. Hum. Mol. Genet. 13, 839–849.
Gene-specific timing and epigenetic memory in oocyte imprinting.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXisF2ltro%3D&md5=61e82a4945f8881b465c4902f7ae1913CAS | 14998934PubMed |

Lucifero, D., Suzuki, J., Bordignon, V., Martel, J., Vigneault, C., Therrien, J., Filion, F., Smith, L. C., and Trasler, J. M. (2006). Bovine SNRPN methylation imprint in oocytes and Day 17 in vitro-produced and somatic cell nuclear transfer embryos. Biol. Reprod. 75, 531–538.
Bovine SNRPN methylation imprint in oocytes and Day 17 in vitro-produced and somatic cell nuclear transfer embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVCgs73P&md5=898d8780885fb1be5bd92e7c1f271756CAS | 16790688PubMed |

Maher, E. R., and Reik, W. (2000). Beckwith–Wiedemann syndrome: imprinting in clusters revisited. J. Clin. Invest. 105, 247–252.
Beckwith–Wiedemann syndrome: imprinting in clusters revisited.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhtVSlt7g%3D&md5=93548d992457c8f95e0c4b0a4cf2b19eCAS | 10675349PubMed |

Mamo, S., Mehta, J. P., McGettigan, P., Fair, T., Spencer, T. E., Bazer, F. W., and Lonergan, P. (2011). RNA sequencing reveals novel gene clusters in bovine conceptuses associated with maternal recognition of pregnancy and implantation. Biol. Reprod. 85, 1143–1151.
RNA sequencing reveals novel gene clusters in bovine conceptuses associated with maternal recognition of pregnancy and implantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1ShsLbO&md5=5fb51a79845f3282dd2de87af18012f1CAS | 21795669PubMed |

Mann, M. R. W., Chung, Y. G., Nolen, L. D., Verona, R. I., Latham, K. E., and Bartolomei, M. S. (2003). Disruption of imprinted gene methylation and expression in cloned preimplantation stage mouse embryos. Biol. Reprod. 69, 902–914.
Disruption of imprinted gene methylation and expression in cloned preimplantation stage mouse embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmvVeitbw%3D&md5=3340eca9d0b16c37e47f27ddb1eda093CAS |

Mann, M. R., Lee, S. S., Doherty, A. S., Verona, R. I., Nolen, L. D., Schultz, R. M., and Bartolomei, M. S. (2004). Selective loss of imprinting in the placenta following preimplantation development in culture. Development 131, 3727–3735.
Selective loss of imprinting in the placenta following preimplantation development in culture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnt1elt7c%3D&md5=fe05faabdcf056f078385ee56dea3600CAS | 15240554PubMed |

Market-Velker, B. A., Zhang, L., Magri, L. S., Bonvissuto, A. C., and Mann, M. R. (2010). Dual effects of superovulation: loss of maternal and paternal imprinted methylation in a dose-dependent manner. Hum. Mol. Genet. 19, 36–51.
Dual effects of superovulation: loss of maternal and paternal imprinted methylation in a dose-dependent manner.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFGhu7jL&md5=a1558388e68bec85fe9f0cd8ed890c6aCAS | 19805400PubMed |

Mayer, W., Niveleau, A., Walter, J., Fundele, R., and Haaf, T. (2000). Demethylation of the zygotic paternal genome. Nature 403, 501–502.
Demethylation of the zygotic paternal genome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXht1ShsbY%3D&md5=af4af7648baabcf3522f57bb9a45515eCAS | 10676950PubMed |

Meirelles, F. V., Caetano, A. R., Watanabe, Y. F., Ripamonte, P., Carambula, S. F., Merighe, G. K., and Garcia, S. M. (2004). Genome activation and developmental block in bovine embryos. Anim. Reprod. Sci. 82–83, 13–20.
Genome activation and developmental block in bovine embryos.Crossref | GoogleScholarGoogle Scholar | 15271440PubMed |

Memili, E., and First, N. L. (2000). Zygotic and embryonic gene expression in cow: a review of timing and mechanisms of early gene expression as compared with other species. Zygote 8, 87–96.
Zygotic and embryonic gene expression in cow: a review of timing and mechanisms of early gene expression as compared with other species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjvVemtLo%3D&md5=5b6b3bd0b256de10a3492414ee274f9cCAS | 10840878PubMed |

Mertineit, C., Yoder, J. A., Taketo, T., Laird, D. W., Trasler, J. M., and Bestor, T. H. (1998). Sex-specific exons control DNA methyltransferase in mammalian germ cells. Development 125, 889–897.
| 1:CAS:528:DyaK1cXitlGqtr0%3D&md5=d91e1bf42b8e215a061380a7dfe91a98CAS | 9449671PubMed |

