Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Epigenetics, embryo quality and developmental potential

Nathalie Beaujean
+ Author Affiliations
- Author Affiliations

INRA, UMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, France. Email: nathalie.beaujean@jouy.inra.fr

Reproduction, Fertility and Development 27(1) 53-62 https://doi.org/10.1071/RD14309
Published: 4 December 2014

Abstract

It is very important for embryologists to understand how parental inherited genomes are reprogrammed after fertilisation in order to obtain good-quality embryos that will sustain further development. In mammals, it is now well established that important epigenetic modifications occur after fertilisation. Although gametes carry special epigenetic signatures, they should attain embryo-specific signatures, some of which are crucial for the production of healthy embryos. Indeed, it appears that proper establishment of different epigenetic modifications and subsequent scaffolding of the chromatin are crucial steps during the first cleavages. This ‘reprogramming’ is promoted by the intimate contact between the parental inherited genomes and the oocyte cytoplasm after fusion of the gametes. This review introduces two main epigenetic players, namely histone post-translational modifications and DNA methylation, and highlights their importance during early embryonic development.

Additional keywords: chromatin, development, DNA methylation, environment, histone post-translational modifications, reprogramming.


References

Abdalla, H., Yoshizawa, Y., and Hochi, S. (2009). Active demethylation of paternal genome in mammalian zygotes. J. Reprod. Dev. 55, 356–360.
Active demethylation of paternal genome in mammalian zygotes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFOmtLnK&md5=9d9a2ef96c70bcfbae4cb888bf66916eCAS | 19721335PubMed |

Adenot, P. G., Szöllösi, M. S., Geze, M., Renard, J. P., and Debey, P. (1991). Dynamics of paternal chromatin changes in live one-cell mouse embryo after natural fertilization. Mol. Reprod. Dev. 28, 23–34.
Dynamics of paternal chromatin changes in live one-cell mouse embryo after natural fertilization.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3M7js1ygsw%3D%3D&md5=48e6ebce8fc43e4887d6e01ae4d0f878CAS | 1994977PubMed |

Adenot, P. G., Mercier, Y., Renard, J. P., and Thompson, E. M. (1997). Differential H4 acetylation of paternal and maternal chromatin precedes DNA replication and differential transcriptional activity in pronuclei of 1-cell mouse embryos. Development 124, 4615–4625.
| 1:CAS:528:DyaK1cXht12jsA%3D%3D&md5=25bfe0c91394ab99993131a866d566a5CAS | 9409678PubMed |

Alcobia, I., Dilão, R., and Parreira, L. (2000). Spatial associations of centromeres in the nuclei of hematopoietic cells: evidence for cell-type-specific organizational patterns. Blood 95, 1608–1615.
| 1:STN:280:DC%2BD3c7lsF2qsQ%3D%3D&md5=bf395512f1f866dce00f970beba44212CAS | 10688815PubMed |

Aoki, F., Worrad, D. M., and Schultz, R. M. (1997). Regulation of transcriptional activity during the first and second cell cycles in the preimplantation mouse embryo. Dev. Biol. 181, 296–307.
Regulation of transcriptional activity during the first and second cell cycles in the preimplantation mouse embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXpt1Omtw%3D%3D&md5=7c0c8f2f06bc08a91cc0f2e4ad192654CAS | 9013938PubMed |

Bártová, E., and Kozubek, S. (2006). Nuclear architecture in the light of gene expression and cell differentiation studies. Biol. Cell 98, 323–336.
Nuclear architecture in the light of gene expression and cell differentiation studies.Crossref | GoogleScholarGoogle Scholar | 16704376PubMed |

Beaujean, N. (2014). Histone post-translational modifications in preimplantation mouse embryos and their role in nuclear architecture. Mol. Reprod. Dev. 81, 100–112.
Histone post-translational modifications in preimplantation mouse embryos and their role in nuclear architecture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvV2lur3K&md5=e4c81eda54fe5787d9b9589a71474a00CAS | 24150914PubMed |

Beaujean, N., Hartshorne, G., Cavilla, J., Taylor, J., Gardner, J., Wilmut, I., Meehan, R., and Young, L. (2004a). Non-conservation of mammalian preimplantation methylation dynamics. Curr. Biol. 14, R266–R267.
Non-conservation of mammalian preimplantation methylation dynamics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXivVKltb4%3D&md5=6fcd265512bd975c345755664ad4ac41CAS | 15062117PubMed |

Beaujean, N., Taylor, J., Gardner, J., Wilmut, I., Meehan, R., and Young, L. (2004b). Effect of limited DNA methylation reprogramming in the normal sheep embryo on somatic cell nuclear transfer. Biol. Reprod. 71, 185–193.
Effect of limited DNA methylation reprogramming in the normal sheep embryo on somatic cell nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltFKkur0%3D&md5=ec72e997dd88a71fa6379c5b61d5fc2cCAS | 14998909PubMed |

Bernstein, B. E., Meissner, A., and Lander, E. S. (2007). The mammalian epigenome. Cell 128, 669–681.
The mammalian epigenome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXis12ju7g%3D&md5=f4854b474b8984bde8461f32857df9bcCAS | 17320505PubMed |

Black, J. C., Van Rechem, C., and Whetstine, J. R. (2012). Histone lysine methylation dynamics: establishment, regulation, and biological impact. Mol. Cell 48, 491–507.
Histone lysine methylation dynamics: establishment, regulation, and biological impact.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslKqtLvM&md5=b0a1482a4c785243e326b3c484b81598CAS | 23200123PubMed |

Blelloch, R., Wang, Z., Meissner, A., and Pollard, S. (2006). Reprogramming efficiency following somatic cell nuclear transfer is influenced by the differentiation and methylation state of the donor nucleus. Stem Cells 24, 2007–2013.
Reprogramming efficiency following somatic cell nuclear transfer is influenced by the differentiation and methylation state of the donor nucleus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFKgs77F&md5=64163e475257384262b39e4cc3c45b95CAS | 16709876PubMed |

Bogliotti, Y. S., and Ross, P. J. (2012). Mechanisms of histone H3 lysine 27 trimethylation remodeling during early mammalian development. Epigenetics 7, 976–981.
Mechanisms of histone H3 lysine 27 trimethylation remodeling during early mammalian development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1aru7k%3D&md5=a8a800a6089d57e661505383dd251c2aCAS | 22895114PubMed |

Bolton, V. N., Oades, P. J., and Johnson, M. H. (1984). The relationship between cleavage, DNA replication, and gene expression in the mouse 2-cell embryo. J. Embryol. Exp. Morphol. 79, 139–163.
| 1:CAS:528:DyaL2cXlvVyrtr0%3D&md5=e4d55e36f5524fdb15307626c01dde49CAS | 6716041PubMed |

Bonasio, R., Tu, S., and Reinberg, D. (2010). Molecular signals of epigenetic states. Science 330, 612–616.
Molecular signals of epigenetic states.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlaqt7bE&md5=88620970294bfdb960b65d9ced44b214CAS | 21030644PubMed |

Bošković, A., Bender, A., Gall, L., Ziegler-Birling, C., Beaujean, N., and Torres-Padilla, M. E. (2012). Analysis of active chromatin modifications in early mammalian embryos reveals uncoupling of H2A.Z acetylation and H3K36 trimethylation from embryonic genome activation. Epigenetics 7, 747–757.
Analysis of active chromatin modifications in early mammalian embryos reveals uncoupling of H2A.Z acetylation and H3K36 trimethylation from embryonic genome activation.Crossref | GoogleScholarGoogle Scholar | 22647320PubMed |

Bouniol, C., Nguyen, E., and Debey, P. (1995). Endogenous transcription occurs at the 1-cell stage in the mouse embryo. Exp. Cell Res. 218, 57–62.
Endogenous transcription occurs at the 1-cell stage in the mouse embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXlsFShsLc%3D&md5=782aaae6dbe944623af46f2923c0644dCAS | 7537698PubMed |