Messerschmidt, D. M., de Vries, W., Ito, M., Solter, D., Ferguson-Smith, A., and Knowles, B. B. (2012). Trim28 is required for epigenetic stability during mouse oocyte to embryo transition. Science 335, 1499–1502.
Trim28 is required for epigenetic stability during mouse oocyte to embryo transition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XktFWksbk%3D&md5=bcef671bb37fcb3e7300d60f42b5e3b9CAS | 22442485PubMed |

Miller, K. F., and Pursel, V. G. (1987). Absorption of compounds in medium by the oil covering microdrop cultures. Gamete Res. 17, 57–61.
Absorption of compounds in medium by the oil covering microdrop cultures.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXktlKjtbw%3D&md5=a4febacc50b82a2e1db80ed2fc3cf7c7CAS | 3148538PubMed |

Monk, M., and Grant, M. (1990). Preferential X-chromosome inactivation, DNA methylation and imprinting. Dev. Suppl. 1990, 55–62.

Nakamura, T., Arai, Y., Umehara, H., Masuhara, M., Kimura, T., Taniguchi, H., Sekimoto, T., Ikawa, M., Yoneda, Y., Okabe, M., Tanaka, S., Shiota, K., and Nakano, T. (2007). PGC7/Stella protects against DNA demethylation in early embryogenesis. Nat. Cell Biol. 9, 64–71.
PGC7/Stella protects against DNA demethylation in early embryogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXltV2l&md5=8e9e3e07be9b304404a5c840d1c80daeCAS | 17143267PubMed |

Nakamura, T., Liu, Y. J., Nakashima, H., Umehara, H., Inoue, K., Matoba, S., Tachibana, M., Ogura, A., Shinkai, Y., and Nakano, T. (2012). PGC7 binds histone H3K9me2 to protect against conversion of 5mC to 5hmC in early embryos. Nature 486, 415–419.
| 1:CAS:528:DC%2BC38XovFyrtro%3D&md5=0f82bff88005aa5c56ef71878f2e0c61CAS | 22722204PubMed |

Niemann, H., Tian, X. C., King, W. A., and Lee, R. S. (2008). Epigenetic reprogramming in embryonic and foetal development upon somatic cell nuclear transfer cloning. Reproduction 135, 151–163.
Epigenetic reprogramming in embryonic and foetal development upon somatic cell nuclear transfer cloning.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXit1yrt7c%3D&md5=b11fb472837710e51ac8ed35a9ba813bCAS | 18239046PubMed |

O’Doherty, A. M., O’Shea, L. C., and Fair, T. (2012). Bovine DNA methylation imprints are established in an oocyte size-specific manner, which are coordinated with the expression of the DNMT3 family proteins. Biol. Reprod. 86, 67.
Bovine DNA methylation imprints are established in an oocyte size-specific manner, which are coordinated with the expression of the DNMT3 family proteins.Crossref | GoogleScholarGoogle Scholar | 22088914PubMed |

Okae, H., Matoba, S., Nagashima, T., Mizutani, E., Inoue, K., Ogonuki, N., Chiba, H., Funayama, R., Tanaka, S., Yaegashi, N., Nakayama, K., Sasaki, H., Ogura, A., and Arima, T. (2014). RNA sequencing-based identification of aberrant imprinting in cloned mice. Hum. Mol. Genet. 23, 992–1001.
RNA sequencing-based identification of aberrant imprinting in cloned mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1Ogt7g%3D&md5=080a6e6b40d22d6652bb729c6d7dd96eCAS | 24105465PubMed |

Olek, A., and Walter, J. (1997). The pre-implantation ontogeny of the H19 methylation imprint. Nat. Genet. 17, 275–276.
The pre-implantation ontogeny of the H19 methylation imprint.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXntVSgtLw%3D&md5=53725b36e369e4d1eab9cd566b0d6cbeCAS | 9354788PubMed |

Ooi, S. K., O’Donnell, A. H., and Bestor, T. H. (2009). Mammalian cytosine methylation at a glance. J. Cell Sci. 122, 2787–2791.
Mammalian cytosine methylation at a glance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFOgsb7L&md5=5154b1b097cc558afe344b703144de73CAS | 19657014PubMed |

Oswald, J., Engemann, S., Lane, N., Mayer, W., Olek, A., Fundele, R., Dean, W., Reik, W., and Walter, J. (2000). Active demethylation of the paternal genome in the mouse zygote. Curr. Biol. 10, 475–478.
Active demethylation of the paternal genome in the mouse zygote.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXislyltLo%3D&md5=60f5d776667b8ee8deb1e065bfabb5e2CAS | 10801417PubMed |