Bouniol-Baly, C., Nguyen, E., Besombes, D., and Debey, P. (1997). Dynamic organization of DNA replication in one-cell mouse embryos: relationship to transcriptional activation. Exp. Cell Res. 236, 201–211.
Dynamic organization of DNA replication in one-cell mouse embryos: relationship to transcriptional activation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXms1Gkur4%3D&md5=b875335fbe5d43b4ab1441b93e081530CAS | 9344600PubMed |

Bourc’his, D., and Voinnet, O. (2010). A small-RNA perspective on gametogenesis, fertilization, and early zygotic development. Science 330, 617–622.
A small-RNA perspective on gametogenesis, fertilization, and early zygotic development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlaqt7bF&md5=83615b4bf51c54f59a038638825bb08eCAS | 21030645PubMed |

Bouzinba-Segard, H., Guais, A., and Francastel, C. (2006). Accumulation of small murine minor satellite transcripts leads to impaired centromeric architecture and function. Proc. Natl Acad. Sci. USA 103, 8709–8714.
Accumulation of small murine minor satellite transcripts leads to impaired centromeric architecture and function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlvVCiurs%3D&md5=551b1cacdeca931bfe48162f11f380c3CAS | 16731634PubMed |

Braude, P., Bolton, V., and Moore, S. (1988). Human gene expression first occurs between the four- and eight-cell stages of preimplantation development. Nature 332, 459–461.
Human gene expression first occurs between the four- and eight-cell stages of preimplantation development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXhvVCiurk%3D&md5=d5b23fc5fdcef27bba3834605377b26fCAS | 3352746PubMed |

Breton, A., le Bourhis, D., Audouard, C., Vignon, X., and Lelièvre, J. M. (2010). Nuclear profiles of H3 histones trimethylated on Lys27 in bovine (Bos taurus) embryos obtained after in vitro fertilization or somatic cell nuclear transfer. J. Reprod. Dev. 56, 379–388.
Nuclear profiles of H3 histones trimethylated on Lys27 in bovine (Bos taurus) embryos obtained after in vitro fertilization or somatic cell nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 20431250PubMed |

Bui, L. C., Evsikov, A. V., Khan, D. R., Archilla, C., Peynot, N., Hénaut, A., Le Bourhis, D., Vignon, X., Renard, J. P., and Duranthon, V. (2009). Retrotransposon expression as a defining event of genome reprogramming in fertilized and cloned bovine embryos. Reproduction 138, 289–299.
Retrotransposon expression as a defining event of genome reprogramming in fertilized and cloned bovine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptlemt7Y%3D&md5=4512f7f91433160c2f0c40f23fd41097CAS | 19465487PubMed |

Bui, H. T., Wakayama, S., Kishigami, S., Park, K. K., Kim, J. H., Thuan, N. V., and Wakayama, T. (2010). Effect of trichostatin A on chromatin remodeling, histone modifications, DNA replication, and transcriptional activity in cloned mouse embryos. Biol. Reprod. 83, 454–463.
Effect of trichostatin A on chromatin remodeling, histone modifications, DNA replication, and transcriptional activity in cloned mouse embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVyrsrvL&md5=a5040ceef8aa9545b5cd7db519040526CAS | 20505166PubMed |

Camous, S., Heyman, Y., Méziou, W., and Ménézo, Y. (1984). Cleavage beyond the block stage and survival after transfer of early bovine embryos cultured with trophoblastic vesicles. J. Reprod. Fertil. 72, 479–485.
Cleavage beyond the block stage and survival after transfer of early bovine embryos cultured with trophoblastic vesicles.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2M%2Fot1ygtw%3D%3D&md5=9ab1efff945204c3883bf6e0798f0363CAS | 6512770PubMed |

Campbell, K. H., Fisher, P., Chen, W. C., Choi, I., Kelly, R. D., Lee, J. H., and Xhu, J. (2007). Somatic cell nuclear transfer: past, present and future perspectives. Theriogenology 68, S214–S231.
Somatic cell nuclear transfer: past, present and future perspectives.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotlaitbo%3D&md5=5a21837893baa4db9d58bd251da487d4CAS | 17610946PubMed |

Canovas, S., Cibelli, J., and Ross, P. (2012). Jumonji domain-containing protein 3 regulates histone 3 lysine 27 methylation during bovine preimplantation development. Proc. Natl Acad. Sci. USA 109, 2400–2405.
Jumonji domain-containing protein 3 regulates histone 3 lysine 27 methylation during bovine preimplantation development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XivFSjsLs%3D&md5=055ea51fa979daea09aec0626d6833e0CAS | 22308433PubMed |

Cardoso, M. C., and Leonhardt, H. (1999). DNA methyltransferase is actively retained in the cytoplasm during early development. J. Cell Biol. 147, 25–32.
DNA methyltransferase is actively retained in the cytoplasm during early development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmsVCltLo%3D&md5=c3754284fe075e32758f39740fbc977dCAS | 10508852PubMed |

Cervera, R. P., Martí-Gutiérrez, N., Escorihuela, E., Moreno, R., and Stojkovic, M. (2009). Trichostatin A affects histone acetylation and gene expression in porcine somatic cell nucleus transfer embryos. Theriogenology 72, 1097–1110.
Trichostatin A affects histone acetylation and gene expression in porcine somatic cell nucleus transfer embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1Wmt7zP&md5=7b427211ad95de4fde4895828640779dCAS | 19765811PubMed |

Christians, E., Rao, V. H., and Renard, J. P. (1994). Sequential acquisition of transcriptional control during early embryonic development in the rabbit. Dev. Biol. 164, 160–172.
Sequential acquisition of transcriptional control during early embryonic development in the rabbit.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmt1OisLw%3D&md5=1abdf37539994881e897925d13e66a30CAS | 8026620PubMed |

Chung, Y. G., Ratnam, S., Chaillet, J. R., and Latham, K. E. (2003). Abnormal regulation of DNA methyltransferase expression in cloned mouse embryos. Biol. Reprod. 69, 146–153.
Abnormal regulation of DNA methyltransferase expression in cloned mouse embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkvFCnt7g%3D&md5=9d60fa447be16bb41e66be909881979bCAS | 12606374PubMed |

Couldrey, C., and Wells, D. N. (2013). DNA methylation at a bovine alpha satellite I repeat CpG site during development following fertilization and somatic cell nuclear transfer. PLoS ONE 8, e55153.
DNA methylation at a bovine alpha satellite I repeat CpG site during development following fertilization and somatic cell nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXivVOktrY%3D&md5=e6e8bca5e659d989bb7f964d6b9d38a7CAS | 23383311PubMed |

Crosby, I. M., Gandolfi, F., and Moor, R. M. (1988). Control of protein synthesis during early cleavage of sheep embryos. J. Reprod. Fertil. 82, 769–775.
Control of protein synthesis during early cleavage of sheep embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXhs1Ght78%3D&md5=b6a3669d274314e89745cd78e44da7afCAS | 3361510PubMed |

Dean, W., Santos, F., and Reik, W. (2003). Epigenetic reprogramming in early mammalian development and following somatic nuclear transfer. Semin. Cell Dev. Biol. 14, 93–100.
Epigenetic reprogramming in early mammalian development and following somatic nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnvFar&md5=697b5b97b06f2a8b5c0b8dfa50762edcCAS | 12524012PubMed |

Deshmukh, R. S., Østrup, O., Østrup, E., Vejlsted, M., Niemann, H., Lucas-Hahn, A., Petersen, B., Li, J., Callesen, H., and Hyttel, P. (2011). DNA methylation in porcine preimplantation embryos developed in vivo and produced by in vitro fertilization, parthenogenetic activation and somatic cell nuclear transfer. Epigenetics 6, 177–187.
DNA methylation in porcine preimplantation embryos developed in vivo and produced by in vitro fertilization, parthenogenetic activation and somatic cell nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjs12ksLY%3D&md5=591615abb4092ec0f1627d508d4fabb7CAS | 20935454PubMed |