Payer, B., Saitou, M., Barton, S. C., Thresher, R., Dixon, J. P., Zahn, D., Colledge, W. H., Carlton, M. B., Nakano, T., and Surani, M. A. (2003). Stella is a maternal effect gene required for normal early development in mice. Curr. Biol. 13, 2110–2117.
Stella is a maternal effect gene required for normal early development in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXps1Oqsb4%3D&md5=db94dd426566fde1d7e0e8b17f34a8adCAS | 14654002PubMed |

Preece, M. A., and Moore, G. E. (2000). Genomic imprinting, uniparental disomy and foetal growth. Trends Endocrinol. Metab. 11, 270–275.
Genomic imprinting, uniparental disomy and foetal growth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlsFeqtbc%3D&md5=18a84ba4942ca086dd982cc6653c87d2CAS | 10920383PubMed |

Proudhon, C., Duffié, R., Ajjan, S., Cowley, M., Iranzo, J., Carbajosa, G., Saadeh, H., Holland, M. L., Oakey, R. J., Rakyan, V. K., Schulz, R., and Bourc’his, D. (2012). Protection against de novo methylation is instrumental in maintaining parent-of-origin methylation inherited from the gametes. Mol. Cell 47, 909–920.
Protection against de novo methylation is instrumental in maintaining parent-of-origin methylation inherited from the gametes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1aktbvJ&md5=ac2e4140c5ccd03f6b3070c0a383ec8cCAS | 22902559PubMed |

Reik, W., Dean, W., and Walter, J. (2001). Epigenetic reprogramming in mammalian development. Science 293, 1089–1093.
Epigenetic reprogramming in mammalian development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmtVWltL8%3D&md5=a4d32ea9cf4c51f15d70243c38da206cCAS | 11498579PubMed |

Rideout, W. M., Eggan, K., and Jaenisch, R. (2001). Nuclear cloning and epigenetic reprogramming of the genome. Science 293, 1093–1098.
Nuclear cloning and epigenetic reprogramming of the genome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmtVWltLw%3D&md5=4d83645b0741b95ff5f77da69d68faf1CAS | 11498580PubMed |

Rivera, R. M., Stein, P., Weaver, J. R., Mager, J., Schultz, R. M., and Bartolomei, M. S. (2008). Manipulations of mouse embryos prior to implantation result in aberrant expression of imprinted genes on day 9.5 of development. Hum. Mol. Genet. 17, 1–14.
Manipulations of mouse embryos prior to implantation result in aberrant expression of imprinted genes on day 9.5 of development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVKiur%2FJ&md5=59c59984877f8bb051d02cd126ef2b23CAS | 17901045PubMed |

Rodriguez-Osorio, N., Urrego, R., Cibelli, J. B., Eilertsen, K., and Memili, E. (2012). Reprogramming mammalian somatic cells. Theriogenology 78, 1869–1886.
Reprogramming mammalian somatic cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlGntr7M&md5=dded3bbd90e11e43e4fcaacf42526e05CAS | 22979962PubMed |

Russell, D. F., Baqir, S., Bordignon, J., and Betts, D. H. (2006). The impact of oocyte maturation media on early bovine embryonic development. Mol. Reprod. Dev. 73, 1255–1270.
The impact of oocyte maturation media on early bovine embryonic development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XptlSnu7w%3D&md5=79bfe842c85872325ed306d27b454d57CAS | 16865717PubMed |

Salilew-Wondim, D., Tesfaye, D., Hossain, M., Held, E., Rings, F., Tholen, E., Looft, C., Cinar, U., Schellander, K., and Hoelker, M. (2013). Aberrant placenta gene expression pattern in bovine pregnancies established after transfer of cloned or in vitro produced embryos. Physiol. Genomics 45, 28–46.
Aberrant placenta gene expression pattern in bovine pregnancies established after transfer of cloned or in vitro produced embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjvVOrs7g%3D&md5=a84f28e376a6dfd80fa749eb35e64e0fCAS | 23092953PubMed |

Sánchez, F., Adriaenssens, T., Romero, S., and Smitz, J. (2009). Quantification of oocyte-specific transcripts in follicle-enclosed oocytes during antral development and maturation in vitro. Mol. Hum. Reprod. 15, 539–550.
Quantification of oocyte-specific transcripts in follicle-enclosed oocytes during antral development and maturation in vitro.Crossref | GoogleScholarGoogle Scholar | 19553355PubMed |

Santos, F., Zakhartchenko, V., Stojkovic, M., Peters, A., Jenuwein, T., Wolf, E., Reik, W., and Dean, W. (2003). Epigenetic marking correlates with developmental potential in cloned bovine preimplantation embryos. Curr. Biol. 13, 1116–1121.
Epigenetic marking correlates with developmental potential in cloned bovine preimplantation embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlt1entrY%3D&md5=58133119c69fbabf4a58880d31016539CAS | 12842010PubMed |