Dupont, C., Cordier, A. G., Junien, C., Mandon-Pépin, B., Levy, R., and Chavatte-Palmer, P. (2012). Maternal environment and the reproductive function of the offspring. Theriogenology 78, 1405–1414.
Maternal environment and the reproductive function of the offspring.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC38bhs1emug%3D%3D&md5=26def220a27d9f24f87657d17c87f00aCAS | 22925651PubMed |

el Hajj, N., and Haaf, T. (2013). Epigenetic disturbances in in vitro cultured gametes and embryos: implications for human assisted reproduction. Fertil. Steril. 99, 632–641.
Epigenetic disturbances in in vitro cultured gametes and embryos: implications for human assisted reproduction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFWmsbs%3D&md5=cd51395c76d4c695b8ab0b30986538bcCAS | 23357453PubMed |

Erhardt, S., Su, I. H., Schneider, R., Barton, S., Bannister, A. J., Perezburgos, L., Jenuwein, T., Kouzarides, T., Tarakhovsky, A., and Surani, M. A. (2003). Consequences of the depletion of zygotic and embryonic enhancer of zeste 2 during preimplantation mouse development. Development 130, 4235–4248.
Consequences of the depletion of zygotic and embryonic enhancer of zeste 2 during preimplantation mouse development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnvVWnt78%3D&md5=dad46e0279fb257335ab2d8321fcd770CAS | 12900441PubMed |

Farthing, C. R., Ficz, G., Ng, R. K., Chan, C. F., Andrews, S., Dean, W., Hemberger, M., and Reik, W. (2008). Global mapping of DNA methylation in mouse promoters reveals epigenetic reprogramming of pluripotency genes. PLoS Genet. 4, e1000116.
Global mapping of DNA methylation in mouse promoters reveals epigenetic reprogramming of pluripotency genes.Crossref | GoogleScholarGoogle Scholar | 18584034PubMed |

Feil, R., and Fraga, M. F. (2011). Epigenetics and the environment: emerging patterns and implications. Nat. Rev. Genet. 13, 97–109.

Fernandez-Gonzalez, R., Ramirez, M. A., Pericuesta, E., Calle, A., and Gutierrez-Adan, A. (2010). Histone modifications at the blastocyst Axin1(Fu) locus mark the heritability of in vitro culture-induced epigenetic alterations in mice. Biol. Reprod. 83, 720–727.
Histone modifications at the blastocyst Axin1(Fu) locus mark the heritability of in vitro culture-induced epigenetic alterations in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlGls77M&md5=2023b06ebe8b09edec6564bc7c15e851CAS | 20650886PubMed |

Festenstein, R., Pagakis, S. N., Hiragami, K., Lyon, D., Verreault, A., Sekkali, B., and Kioussis, D. (2003). Modulation of heterochromatin protein 1 dynamics in primary mammalian cells. Science 299, 719.
Modulation of heterochromatin protein 1 dynamics in primary mammalian cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntFWhsw%3D%3D&md5=5ae0b2e2daaee310f7704788127457ebCAS | 12560554PubMed |

Ficz, G., Branco, M. R., Seisenberger, S., Santos, F., Krueger, F., Hore, T. A., Marques, C. J., Andrews, S., and Reik, W. (2011). Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation. Nature 473, 398–402.
Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXktFahs7s%3D&md5=e460f915fd17b80ead5af5386d94242aCAS | 21460836PubMed |

Flach, G., Johnson, M., Braude, P., Taylor, R., and Bolton, V. (1982). The transition from maternal to embryonic control in the 2-cell mouse embryo. EMBO J. 1, 681–686.
| 1:CAS:528:DyaL38XltVOrsL0%3D&md5=79fe7b91ab21eff1b688ef7d0dffceaaCAS | 7188357PubMed |

Fulka, H., Mrazek, M., Tepla, O., and Fulka, J. (2004). DNA methylation pattern in human zygotes and developing embryos. Reproduction 128, 703–708.
DNA methylation pattern in human zygotes and developing embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFSlug%3D%3D&md5=a99d1baf063b18aa342876923378eb5bCAS | 15579587PubMed |

Goldberg, A. D., Allis, C. D., and Bernstein, E. (2007). Epigenetics: a landscape takes shape. Cell 128, 635–638.
Epigenetics: a landscape takes shape.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXis12ju74%3D&md5=c48a1509aa2d4acbb90c2c452a723c24CAS | 17320500PubMed |

Grewal, S. I., and Jia, S. (2007). Heterochromatin revisited. Nat. Rev. Genet. 8, 35–46.
Heterochromatin revisited.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xhtlakt7fO&md5=ac106175c59979a223ae4c0748b25734CAS | 17173056PubMed |

Grewal, S. I., and Moazed, D. (2003). Heterochromatin and epigenetic control of gene expression. Science 301, 798–802.
Heterochromatin and epigenetic control of gene expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmtVGqsLk%3D&md5=f4a14df25e500bf35b984f4c1e70ed6bCAS | 12907790PubMed |

Gu, T. P., Guo, F., Yang, H., Wu, H. P., Xu, G. F., Liu, W., Xie, Z. G., Shi, L., He, X., Jin, S., Iqbal, K., Shi, Y. G., Deng, Z., Szabó, P. E., Pfeifer, G. P., Li, J., and Xu, G. L. (2011). The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Nature 477, 606–610.
The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFersL7M&md5=2478c1cc5a5c00b8d36c3d1ff935f2a3CAS | 21892189PubMed |

Guenatri, M., Bailly, D., Maison, C., and Almouzni, G. (2004). Mouse centric and pericentric satellite repeats form distinct functional heterochromatin. J. Cell Biol. 166, 493–505.
Mouse centric and pericentric satellite repeats form distinct functional heterochromatin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmvFehtb4%3D&md5=ac18129e23b5fe6c03bc0655cfa757a4CAS | 15302854PubMed |

Hale, B. J., Yang, C. X., and Ross, J. W. (2014). Small RNA regulation of reproductive function. Mol. Reprod. Dev. 81, 148–159.
Small RNA regulation of reproductive function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVaitLzK&md5=b1e6170ec9e2f0d78255bdad78c1375dCAS | 24167089PubMed |

Hasan, S., and Hottiger, M. O. (2002). Histone acetyl transferases: a role in DNA repair and DNA replication. J. Mol. Med. 80, 463–474.
Histone acetyl transferases: a role in DNA repair and DNA replication.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xns1agsrY%3D&md5=8609c4dadd8679e1ab52da66f0e3b0e7CAS | 12185447PubMed |

He, Y. F., Li, B. Z., Li, Z., Liu, P., Wang, Y., Tang, Q., Ding, J., Jia, Y., Chen, Z., Li, L., Sun, Y., Li, X., Dai, Q., Song, C. X., Zhang, K., He, C., and Xu, G. L. (2011). Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333, 1303–1307.
Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtV2jt7nO&md5=39d78ed002160aa0f807e4d69fe2d945CAS | 21817016PubMed |

Heyman, Y., Chavatte-Palmer, P., LeBourhis, D., Camous, S., Vignon, X., and Renard, J. P. (2002). Frequency and occurrence of late-gestation losses from cattle cloned embryos. Biol. Reprod. 66, 6–13.
Frequency and occurrence of late-gestation losses from cattle cloned embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xht1ymug%3D%3D&md5=6b0da1d662db71830108043fed4c0ca5CAS | 11751257PubMed |

Hiragami, K., and Festenstein, R. (2005). Heterochromatin protein 1: a pervasive controlling influence. Cell. Mol. Life Sci. 62, 2711–2726.
Heterochromatin protein 1: a pervasive controlling influence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhsVWqsw%3D%3D&md5=b9e231b87f0c802207ccc9e0f1fb94ddCAS | 16261261PubMed |

Huang, J. C., Lei, Z. L., Shi, L. H., Miao, Y. L., Yang, J. W., Ouyang, Y. C., Sun, Q. Y., and Chen, D. Y. (2007). Comparison of histone modifications in in vivo and in vitro fertilization mouse embryos. Biochem. Biophys. Res. Commun. 354, 77–83.
Comparison of histone modifications in in vivo and in vitro fertilization mouse embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVClur4%3D&md5=481ea189663d5293a81e9d9fa99707a5CAS | 17210126PubMed |

Iager, A. E., Ragina, N. P., Ross, P. J., Beyhan, Z., Cunniff, K., Rodriguez, R. M., and Cibelli, J. B. (2008). Trichostatin A improves histone acetylation in bovine somatic cell nuclear transfer early embryos. Cloning Stem Cells 10, 371–379.
Trichostatin A improves histone acetylation in bovine somatic cell nuclear transfer early embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVOmu7%2FF&md5=9cce9ffa26c485d25d376ebd64fad569CAS | 18419249PubMed |

Inoue, A., and Zhang, Y. (2011). Replication-dependent loss of 5-hydroxymethylcytosine in mouse preimplantation embryos. Science 334, 194.
Replication-dependent loss of 5-hydroxymethylcytosine in mouse preimplantation embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1yksbbN&md5=dfd62e7a9660c4b823797bac2132c3e4CAS | 21940858PubMed |

Inoue, A., Shen, L., Dai, Q., He, C., and Zhang, Y. (2011). Generation and replication-dependent dilution of 5fC and 5caC during mouse preimplantation development. Cell Res. 21, 1670–1676.
Generation and replication-dependent dilution of 5fC and 5caC during mouse preimplantation development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFKms7nK&md5=007b2da7dfe182ab00cf741397e7c301CAS | 22124233PubMed |

Inoue, A., Matoba, S., and Zhang, Y. (2012). Transcriptional activation of transposable elements in mouse zygotes is independent of Tet3-mediated 5-methylcytosine oxidation. Cell Res. 22, 1640–1649.
Transcriptional activation of transposable elements in mouse zygotes is independent of Tet3-mediated 5-methylcytosine oxidation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslKrsb3E&md5=1387a3085710c12ae08469bf9c15fa32CAS | 23184059PubMed |

Iqbal, K., Jin, S., Pfeifer, G. P., and Szabó, P. E. (2011). Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine. Proc. Natl Acad. Sci. USA 108, 3642–3647.
Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXivFKqs7Y%3D&md5=e5f377b120f2d0f9aeeb63c0541538f0CAS | 21321204PubMed |

Ito, S., D’Alessio, A. C., Taranova, O. V., Hong, K., Sowers, L. C., and Zhang, Y. (2010). Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 466, 1129–1133.
Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXovFCntro%3D&md5=3d189cdde25b779f0836424a3322bee9CAS | 20639862PubMed |

Ito, S., Shen, L., Dai, Q., Wu, S. C., Collins, L. B., Swenberg, J. A., He, C., and Zhang, Y. (2011). Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333, 1300–1303.
Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtV2jt7nN&md5=965a1850869c86e16f5c4cbf2601a80dCAS | 21778364PubMed |

Jin, B., Li, Y., and Robertson, K. D. (2011). DNA methylation: superior or subordinate in the epigenetic hierarchy? Genes Cancer 2, 607–617.
DNA methylation: superior or subordinate in the epigenetic hierarchy?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlCgu7jM&md5=1f9d1d9ba99d96687e461d56cd326a1dCAS | 21941617PubMed |

Jost, K. L., Bertulat, B., and Cardoso, M. C. (2012). Heterochromatin and gene positioning: inside, outside, any side? Chromosoma 121, 555–563.
Heterochromatin and gene positioning: inside, outside, any side?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs12rsLrO&md5=f5fe04900832194b7274f53b323b3a9bCAS | 23090282PubMed |

Kang, Y. K., Koo, D. B., Park, J. S., Choi, Y. H., Chung, A. S., Lee, K. K., and Han, Y. M. (2001). Aberrant methylation of donor genome in cloned bovine embryos. Nat. Genet. 28, 173–177.
Aberrant methylation of donor genome in cloned bovine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXktFOrtb8%3D&md5=09cdee2e8f9fa687ad375b7569f48839CAS | 11381267PubMed |

Keenen, B., and de la Serna, I. L. (2009). Chromatin remodeling in embryonic stem cells: regulating the balance between pluripotency and differentiation. J. Cell. Physiol. 219, 1–7.
Chromatin remodeling in embryonic stem cells: regulating the balance between pluripotency and differentiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisV2is7k%3D&md5=e62e9980c29fe53cb404ae1ed85a9896CAS | 19097034PubMed |

Kouzarides, T. (2007). Chromatin modifications and their function. Cell 128, 693–705.
Chromatin modifications and their function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXis12ju7Y%3D&md5=a7976b7078923fb5d29b3b6a1f7329d8CAS | 17320507PubMed |

Kretsovali, A., Hadjimichael, C., and Charmpilas, N. (2012). Histone deacetylase inhibitors in cell pluripotency, differentiation, and reprogramming. Stem Cells Int. 2012, Article ID 184154.
Histone deacetylase inhibitors in cell pluripotency, differentiation, and reprogramming.Crossref | GoogleScholarGoogle Scholar |

Kubiura, M., Okano, M., Kimura, H., Kawamura, F., and Tada, M. (2012). Chromosome-wide regulation of euchromatin-specific 5mC to 5hmC conversion in mouse ES cells and female human somatic cells. Chromosome Res. 20, 837–848.
Chromosome-wide regulation of euchromatin-specific 5mC to 5hmC conversion in mouse ES cells and female human somatic cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVCktrnE&md5=f1c0a235db6ad9900187be4efff616c3CAS | 23111490PubMed |

Kutateladze, T. G. (2011). SnapShot: histone readers. Cell 146, 842.
SnapShot: histone readers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFakurvO&md5=5a2c2863cb5db8d2daa36c8068a44abbCAS | 21884941PubMed |

Lan, J., Hua, S., Zhang, H., Song, Y., Liu, J., and Zhang, Y. (2010). Methylation patterns in 5′ terminal regions of pluripotency-related genes in bovine in vitro fertilized and cloned embryos. J. Genet. Genomics 37, 297–304.
Methylation patterns in 5′ terminal regions of pluripotency-related genes in bovine in vitro fertilized and cloned embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXosVWku7g%3D&md5=4d63ea56181e8f3a20c5e72b8440b555CAS | 20513630PubMed |

Lee, K., Hamm, J., Whitworth, K., Spate, L., Park, K. W., Murphy, C. N., and Prather, R. S. (2014). Dynamics of TET family expression in porcine preimplantation embryos is related to zygotic genome activation and required for the maintenance of NANOG. Dev. Biol. 386, 86–95.
Dynamics of TET family expression in porcine preimplantation embryos is related to zygotic genome activation and required for the maintenance of NANOG.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFOhsbjE&md5=35d733bff381c1e69111d61b52c8ca24CAS | 24315853PubMed |

Lepikhov, K., and Walter, J. (2004). Differential dynamics of histone H3 methylation at positions K4 and K9 in the mouse zygote. BMC Dev. Biol. 4, 12.
Differential dynamics of histone H3 methylation at positions K4 and K9 in the mouse zygote.Crossref | GoogleScholarGoogle Scholar | 15383155PubMed |

Li, Y., and O’Neill, C. (2012). Persistence of cytosine methylation of DNA following fertilisation in the mouse. PLoS ONE 7, e30687.
Persistence of cytosine methylation of DNA following fertilisation in the mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xitlaqsb8%3D&md5=86e625c4ffb854e8dd144b981bb46242CAS | 22292019PubMed |

Li, E., Bestor, T. H., and Jaenisch, R. (1992). Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69, 915–926.
Targeted mutation of the DNA methyltransferase gene results in embryonic lethality.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XksVGgsr0%3D&md5=661468f90bba5fd1a3571e16e6931cdbCAS | 1606615PubMed |

Li, J. J., Pei, Y., Zhou, G. B., Suo, L., Wang, Y. P., Wu, G. Q., Fu, X. W., Hou, Y. P., and Zhu, S. E. (2011). Histone deacetyltransferase1 expression in mouse oocyte and their in vitro-fertilized embryo: effect of oocyte vitrification. Cryo Letters 32, 13–20.
| 21468449PubMed |