Sato, A., Otsu, E., Negishi, H., Utsunomiya, T., and Arima, T. (2007). DNA methylation of imprinted loci in superovulated oocytes. Hum. Reprod. 22, 26–35.
DNA methylation of imprinted loci in superovulated oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlChtb%2FI&md5=9201d8c0351138e92b6d6b8059ddff75CAS | 16923747PubMed |

Schneider, M., Marison, I. W., and von Stockar, U. (1996). The importance of ammonia in mammalian cell culture. J. Biotechnol. 46, 161–185.
The importance of ammonia in mammalian cell culture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjsVOqt7o%3D&md5=1bcffae353e8b64b907bea468c6dc9aaCAS | 8672289PubMed |

Segers, I., Adriaenssens, T., Coucke, W., Cortvrindt, R., and Smitz, J. (2008). Timing of nuclear maturation and postovulatory aging in oocytes of in vitro-grown mouse follicles with or without oil overlay. Biol. Reprod. 78, 859–868.
Timing of nuclear maturation and postovulatory aging in oocytes of in vitro-grown mouse follicles with or without oil overlay.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltVOnsr0%3D&md5=91ab7d076f1e3d43d4795903fe4a72a4CAS | 18184922PubMed |

Segers, I., Adriaenssens, T., Ozturk, E., and Smitz, J. (2010). The acquisition and loss of oocyte meiotic and developmental competence during in vitro antral follicle growth in mouse. Fertil. Steril. 93, 2695–2700.
The acquisition and loss of oocyte meiotic and developmental competence during in vitro antral follicle growth in mouse.Crossref | GoogleScholarGoogle Scholar | 20056201PubMed |

Shi, W., and Haaf, T. (2002). Aberrant methylation patterns at the two-cell stage as an indicator of early developmental failure. Mol. Reprod. Dev. 63, 329–334.
Aberrant methylation patterns at the two-cell stage as an indicator of early developmental failure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnslSnsbg%3D&md5=25dc58119e7e1b06a9b7b0b53db6d85dCAS | 12237948PubMed |

Shojaei Saadi, H. A., O’Doherty, A. M., Gagné, D., Fournier, É., Grant, J. R., Sirard, M.-A., and Robert, C. (2014). An integrated platform for bovine DNA methylome analysis suitable for small samples. BMC Genomics 15, 451.
An integrated platform for bovine DNA methylome analysis suitable for small samples.Crossref | GoogleScholarGoogle Scholar | 24912542PubMed |

Sinclair, K. D., Allegrucci, C., Singh, R., Gardner, D. S., Sebastian, S., Bispham, J., Thurston, A., Huntley, J. F., Rees, W. D., Maloney, C. A., Lea, R. G., Craigon, J., McEvoy, T. G., and Young, L. E. (2007). DNA methylation, insulin resistance, and blood pressure in offspring determined by maternal periconceptional B vitamin and methionine status. Proc. Natl Acad. Sci. USA 104, 19 351–19 356.
DNA methylation, insulin resistance, and blood pressure in offspring determined by maternal periconceptional B vitamin and methionine status.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXisVOjug%3D%3D&md5=27198a2594d37842d69953e3eb7c8b9aCAS |

Smallwood, S. A., Tomizawa, S., Krueger, F., Ruf, N., Carli, N., Segonds-Pichon, A., Sato, S., Hata, K., Andrews, S. R., and Kelsey, G. (2011). Dynamic CpG island methylation landscape in oocytes and preimplantation embryos. Nat. Genet. 43, 811–814.
Dynamic CpG island methylation landscape in oocytes and preimplantation embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotV2ht7g%3D&md5=cc448487b51c385c32396303f8dce0b4CAS | 21706000PubMed |

Smallwood, S. A., Lee, H. J., Angermueller, C., Krueger, F., Saadeh, H., Peat, J., Andrews, S. R., Stegle, O., Reik, W., and Kelsey, G. (2014). Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity. Nat. Methods 11, 817–820.
Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhslelsLvN&md5=ecdb781d67806af52d7f92371b2a5c07CAS | 25042786PubMed |

Smith, L. C., Suzuki, J., Goff, A. K., Filion, F., Therrien, J., Murphy, B. D., Kohan‐Ghadr, H. R., Lefebvre, R., Brisville, A. C., Buczinski, S., Fecteau, G., Perecin, F., and Meirelles, F. V. (2012a). Developmental and epigenetic anomalies in cloned cattle. Reprod. Domest. Anim. 47, 107–114.
Developmental and epigenetic anomalies in cloned cattle.Crossref | GoogleScholarGoogle Scholar | 22827358PubMed |