Liu, Z., Wan, H., Wang, E., Zhao, X., Ding, C., Zhou, S., Li, T., Shuai, L., Feng, C., Yu, Y., Zhou, Q., and Beaujean, N. (2012). Induced pluripotent stem-induced cells show better constitutive heterochromatin remodeling and developmental potential after nuclear transfer than their parental cells. Stem Cells Dev. 21, 3001–3009.
Induced pluripotent stem-induced cells show better constitutive heterochromatin remodeling and developmental potential after nuclear transfer than their parental cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFCgsLfM&md5=bc52b19b62017d09889b711fe5718c45CAS | 22657835PubMed |

Long, C. R., Westhusin, M. E., and Golding, M. C. (2014). Reshaping the transcriptional frontier: epigenetics and somatic cell nuclear transfer. Mol. Reprod. Dev. 81, 183–193.
Reshaping the transcriptional frontier: epigenetics and somatic cell nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFent7zJ&md5=3dedefac04ba2cadea3c3bb07adbc020CAS | 24167064PubMed |

Lu, J., and Gilbert, D. M. (2007). Proliferation-dependent and cell cycle regulated transcription of mouse pericentric heterochromatin. J. Cell Biol. 179, 411–421.
Proliferation-dependent and cell cycle regulated transcription of mouse pericentric heterochromatin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht12jsb%2FO&md5=273d8cdbc2271486fd7e567da4a5f2beCAS | 17984319PubMed |

Maalouf, W. E., Liu, Z., Brochard, V., Renard, J. P., Debey, P., Beaujean, N., and Zink, D. (2009). Trichostatin A treatment of cloned mouse embryos improves constitutive heterochromatin remodeling as well as developmental potential to term. BMC Dev. Biol. 9, 11.
Trichostatin A treatment of cloned mouse embryos improves constitutive heterochromatin remodeling as well as developmental potential to term.Crossref | GoogleScholarGoogle Scholar | 19210795PubMed |

Maison, C., Bailly, D., Peters, A. H. F., Quivy, J. P., Roche, D., Taddei, A., Lachner, M., Jenuwein, T., and Almouzni, G. (2002). Higher-order structure in pericentric heterochromatin involves a distinct pattern of histone modification and an RNA component. Nat. Genet. 30, 329–334.
Higher-order structure in pericentric heterochromatin involves a distinct pattern of histone modification and an RNA component.Crossref | GoogleScholarGoogle Scholar | 11850619PubMed |

Maiti, A., and Drohat, A. C. (2011). Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: potential implications for active demethylation of CpG sites. J. Biol. Chem. 286, 35 334–35 338.
Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: potential implications for active demethylation of CpG sites.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1yhtrzJ&md5=72928a9bfc8967fd56fbd621e294fc3dCAS |

Martin, C., Beaujean, N., Brochard, V., Audouard, C., Zink, D., and Debey, P. (2006). Genome restructuring in mouse embryos during reprogramming and early development. Dev. Biol. 292, 317–332.
Genome restructuring in mouse embryos during reprogramming and early development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xjs1WqtL8%3D&md5=d0df14cd668f0fbd94c6251a54093fa0CAS | 16680825PubMed |

Mayer, W., Niveleau, A., Walter, J., Fundele, R., and Haaf, T. (2000). Demethylation of the zygotic paternal genome. Nature 403, 501–502.
Demethylation of the zygotic paternal genome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXht1ShsbY%3D&md5=198292bceaebe4c2b12100b3179ed79bCAS | 10676950PubMed |

Memili, E., and First, N. L. (1999). Control of gene expression at the onset of bovine embryonic development. Biol. Reprod. 61, 1198–1207.
Control of gene expression at the onset of bovine embryonic development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmvFertrw%3D&md5=6b6bfa53192c03958f942f60ae4cb1f6CAS | 10529265PubMed |

Merico, V., Barbieri, J., Zuccotti, M., Joffe, B., Cremer, T., Redi, C. A., Solovei, I., and Garagna, S. (2007). Epigenomic differentiation in mouse preimplantation nuclei of biparental, parthenote and cloned embryos. Chromosome Res. 15, 341–360.
| 1:CAS:528:DC%2BD2sXmsV2jtrw%3D&md5=db74d1cd9d22816788cbdf29dbcb69b2CAS | 17447149PubMed |

Muchardt, C., Guilleme, M., Seeler, J. S., Trouche, D., Dejean, A., and Yaniv, M. (2002). Coordinated methyl and RNA binding is required for heterochromatin localization of mammalian HP1alpha. EMBO Rep. 3, 975–981.
Coordinated methyl and RNA binding is required for heterochromatin localization of mammalian HP1alpha.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xpt1Kgt7k%3D&md5=d68b1be63a5bbb0f7f371f1a0a35ee9cCAS | 12231507PubMed |

Nothias, J. Y., Majumder, S., Kaneko, K. J., and DePamphilis, M. L. (1995). Regulation of gene expression at the beginning of mammalian development. J. Biol. Chem. 270, 22 077–22 080.
Regulation of gene expression at the beginning of mammalian development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXot1Giu7g%3D&md5=8ce5e80b40fd15e3ab56260b792c9898CAS |

Oda, H., Okamoto, I., Murphy, N., Chu, J., Price, S. M., Shen, M. M., Torres-Padilla, M. E., Heard, E., and Reinberg, D. (2009). Monomethylation of histone H4-lysine 20 is involved in chromosome structure and stability and is essential for mouse development. Mol. Cell. Biol. 29, 2278–2295.
Monomethylation of histone H4-lysine 20 is involved in chromosome structure and stability and is essential for mouse development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXks1SrsL8%3D&md5=90d8e33e377b11a82cabff39395eea3bCAS | 19223465PubMed |

Ogura, A., Inoue, K., and Wakayama, T. (2013). Recent advancements in cloning by somatic cell nuclear transfer. Philos. Trans. R. Soc. Lond. B Biol. Sci. 368, 20110329.
Recent advancements in cloning by somatic cell nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 23166393PubMed |

Okamoto, I., Patrat, C., Thépot, D., Peynot, N., Fauque, P., Daniel, N., Diabangouaya, P., Wolf, J. P., Renard, J. P., Duranthon, V., and Heard, E. (2011). Eutherian mammals use diverse strategies to initiate X-chromosome inactivation during development. Nature 472, 370–374.
Eutherian mammals use diverse strategies to initiate X-chromosome inactivation during development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXktlSisbk%3D&md5=87c29c3a717d34759a95f9c4227bd06eCAS | 21471966PubMed |

Oswald, J., Engemann, S., Lane, N., Mayer, W., Olek, A., Fundele, R., Dean, W., Reik, W., and Walter, J. (2000). Active demethylation of the paternal genome in the mouse zygote. Curr. Biol. 10, 475–478.
Active demethylation of the paternal genome in the mouse zygote.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXislyltLo%3D&md5=8a201a26d28edd169ddf9d51acc0d589CAS | 10801417PubMed |

Pacheco-Trigon, S., Hennequet-Antier, C., Oudin, J. F., Piumi, F., Renard, J. P., and Duranthon, V. (2002). Molecular characterization of genomic activities at the onset of zygotic transcription in mammals. Biol. Reprod. 67, 1907–1918.
Molecular characterization of genomic activities at the onset of zygotic transcription in mammals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XptVeltr4%3D&md5=4a0d3c8372a5ffdb62037100279b8281CAS | 12444069PubMed |

Park, J. S., Jeong, Y. S., Shin, S. T., Lee, K., and Kang, Y. (2007). Dynamic DNA methylation reprogramming: active demethylation and immediate remethylation in the male pronucleus of bovine zygotes. Dev. Dyn. 236, 2523–2533.
Dynamic DNA methylation reprogramming: active demethylation and immediate remethylation in the male pronucleus of bovine zygotes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFKjurfN&md5=e882c8312af81e4c9567be093ea02bc4CAS | 17676637PubMed |