Smith, Z. D., Chan, M. M., Mikkelsen, T. S., Gu, H., Gnirke, A., Regev, A., and Meissner, A. (2012b). A unique regulatory phase of DNA methylation in the early mammalian embryo. Nature 484, 339–344.
A unique regulatory phase of DNA methylation in the early mammalian embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xks1yrsbw%3D&md5=d3261f3cd35bc2e5fb0682f2d2f19210CAS | 22456710PubMed |

Smith, Z. D., Chan, M. M., Humm, K. C., Karnik, R., Mekhoubad, S., Regev, A., Eggan, K., and Meissner, A. (2014). DNA methylation dynamics of the human preimplantation embryo. Nature 511, 611–615.
DNA methylation dynamics of the human preimplantation embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1ChurfJ&md5=2eeaa2d7b375c64a332d376e37889f84CAS | 25079558PubMed |

Song, Z., Min, L., Pan, Q., Shi, Q., and Shen, W. (2009). Maternal imprinting during mouse oocyte growth in vivo and in vitro. Biochem. Biophys. Res. Commun. 387, 800–805.
Maternal imprinting during mouse oocyte growth in vivo and in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVSntrvE&md5=cd2ee90d5be35f5554e61a733f7f5443CAS | 19646963PubMed |

Sontag, L. B., Lorincz, M. C., and Georg Luebeck, E. (2006). Dynamics, stability and inheritance of somatic DNA methylation imprints. J. Theor. Biol. 242, 890–899.
Dynamics, stability and inheritance of somatic DNA methylation imprints.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xps1Oku78%3D&md5=50d252cd2a9e4b27cfc6c77e59746326CAS | 16806276PubMed |

Steele, W., Allegrucci, C., Singh, R., Lucas, E., Priddle, H., Denning, C., Sinclair, K., and Young, L. (2005). Human embryonic stem cell methyl cycle enzyme expression: modelling epigenetic programming in assisted reproduction? Reprod. Biomed. Online 10, 755–766.
Human embryonic stem cell methyl cycle enzyme expression: modelling epigenetic programming in assisted reproduction?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlvFShtrk%3D&md5=ef00c2ec279fd3fe0294e9d11a12f4a6CAS | 15970006PubMed |

Stouder, C., Deutsch, S., and Paoloni-Giacobino, A. (2009). Superovulation in mice alters the methylation pattern of imprinted genes in the sperm of the offspring. Reprod. Toxicol. 28, 536–541.
Superovulation in mice alters the methylation pattern of imprinted genes in the sperm of the offspring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlGhs7fK&md5=79e95bc6db5f4af3bbca01705a084cf3CAS | 19549566PubMed |

Su, J., Wang, Y., Xing, X., Liu, J., and Zhang, Y. (2014). Genome-wide analysis of DNA methylation in bovine placentas. BMC Genomics 15, 12.
Genome-wide analysis of DNA methylation in bovine placentas.Crossref | GoogleScholarGoogle Scholar | 24397284PubMed |

Suzuki, J., Therrien, J., Filion, F., Lefebvre, R., Goff, A. K., and Smith, L. C. (2009). In vitro culture and somatic cell nuclear transfer affect imprinting of SNRPN gene in pre- and post-implantation stages of development in cattle. BMC Dev. Biol. 9, 9.
In vitro culture and somatic cell nuclear transfer affect imprinting of SNRPN gene in pre- and post-implantation stages of development in cattle.Crossref | GoogleScholarGoogle Scholar | 19200381PubMed |

Tahiliani, M., Koh, K. P., Shen, Y., Pastor, W. A., Bandukwala, H., Brudno, Y., Agarwal, S., Iyer, L. M., Liu, D. R., Aravind, L., and Rao, A. (2009). Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324, 930–935.
Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlslWnurY%3D&md5=e48f725e7b80ecb92b86c3da98231e5aCAS | 19372391PubMed |

Thélie, A., Papillier, P., Pennetier, S., Perreau, C., Traverso, J. M., Uzbekova, S., Mermillod, P., Joly, C., Humblot, P., and Dalbies-Tran, R. (2007). Differential regulation of abundance and deadenylation of maternal transcripts during bovine oocyte maturation in vitro and in vivo. BMC Dev. Biol. 7, 125.
Differential regulation of abundance and deadenylation of maternal transcripts during bovine oocyte maturation in vitro and in vivo.Crossref | GoogleScholarGoogle Scholar | 17988387PubMed |

Tomizawa, S., Kobayashi, H., Watanabe, T., Andrews, S., Hata, K., Kelsey, G., and Sasaki, H. (2011). Dynamic stage-specific changes in imprinted differentially methylated regions during early mammalian development and prevalence of non-CpG methylation in oocytes. Development 138, 811–820.
Dynamic stage-specific changes in imprinted differentially methylated regions during early mammalian development and prevalence of non-CpG methylation in oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXktVKisbY%3D&md5=f2f163310da2e778b3241fb24dc5210fCAS | 21247965PubMed |

Torres-Padilla, M. E., and Ciosk, R. (2013). A germline-centric view of cell fate commitment, reprogramming and immortality. Development 140, 487–491.
A germline-centric view of cell fate commitment, reprogramming and immortality.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXktF2ntro%3D&md5=744ee9b6601ee03ec6298d2ae4019c27CAS | 23293280PubMed |

Trapphoff, T., El Hajj, N., Zechner, U., Haaf, T., and Eichenlaub-Ritter, U. (2010). DNA integrity, growth pattern, spindle formation, chromosomal constitution and imprinting patterns of mouse oocytes from vitrified pre-antral follicles. Hum. Reprod. 25, 3025–3042.
DNA integrity, growth pattern, spindle formation, chromosomal constitution and imprinting patterns of mouse oocytes from vitrified pre-antral follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFSgsbbF&md5=54bfb38e2e56e72fd279ebc0ad132a8bCAS | 20940142PubMed |

Tremblay, K. D., Duran, K. L., and Bartolomei, M. S. (1997). A 5′ 2-kilobase-pair region of the imprinted mouse H19 gene exhibits exclusive paternal methylation throughout development. Mol. Cell. Biol. 17, 4322–4329.
| 1:CAS:528:DyaK2sXkvVertLs%3D&md5=490a4f0e92bd5845aa010e53a050b73dCAS | 9234689PubMed |

Tveden-Nyborg, P. Y., Alexopoulos, N. I., Cooney, M. A., French, A. J., Tecirlioglu, R. T., Holland, M. K., Thomsen, P. D., and D’Cruz, N. T. (2008). Analysis of the expression of putatively imprinted genes in bovine peri-implantation embryos. Theriogenology 70, 1119–1128.
Analysis of the expression of putatively imprinted genes in bovine peri-implantation embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFajurnJ&md5=829b098b030116c821c3c00672716ad4CAS | 18675451PubMed |

Ueda, T., Yamazaki, K., Suzuki, R., Fujimoto, H., Sasaki, H., Sakaki, Y., and Higashinakagawa, T. (1992). Parental methylation patterns of a transgenic locus in adult somatic tissues are imprinted during gametogenesis. Development 116, 831–839.
| 1:CAS:528:DyaK3sXit1Ojt7s%3D&md5=bec26ec4a7492c5431cacd704d2cb070CAS | 1295738PubMed |

Urrego, R., Rodriguez-Osorio, N., and Niemann, H. (2014). Epigenetic disorders and altered gene expression after use of assisted reproductive technologies in domestic cattle. Epigenetics 9, 803–815.
Epigenetic disorders and altered gene expression after use of assisted reproductive technologies in domestic cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhs1GntbvE&md5=7a185e39678bcf0d311ff0d52a3e8788CAS | 24709985PubMed |

Van den Veyver, I. B. (2002). Genetic effects of methylation diets. Annu. Rev. Nutr. 22, 255–282.
Genetic effects of methylation diets.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmtF2htLo%3D&md5=0fcd1174e76d25b6f600acfbb766876cCAS | 12055346PubMed |

Vassena, R., Dee Schramm, R., and Latham, K. E. (2005). Species-dependent expression patterns of DNA methyltransferase genes in mammalian oocytes and preimplantation embryos. Mol. Reprod. Dev. 72, 430–436.
Species-dependent expression patterns of DNA methyltransferase genes in mammalian oocytes and preimplantation embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFGmurvF&md5=2e724bd50c935015d3602f13cf18ce7dCAS | 16155959PubMed |

Viuff, D., Rickords, L., Offenberg, H., Hyttel, P., Avery, B., Greve, T., Olsaker, I., Williams, J. L., Callesen, H., and Thomsen, P. D. (1999). A high proportion of bovine blastocysts produced in vitro are mixoploid. Biol. Reprod. 60, 1273–1278.
A high proportion of bovine blastocysts produced in vitro are mixoploid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjsVaqtbw%3D&md5=ac6c506819d8b8a803a1efbc7e0a206dCAS | 10330080PubMed |

Viuff, D., Greve, T., Avery, B., Hyttel, P., Brockhoff, P. B., and Thomsen, P. D. (2000). Chromosome aberrations in in vitro-produced bovine embryos at Days 2–5 post-insemination. Biol. Reprod. 63, 1143–1148.
Chromosome aberrations in in vitro-produced bovine embryos at Days 2–5 post-insemination.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmslylurw%3D&md5=7691fa74d81cd7b037295f6ce40fd5c0CAS | 10993838PubMed |