Pastor, W. A., Pape, U. J., Huang, Y., Henderson, H. R., Lister, R., Ko, M., McLoughlin, E. M., Brudno, Y., Mahapatra, S., Kapranov, P., Tahiliani, M., Daley, G. Q., Liu, X. S., Ecker, J. R., Milos, P. M., Agarwal, S., and Rao, A. (2011). Genome-wide mapping of 5-hydroxymethylcytosine in embryonic stem cells. Nature 473, 394–397.
Genome-wide mapping of 5-hydroxymethylcytosine in embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlvVahu7c%3D&md5=c3af2a24affdbab7ba3196a8dab99f86CAS | 21552279PubMed |

Peterson, C. L., and Laniel, M. A. (2004). Histones and histone modifications. Curr. Biol. 14, R546–R551.
Histones and histone modifications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtVamsrw%3D&md5=0eca2b9fe6cbe56448be85593535f3a4CAS | 15268870PubMed |

Pichugin, A., Le Bourhis, D., Adenot, P., Lehmann, G., Audouard, C., Renard, J. P., Vignon, X., and Beaujean, N. (2010). Dynamics of constitutive heterochromatin: two contrasted kinetics of genome restructuring in early cloned bovine embryos. Reproduction 139, 129–137.
Dynamics of constitutive heterochromatin: two contrasted kinetics of genome restructuring in early cloned bovine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXovVWmtg%3D%3D&md5=18240d540f015e2b7aaf071a51ee2fd5CAS | 19778997PubMed |

Posfai, E., Kunzmann, R., Brochard, V., Salvaing, J., Cabuy, E., Roloff, T. C., Liu, Z., Tardat, M., van Lohuizen, M., Vidal, M., Beaujean, N., and Peters, A. H. (2012). Polycomb function during oogenesis is required for mouse embryonic development. Genes Dev. 26, 920–932.
Polycomb function during oogenesis is required for mouse embryonic development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmslOgt78%3D&md5=95c3ad136c9e60f2a9387069df9cc46cCAS | 22499591PubMed |

Probst, A. V., Okamoto, I., Casanova, M., El Marjou, F., Le Baccon, P., and Almouzni, G. (2010). A strand-specific burst in transcription of pericentric satellites is required for chromocenter formation and early mouse development. Dev. Cell 19, 625–638.
A strand-specific burst in transcription of pericentric satellites is required for chromocenter formation and early mouse development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlSmurnK&md5=4aea4e29b965a926734f9c02912a74afCAS | 20951352PubMed |

Reis e Silva, A. R., Adenot, P., Daniel, N., Archilla, C., Peynot, N., Lucci, C. M., Beaujean, N., and Duranthon, V. (2011). Dynamics of DNA methylation levels in maternal and paternal rabbit genomes after fertilization. Epigenetics 6, 987–993.
Dynamics of DNA methylation levels in maternal and paternal rabbit genomes after fertilization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xit1yjur8%3D&md5=c535e2fbaeaf7c2116759550d4da7c8dCAS |

Reis e Silva, A. R., Fleurot, R., Daniel, N., Lucci, C. M., Beaujean, N., and Duranthon, V. (2012). Alteration of DNA demethylation dynamics by in vitro culture conditions in rabbit pre-implantation embryos. Epigenetics 7, 440–446.
Alteration of DNA demethylation dynamics by in vitro culture conditions in rabbit pre-implantation embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFCjsbzO&md5=6e687065004c66464293772db4816fdaCAS | 22419129PubMed |

Ribeiro-Mason, K., Boulesteix, C., Brochard, V., Aguirre-Lavin, T., Salvaing, J., Fleurot, R., Adenot, P., Maalouf, W. E., and Beaujean, N. (2012). Nuclear dynamics of histone H3 trimethylated on lysine 9 and/or phosphorylated on serine 10 in mouse cloned embryos as new markers of reprogramming? Cell. Reprogram. 14, 283–294.
| 1:CAS:528:DC%2BC38XhtFCrsLnK&md5=41d08741a626c19b15e8a60bf91c7e1dCAS | 22775512PubMed |

Rodriguez-Osorio, N., Urrego, R., Cibelli, J. B., Eilertsen, K., and Memili, E. (2012). Reprogramming mammalian somatic cells. Theriogenology 78, 1869–1886.
Reprogramming mammalian somatic cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlGntr7M&md5=5fd3453e94f420357574c83643d8a86fCAS | 22979962PubMed |

Roper, S., and Hemberger, M. (2009). Defining pathways that enforce cell lineage specification in early development and stem cells. Cell Cycle 8, 1515–1525.
Defining pathways that enforce cell lineage specification in early development and stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptVWqtb0%3D&md5=2ffef7633db4b9a3dce99caeec5ce8baCAS | 19377304PubMed |

Rougier, N., Bourc’his, D., Gomes, D. M., Niveleau, A., Plachot, M., Pàldi, A., and Viegas-Péquignot, E. (1998). Chromosome methylation patterns during mammalian preimplantation development. Genes Dev. 12, 2108–2113.
Chromosome methylation patterns during mammalian preimplantation development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXkvF2rs70%3D&md5=55d3d04c49e16b13732db538ffc3574aCAS | 9679055PubMed |

Ruzov, A., Tsenkina, Y., Serio, A., Dudnakova, T., Fletcher, J., Bai, Y., Chebotareva, T., Pells, S., Hannoun, Z., Sullivan, G., Chandran, S., Hay, D. C., Bradley, M., Wilmut, I., and De Sousa, P. (2011). Lineage-specific distribution of high levels of genomic 5-hydroxymethylcytosine in mammalian development. Cell Res. 21, 1332–1342.
Lineage-specific distribution of high levels of genomic 5-hydroxymethylcytosine in mammalian development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFWksbrL&md5=d6b121189443207aeba0167296748cdfCAS | 21747414PubMed |

Saha, B., Home, P., Ray, S., Larson, M., Paul, A., Rajendran, G., Behr, B., and Paul, S. (2013). EED and KDM6B coordinate first mammalian cell lineage commitment to ensure embryo implantation. Mol. Cell. Biol. 33, 2691–2705.
EED and KDM6B coordinate first mammalian cell lineage commitment to ensure embryo implantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFSntbrN&md5=1b061b4942bfb5cab20149813bbda09cCAS | 23671187PubMed |

Salvaing, J., Aguirre-Lavin, T., Boulesteix, C., Lehmann, G., Debey, P., and Beaujean, N. (2012). 5-Methylcytosine and 5-hydroxymethylcytosine spatiotemporal profiles in the mouse zygote. PLoS ONE 7, e38156.
5-Methylcytosine and 5-hydroxymethylcytosine spatiotemporal profiles in the mouse zygote.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XotlCqsrc%3D&md5=514443c09e2b56f1b801debf32c71b10CAS | 22693592PubMed |

Santenard, A., Ziegler-Birling, C., Koch, M., Tora, L., Bannister, A. J., and Torres-Padilla, M. E. (2010). Heterochromatin formation in the mouse embryo requires critical residues of the histone variant H3.3. Nat. Cell Biol. 12, 853–862.
Heterochromatin formation in the mouse embryo requires critical residues of the histone variant H3.3.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFSju7%2FE&md5=c3679653ca87798fa306a55e101135ffCAS | 20676102PubMed |

Santos, F., Hendrich, B., Reik, W., and Dean, W. (2002). Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev. Biol. 241, 172–182.
Dynamic reprogramming of DNA methylation in the early mouse embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXptVWhsrg%3D&md5=279ad82074a29de555d74c8e5daaf379CAS | 11784103PubMed |

Santos, F., Peters, A. H., Otte, A. P., Reik, W., and Dean, W. (2005). Dynamic chromatin modifications characterise the first cell cycle in mouse embryos. Dev. Biol. 280, 225–236.
Dynamic chromatin modifications characterise the first cell cycle in mouse embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXit1equrY%3D&md5=e5d1d3f48273de19983f3b38bb33065dCAS | 15766761PubMed |

Santos, F., Hyslop, L., Stojkovic, P., Leary, C., Murdoch, A., Reik, W., Stojkovic, M., Herbert, M., and Dean, W. (2010). Evaluation of epigenetic marks in human embryos derived from IVF and ICSI. Hum. Reprod. 25, 2387–2395.
Evaluation of epigenetic marks in human embryos derived from IVF and ICSI.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVGru77P&md5=bcc468996e3aa983b1255d2c56a7d4bdCAS | 20634187PubMed |