Viuff, D., Hendriksen, P. J., Vos, P. L., Dieleman, S. J., Bibby, B. M., Greve, T., Hyttel, P., and Thomsen, P. D. (2001). Chromosomal abnormalities and developmental kinetics in in vivo-developed cattle embryos at Days 2 to 5 after ovulation. Biol. Reprod. 65, 204–208.
Chromosomal abnormalities and developmental kinetics in in vivo-developed cattle embryos at Days 2 to 5 after ovulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkslWhtbg%3D&md5=71d1aa2d545e6f5782f9b758805a5447CAS | 11420241PubMed |

Wang, N., Le, F., Liu, X., Zhan, Q., Wang, L., Sheng, J., Huang, H., and Jin, F. (2012). Altered expressions and DNA methylation of imprinted genes in chromosome 7 in brain of mouse offspring conceived from in vitro maturation. Reprod. Toxicol. 34, 420–428.
Altered expressions and DNA methylation of imprinted genes in chromosome 7 in brain of mouse offspring conceived from in vitro maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XotVOqtLw%3D&md5=7c8e6614a57d4c86f72aff3643354e8fCAS | 22569273PubMed |

Warnecke, P. M., Stirzaker, C., Melki, J. R., Millar, D. S., Paul, C. L., and Clark, S. J. (1997). Detection and measurement of PCR bias in quantitative methylation analysis of bisulphate-treated DNA. Nucleic Acids Res. 25, 4422–4426.
Detection and measurement of PCR bias in quantitative methylation analysis of bisulphate-treated DNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXns1Kitrs%3D&md5=d791531586435f8fa9f28d45a490a822CAS | 9336479PubMed |

Warnecke, P. M., Stirzaker, C., Song, J., Grunau, C., Melki, J. R., and Clark, S. J. (2002). Identification and resolution of artifacts in bisulfite sequencing. Methods 27, 101–107.
Identification and resolution of artifacts in bisulfite sequencing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XltVShsbo%3D&md5=0f3c3ac2a35cd3003d68b8c6890fbd42CAS | 12095266PubMed |

Waterland, R. A., and Jirtle, R. L. (2003). Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol. Cell. Biol. 23, 5293–5300.
Transposable elements: targets for early nutritional effects on epigenetic gene regulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlslGmsrw%3D&md5=73a4f26e9a299c65243370786d67698eCAS | 12861015PubMed |

Waterland, R. A., Lin, J. R., Smith, C. A., and Jirtle, R. L. (2006). Post-weaning diet affects genomic imprinting at the insulin-like growth factor 2 (Igf2) locus. Hum. Mol. Genet. 15, 705–716.
Post-weaning diet affects genomic imprinting at the insulin-like growth factor 2 (Igf2) locus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhsF2mtb0%3D&md5=f092ddc98fc16080b7a7c674844c9d0cCAS | 16421170PubMed |

Webster, K. E., O’Bryan, M. K., Fletcher, S., Crewther, P. E., Aapola, U., Craig, J., Harrison, D. K., Aung, H., Phutikanit, N., Lyle, R., Meachem, S. J., Antonarakis, S. E., de Kretser, D. M., Hedger, M. P., Peterson, P., Carroll, B. J., and Scott, H. S. (2005). Meiotic and epigenetic defects in Dnmt3L-knockout mouse spermatogenesis. Proc. Natl Acad. Sci. USA 102, 4068–4073.
Meiotic and epigenetic defects in Dnmt3L-knockout mouse spermatogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXis12jtr8%3D&md5=e9196c7d49c9991f1f556f717ef004daCAS | 15753313PubMed |

Wei, Y., Huan, Y., Shi, Y., Liu, Z., Bou, G., Luo, Y., Zhang, L., Yang, C., Kong, Q., Tian, J., Xia, P., Sun, Q. Y., and Liu, Z. (2011). Unfaithful maintenance of methylation imprints due to loss of maternal nuclear Dnmt1 during somatic cell nuclear transfer. PLoS One 6, e20154.
Unfaithful maintenance of methylation imprints due to loss of maternal nuclear Dnmt1 during somatic cell nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXms1Kmurg%3D&md5=a6ebc17fdaac6beddbca20af64e30d9cCAS | 21625467PubMed |