Sarmento, O. F., Digilio, L. C., Wang, Y., Perlin, J., Herr, J. C., Allis, C. D., and Coonrod, S. A. (2004). Dynamic alterations of specific histone modifications during early murine development. J. Cell Sci. 117, 4449–4459.
Dynamic alterations of specific histone modifications during early murine development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXovVehtr0%3D&md5=4422d137b11ac2757f29708b040be544CAS | 15316069PubMed |

Schneider, R., and Grosschedl, R. (2007). Dynamics and interplay of nuclear architecture, genome organization, and gene expression. Genes Dev. 21, 3027–3043.
Dynamics and interplay of nuclear architecture, genome organization, and gene expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVaht7rE&md5=e3e6d21f883bf68cef8b174e0c64c211CAS | 18056419PubMed |

Shao, G. B., Ding, H. M., and Gong, A. H. (2008). Role of histone methylation in zygotic genome activation in the preimplantation mouse embryo. In Vitro Cell. Dev. Biol. Anim. 44, 115–120.
Role of histone methylation in zygotic genome activation in the preimplantation mouse embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtFKqsLo%3D&md5=1ea6c0d2d996a748b34a86bc5dc3b377CAS | 18266049PubMed |

Shi, W., and Haaf, T. (2002). Aberrant methylation patterns at the two-cell stage as an indicator of early developmental failure. Mol. Reprod. Dev. 63, 329–334.
Aberrant methylation patterns at the two-cell stage as an indicator of early developmental failure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnslSnsbg%3D&md5=58d24e2910dc1a4bfed53a7a58a88786CAS | 12237948PubMed |

Shi, L. H., Miao, Y. L., Ouyang, Y. C., Huang, J. C., Lei, Z. L., Yang, J. W., Han, Z. M., Song, X. F., Sun, Q. Y., and Chen, D. Y. (2008). Trichostatin A (TSA) improves the development of rabbit-rabbit intraspecies cloned embryos, but not rabbit-human interspecies cloned embryos. Dev. Dyn. 237, 640–648.
Trichostatin A (TSA) improves the development of rabbit-rabbit intraspecies cloned embryos, but not rabbit-human interspecies cloned embryos.Crossref | GoogleScholarGoogle Scholar | 18265023PubMed |

Song, C. X., Szulwach, K. E., Fu, Y., Dai, Q., Yi, C., Li, X., Li, Y., Chen, C. H., Zhang, W., Jian, X., Wang, J., Zhang, L., Looney, T. J., Zhang, B., Godley, L. A., Hicks, L. M., Lahn, B. T., Jin, P., and He, C. (2011). Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine. Nat. Biotechnol. 29, 68–72.
Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFGgtr7L&md5=30217ae69a271d9082d429b73d444e12CAS | 21151123PubMed |

Suo, L., Meng, Q., Pei, Y., Fu, X., Wang, Y., Bunch, T. D., and Zhu, S. (2010). Effect of cryopreservation on acetylation patterns of lysine 12 of histone H4 (acH4K12) in mouse oocytes and zygotes. J. Assist. Reprod. Genet. 27, 735–741.
Effect of cryopreservation on acetylation patterns of lysine 12 of histone H4 (acH4K12) in mouse oocytes and zygotes.Crossref | GoogleScholarGoogle Scholar | 20838874PubMed |

Tachibana, M., Amato, P., Sparman, M., Gutierrez, N. M., Tippner-Hedges, R., Ma, H., Kang, E., Fulati, A., Lee, H. S., Sritanaudomchai, H., Masterson, K., Larson, J., Eaton, D., Sadler-Fredd, K., Battaglia, D., Lee, D., Wu, D., Jensen, J., Patton, P., Gokhale, S., Stouffer, R. L., Wolf, D., and Mitalipov, S. (2013). Human embryonic stem cells derived by somatic cell nuclear transfer. Cell 153, 1228–1238.
Human embryonic stem cells derived by somatic cell nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnsleqsro%3D&md5=94f5c52cb72de770e1183f86762c9f26CAS | 23683578PubMed |

Tahiliani, M., Koh, K. P., Shen, Y., Pastor, W. A., Bandukwala, H., Brudno, Y., Agarwal, S., Iyer, L. M., Liu, D. R., Aravind, L., and Rao, A. (2009). Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324, 930–935.
Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlslWnurY%3D&md5=b23bf08fbe7de45c795297624fd77e4bCAS | 19372391PubMed |

Tate, P., Skarnes, W., and Bird, A. (1996). The methyl-CpG binding protein MeCP2 is essential for embryonic development in the mouse. Nat. Genet. 12, 205–208.
The methyl-CpG binding protein MeCP2 is essential for embryonic development in the mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XosFClsA%3D%3D&md5=809f77a8495578e10e435999eb6a32c1CAS | 8563762PubMed |

Torres-Padilla, M. E., Parfitt, D. E., Kouzarides, T., and Zernicka-Goetz, M. (2007). Histone arginine methylation regulates cell fate and pluripotency in the early mouse embryo. Nature 445, 214–218.
Histone arginine methylation regulates cell fate and pluripotency in the early mouse embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjtFKjtQ%3D%3D&md5=eaf8e92253ad72ac1e8f18e105e5d990CAS | 17215844PubMed |

Tsukada, Y., Fang, J., Erdjument-Bromage, H., Warren, M. E., Borchers, C. H., Tempst, P., and Zhang, Y. (2006). Histone demethylation by a family of JmjC domain-containing proteins. Nature 439, 811–816.
Histone demethylation by a family of JmjC domain-containing proteins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhsVSkuro%3D&md5=4f1f0149f42c212bcc75b204ef031559CAS | 16362057PubMed |

Urrego, R., Rodriguez-Osorio, N., and Niemann, H. (2014). Epigenetic disorders and altered in gene expression after use of assisted reproductive technologies in domestic cattle. Epigenetics 9, 803–815.
| 1:CAS:528:DC%2BC2cXhs1GntbvE&md5=c4496121841f8101cf452b09fcb175fbCAS | 24709985PubMed |

van der Heijden, G. W., Derijck, A. A., Ramos, L., Giele, M., van der Vlag, J., and de Boer, P. (2006). Transmission of modified nucleosomes from the mouse male germline to the zygote and subsequent remodeling of paternal chromatin. Dev. Biol. 298, 458–469.
Transmission of modified nucleosomes from the mouse male germline to the zygote and subsequent remodeling of paternal chromatin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVWqurnF&md5=45cc1f62f310208f9dbc01e1224a0026CAS | 16887113PubMed |

van der Heijden, G. W., Ramos, L., Baart, E. B., van den Berg, I. M., Derijck, A. A., van der Vlag, J., Martini, E., and de Boer, P. (2008). Sperm-derived histones contribute to zygotic chromatin in humans. BMC Dev. Biol. 8, 34.
Sperm-derived histones contribute to zygotic chromatin in humans.Crossref | GoogleScholarGoogle Scholar | 18377649PubMed |

van Montfoort, A. P., Hanssen, L. L., de Sutter, P., Viville, S., Geraedts, J. P., and de Boer, P. (2012). Assisted reproduction treatment and epigenetic inheritance. Hum. Reprod. Update 18, 171–197.
Assisted reproduction treatment and epigenetic inheritance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjtFKrtLY%3D&md5=a749f56b6333f7830d1bf4670e16df95CAS | 22267841PubMed |

VerMilyea, M. D., O’Neill, L. P., and Turner, B. M. (2009). Transcription-independent heritability of induced histone modifications in the mouse preimplantation embryo. PLoS ONE 4, e6086.
Transcription-independent heritability of induced histone modifications in the mouse preimplantation embryo.Crossref | GoogleScholarGoogle Scholar | 19564914PubMed |

Wang, H., and Dey, S. K. (2006). Roadmap to embryo implantation: clues from mouse models. Nat. Rev. Genet. 7, 185–199.
Roadmap to embryo implantation: clues from mouse models.Crossref | GoogleScholarGoogle Scholar | 16485018PubMed |

Wang, F., Kou, Z., Zhang, Y., and Gao, S. (2007). Dynamic reprogramming of histone acetylation and methylation in the first cell cycle of cloned mouse embryos. Biol. Reprod. 77, 1007–1016.
Dynamic reprogramming of histone acetylation and methylation in the first cell cycle of cloned mouse embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVSgtLbE&md5=df0b908c322be2f0363cbbeee8921945CAS | 17823087PubMed |

Wang, J., Zhang, M., Zhang, Y., Kou, Z., Han, Z., Chen, D. Y., Sun, Q. Y., and Gao, S. (2010). The histone demethylase JMJD2C is stage-specifically expressed in preimplantation mouse embryos and is required for embryonic development. Biol. Reprod. 82, 105–111.
The histone demethylase JMJD2C is stage-specifically expressed in preimplantation mouse embryos and is required for embryonic development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1WgsrrL&md5=852d28925ef74eb4c8e71ffd075a7727CAS | 19696013PubMed |

Williams, K., Christensen, J., Pedersen, M. T., Johansen, J. V., Cloos, P. A., Rappsilber, J., and Helin, K. (2011). TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity. Nature 473, 343–348.
TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkslCmsLo%3D&md5=023ae5dd38053bd5d093bcc67de5eb59CAS | 21490601PubMed |

Wossidlo, M., Nakamura, T., Lepikhov, K., Marques, C. J., Zakhartchenko, V., Boiani, M., Arand, J., Nakano, T., Reik, W., and Walter, J. (2011). 5-Hydroxymethylcytosine in the mammalian zygote is linked with epigenetic reprogramming. Nat. Commun. 2, 241.
5-Hydroxymethylcytosine in the mammalian zygote is linked with epigenetic reprogramming.Crossref | GoogleScholarGoogle Scholar | 21407207PubMed |

Wu, H., D’Alessio, A. C., Ito, S., Xia, K., Wang, Z., Cui, K., Zhao, K., Sun, Y. E., and Zhang, Y. (2011). Dual functions of Tet1 in transcriptional regulation in mouse embryonic stem cells. Nature 473, 389–393.
Dual functions of Tet1 in transcriptional regulation in mouse embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjvFOnt7s%3D&md5=92e962d12d0c36d911607da0de3e8e69CAS | 21451524PubMed |

Wu, F. R., Liu, Y., Shang, M. B., Yang, X. X., Ding, B., Gao, J. G., Wang, R., and Li, W. Y. (2012). Differences in H3K4 trimethylation in in vivo and in vitro fertilization mouse preimplantation embryos. Genet. Mol. Res. 11, 1099–1108.
Differences in H3K4 trimethylation in in vivo and in vitro fertilization mouse preimplantation embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XnsVGiur0%3D&md5=462870fc47e9f0b031152dd20605054eCAS | 22614279PubMed |

Xu, Y., Wu, F., Tan, L., Kong, L., Xiong, L., Deng, J., Barbera, A. J., Zheng, L., Zhang, H., Huang, S., Min, J., Nicholson, T., Chen, T., Xu, G., Shi, Y., Zhang, K., and Shi, Y. G. (2011). Genome-wide regulation of 5hmC, 5mC, and gene expression by Tet1 hydroxylase in mouse embryonic stem cells. Mol. Cell 42, 451–464.
Genome-wide regulation of 5hmC, 5mC, and gene expression by Tet1 hydroxylase in mouse embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsVChtLg%3D&md5=2f15997f99ef326347d05aa5cafe937bCAS | 21514197PubMed |

Yamagata, K., Yamazaki, T., Miki, H., Ogonuki, N., Inoue, K., Ogura, A., and Baba, T. (2007). Centromeric DNA hypomethylation as an epigenetic signature discriminates between germ and somatic cell lineages. Dev. Biol. 312, 419–426.
Centromeric DNA hypomethylation as an epigenetic signature discriminates between germ and somatic cell lineages.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlyksL7M&md5=4b48e6e15a0b73628dc2f56655e4227fCAS | 17964565PubMed |

Yamanaka, K., Sugimura, S., Wakai, T., Kawahara, M., and Sato, E. (2009). Acetylation level of histone H3 in early embryonic stages affects subsequent development of miniature pig somatic cell nuclear transfer embryos. J. Reprod. Dev. 55, 638–644.
Acetylation level of histone H3 in early embryonic stages affects subsequent development of miniature pig somatic cell nuclear transfer embryos.Crossref | GoogleScholarGoogle Scholar | 19700928PubMed |

Yamanaka, K., Kaneda, M., Inaba, Y., Saito, K., Kubota, K., Sakatani, M., Sugimura, S., Imai, K., Watanabe, S., and Takahashi, M. (2011a). DNA methylation analysis on satellite I region in blastocysts obtained from somatic cell cloned cattle. Anim. Sci. J. 82, 523–530.
DNA methylation analysis on satellite I region in blastocysts obtained from somatic cell cloned cattle.Crossref | GoogleScholarGoogle Scholar | 21794009PubMed |

Yamanaka, K., Sakatani, M., Kubota, K., Balboula, A. Z., Sawai, K., and Takahashi, M. (2011b). Effects of downregulating DNA methyltransferase 1 transcript by RNA interference on dna methylation status of the satellite I region and in vitro development of bovine somatic cell nuclear transfer embryos. J. Reprod. Dev. 57, 393–402.
Effects of downregulating DNA methyltransferase 1 transcript by RNA interference on dna methylation status of the satellite I region and in vitro development of bovine somatic cell nuclear transfer embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpslOiu70%3D&md5=f2dc043b53ee69d66616b5c571e5929bCAS | 21343670PubMed |

Yang, J., Yang, S., Beaujean, N., Niu, Y., He, X., Xie, Y., Tang, X., Wang, L., Zhou, Q., and Ji, W. (2007). Epigenetic marks in cloned rhesus monkey embryos: comparison with counterparts produced in vitro. Biol. Reprod. 76, 36–42.
Epigenetic marks in cloned rhesus monkey embryos: comparison with counterparts produced in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhs1Ojsw%3D%3D&md5=10fb08023d62d2a24e304b1f1f2e5c30CAS | 17021347PubMed |

Yang, C. X., Liu, Z., Fleurot, R., Adenot, P., Duranthon, V., Vignon, X., Zhou, Q., Renard, J. P., and Beaujean, N. (2013). Heterochromatin reprogramming in rabbit embryos after fertilization, intra-, and inter-species SCNT correlates with preimplantation development. Reproduction 145, 149–159.
Heterochromatin reprogramming in rabbit embryos after fertilization, intra-, and inter-species SCNT correlates with preimplantation development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjtlOntrk%3D&md5=6e161fa54b101b2033b0b9b6d272c0e0CAS | 23221012PubMed |

Yeo, S., Lee, K. K., Han, Y. M., and Kang, Y. K. (2005). Methylation changes of lysine 9 of histone H3 during preimplantation mouse development. Mol. Cells 20, 423–428.
| 1:CAS:528:DC%2BD28XmsFyrtbY%3D&md5=f44f78a4a459b53f32ea7f36ee72bfdeCAS | 16404159PubMed |

Young, L. E., and Beaujean, N. (2004). DNA methylation in the preimplantation embryo: the differing stories of the mouse and sheep. Anim. Reprod. Sci. 82–83, 61–78.
DNA methylation in the preimplantation embryo: the differing stories of the mouse and sheep.Crossref | GoogleScholarGoogle Scholar | 15271444PubMed |

Zhang, P., Su, L., Wang, Z., Zhang, S., Guan, J., Chen, Y., Yin, Y., Gao, F., Tang, B., and Li, Z. (2012). The involvement of 5-hydroxymethylcytosine in active DNA demethylation in mice. Biol. Reprod. 86, 104.
The involvement of 5-hydroxymethylcytosine in active DNA demethylation in mice.Crossref | GoogleScholarGoogle Scholar | 22262693PubMed |