Wrenzycki, C., Herrmann, D., Lucas-Hahn, A., Lemme, E., Korsawe, K., and Niemann, H. (2004). Gene expression patterns in in vitro-produced and somatic nuclear transfer-derived preimplantation bovine embryos: relationship to the large offspring syndrome? Anim. Reprod. Sci. 82–83, 593–603.
Gene expression patterns in in vitro-produced and somatic nuclear transfer-derived preimplantation bovine embryos: relationship to the large offspring syndrome?Crossref | GoogleScholarGoogle Scholar | 15271482PubMed |

Wrenzycki, C., Herrmann, D., Lucas-Hahn, A., Korsawe, K., Lemme, E., and Niemann, H. (2005). Messenger RNA expression patterns in bovine embryos derived from in vitro procedures and their implications for development. Reprod. Fertil. Dev. 17, 23–35.
Messenger RNA expression patterns in bovine embryos derived from in vitro procedures and their implications for development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVKrurbL&md5=01506d84b29e20b93d479c23196615c3CAS | 15745629PubMed |

Yang, X., Smith, S. L., Tian, X. C., Lewin, H. A., Renard, J. P., and Wakayama, T. (2007). Nuclear reprogramming of cloned embryos and its implications for therapeutic cloning. Nat. Genet. 39, 295–302.
Nuclear reprogramming of cloned embryos and its implications for therapeutic cloning.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitVOktro%3D&md5=8fa1c8170d2134e7b7c3d70c1c2052adCAS | 17325680PubMed |

Young, L. E., Fernandes, K., McEvoy, T. G., Butterwith, S. C., Gutierrez, C. G., Carolan, C., Broadbent, P. J., Robinson, J. J., Wilmut, I., and Sinclair, K. D. (2001). Epigenetic change in IGF2R is associated with fetal overgrowth after sheep embryo culture. Nat. Genet. 27, 153–154.
Epigenetic change in IGF2R is associated with fetal overgrowth after sheep embryo culture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhtFGktL8%3D&md5=c65829986653ffe791fcf55227fbe680CAS | 11175780PubMed |

Zeng, F., Baldwin, D. A., and Schultz, R. M. (2004). Transcript profiling during preimplantation mouse development. Dev. Biol. 272, 483–496.
Transcript profiling during preimplantation mouse development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmt1CjtrY%3D&md5=84ead26f83b2ea247ef80f5ca38e545eCAS | 15282163PubMed |

Zhang, Z. P., Liang, G. J., Zhang, X. F., Zhang, G. L., Chao, H. H., Li, L., Sun, X. F., Min, L. J., Pan, Q. J., Shi, Q. H., Sun, Q. Y., De Felici, M., and Shen, W. (2012). Growth of mouse oocytes to maturity from premeiotic germ cells in vitro. PLoS One 7, e41771.
Growth of mouse oocytes to maturity from premeiotic germ cells in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFWisbjM&md5=075b9e2ee0ccb8f7cca87229c1f1309cCAS | 22848595PubMed |

Zhao, X. M., Ren, J. J., Du, W. H., Hao, H. S., Wang, D., Qin, T., Liu, Y., and Zhu, H. B. (2013). Effect of vitrification on promoter CpG island methylation patterns and expression levels of DNA methyltransferase 1o, histone acetyltransferase 1, and deacetylase 1 in metaphase II mouse oocytes. Fertil. Steril. 100, 256–261.
Effect of vitrification on promoter CpG island methylation patterns and expression levels of DNA methyltransferase 1o, histone acetyltransferase 1, and deacetylase 1 in metaphase II mouse oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXltVyht7w%3D&md5=23b7588f8a6ef5c81d87f94510246488CAS | 23548937PubMed |

Zhou, W., Xiang, T., Walker, S., Farrar, V., Hwang, E., Findeisen, B., Sadeghieh, S., Arenivas, F., Abruzzese, R. V., and Polejaeva, I. (2008). Global gene expression analysis of bovine blastocysts produced by multiple methods. Mol. Reprod. Dev. 75, 744–758.
Global gene expression analysis of bovine blastocysts produced by multiple methods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXktFGhsb8%3D&md5=c5360ccf94d334f84489096bbe432ca8CAS | 17886272PubMed |

Zuo, X., Sheng, J., Lau, H. T., McDonald, C. M., Andrade, M., Cullen, D. E., Bell, F. T., Iacovino, M., Kyba, M., Xu, G., and Li, X. (2012). Zinc finger protein ZFP57 requires its co-factor to recruit DNA methyltransferases and maintains DNA methylation imprint in embryonic stem cells via its transcriptional repression domain. J. Biol. Chem. 287, 2107–2118.
Zinc finger protein ZFP57 requires its co-factor to recruit DNA methyltransferases and maintains DNA methylation imprint in embryonic stem cells via its transcriptional repression domain.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmtlGqtw%3D%3D&md5=f7f3ea72d300b1d4e50e7cdbbb1d24a5CAS | 22144682PubMed |