Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Aquaporins 7 and 11 in boar spermatozoa: detection, localisation and relationship with sperm quality

Noelia Prieto-Martínez A D , Ingrid Vilagran A , Roser Morató A , Joan E. Rodríguez-Gil B , Marc Yeste C and Sergi Bonet A
+ Author Affiliations
- Author Affiliations

A Biotechnology of Animal and Human Reproduction (TechnoSperm), Department of Biology, Institute of Food and Agricultural Technology, University of Girona, E-17071 Girona, Spain.

B Unit of Animal Reproduction, Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Autonomous University of Barcelona, E-08193 Bellaterra (Barcelona), Spain.

C Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Level 3, Women’s Centre, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK.

D Corresponding author. Email: noelia.prieto@udg.edu

Reproduction, Fertility and Development 28(6) 663-672 https://doi.org/10.1071/RD14237
Submitted: 4 July 2014  Accepted: 5 September 2014   Published: 31 October 2014

Abstract

Aquaporins (AQPs) are integral membrane water channels that allow transport of water and small solutes across cell membranes. Although water permeability is known to play a critical role in mammalian cells, including spermatozoa, little is known about their localisation in boar spermatozoa. Two aquaporins, AQP7 and AQP11, in boar spermatozoa were identified by western blotting and localised through immunocytochemistry analyses. Western blot results showed that boar spermatozoa expressed AQP7 (25 kDa) and AQP11 (50 kDa). Immunocytochemistry analyses demonstrated that AQP7 was localised in the connecting piece of boar spermatozoa, while AQP11 was found in the head and mid-piece and diffuse labelling was also seen along the tail. Despite differences in AQP7 and AQP11 content between boar ejaculates, these differences were not found to be correlated with sperm quality in the case of AQP7. Conversely, AQP11 content showed a significant correlation (P < 0.05) with sperm membrane integrity and fluidity and sperm motility. In conclusion, boar spermatozoa express AQP7 and AQP11, and the amounts of AQP11 but not those of AQP7 are correlated with sperm motility and membrane integrity.

Additional keywords: immunostaining, pig, sperm membrane integrity, sperm motility, water channels, western blot.


References

Agre, P. (2004). Aquaporin water channels (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 43, 4278–4290.
Aquaporin water channels (Nobel Lecture).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnsVOmu70%3D&md5=825da820ccdaf46fd92c6d95125858ecCAS | 15368374PubMed |

Agre, P., King, L. S., Yasui, M., Guggino, W. B., Ottersen, O. P., Fujiyoshi, Y., Engel, A., and Nielsen, S. (2002). Aquaporin water channels – from atomic structure to clinical medicine. J. Physiol. 542, 3–16.
Aquaporin water channels – from atomic structure to clinical medicine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmtVamu7w%3D&md5=993902f0e7537b2902edad540f179003CAS | 12096044PubMed |

Casas, I., Sancho, S., Briz, M., Pinart, E., Bussalleu, E., Yeste, M., and Bonet, S. (2009). Freezability prediction of boar ejaculates assessed by functional sperm parameters and sperm proteins. Theriogenology 72, 930–948.
Freezability prediction of boar ejaculates assessed by functional sperm parameters and sperm proteins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFGlsr3E&md5=b9a6fa8dc5480ffcc6e41b521a18fcbbCAS | 19651432PubMed |

Casas, I., Sancho, S., Ballester, J., Briz, M., Pinart, E., Bussalleu, E., Yeste, M., Fàbrega, A., Rodríguez-Gil, J. E., and Bonet, S. (2010). The HSP90AA1 sperm content and the prediction of the boar ejaculate freezability. Theriogenology 74, 940–950.
The HSP90AA1 sperm content and the prediction of the boar ejaculate freezability.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFWqtLbJ&md5=cc5bd021beb21aa5445edbb09af6e4c1CAS | 20580074PubMed |

Chauvigné, F., Boj, M., Vilella, S., Finn, R. N., and Cerdà, J. (2013). Subcellular localisation of selectively permeable aquaporins in the male germ line of a marine teleost reveals spatial redistribution in activated spermatozoa. Biol. Reprod. 89, 37.
Subcellular localisation of selectively permeable aquaporins in the male germ line of a marine teleost reveals spatial redistribution in activated spermatozoa.Crossref | GoogleScholarGoogle Scholar | 23782838PubMed |

Costello, S., Michelangeli, F., Nash, K., Lefievre, L., Morris, J., Machado-Oliveira, G., Barratt, C., Kirkman-Brown, J., and Publicover, S. (2009). Ca2+ stores in sperm: their identities and functions. Reproduction 138, 425–437.
Ca2+ stores in sperm: their identities and functions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFOgtrvM&md5=456aa04f879206736f97dc11247ffa7fCAS | 19542252PubMed |

Domeniconi, R. F., Orsi, A. M., Justulin, L. A., Leme Beu, C. C., and Felisbino, S. L. (2008). Immunolocalisation of aquaporins 1, 2 and 7 in rete restis, efferent ducts, epididymis and vas deferens of adult dog. Cell Tissue Res. 332, 329–335.
Immunolocalisation of aquaporins 1, 2 and 7 in rete restis, efferent ducts, epididymis and vas deferens of adult dog.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXks1Gksr0%3D&md5=92e89148212a154b4a1d0c124ed771f2CAS | 18340467PubMed |

Edashige, K., Yamaji, Y., Kleinhans, F. W., and Kasai, M. (2003). Artificial expression of aquaporin-3 improves the survival of mouse oocytes after cryopreservation. Biol. Reprod. 68, 87–94.
Artificial expression of aquaporin-3 improves the survival of mouse oocytes after cryopreservation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtV2j&md5=1ab04e3e4a33c24c2867a32d9b1d29efCAS | 12493699PubMed |

Filho, A. C., Brezinsky, R. M., Youngblood, R. C., Da Silva, L. D., Willard, S. T., Ryan, P. L., and Feugang, J. M. (2014). Differential expression of aquaporins and spermadhesins in frozen–thawed ‘good freezer’ and ‘poor freezer’ boar spermatozoa. Reprod. Fertil. Dev. 26, 141–142.
Differential expression of aquaporins and spermadhesins in frozen–thawed ‘good freezer’ and ‘poor freezer’ boar spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvV2lsr3J&md5=b7c44e19c90f17ea3ecdaa5a5629c143CAS |

Garner, D. L., and Johnson, L. A. (1995). Viability assessments of mammalian sperm using SYBR-14 and propidium iodide. Biol. Reprod. 53, 276–284.
Viability assessments of mammalian sperm using SYBR-14 and propidium iodide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXntVSmtbc%3D&md5=ed508cdc778fa246a04536311ba9655eCAS | 7492679PubMed |

Harrison, R. A. P., Ashworth, P. J., and Miller, N. G. A. (1996). Bicarbonate/CO2, an effector of capacitation, induces a rapid and reversible change in the lipid architecture of boar sperm plasma membranes. Mol. Reprod. Dev. 45, 378–391.
Bicarbonate/CO2, an effector of capacitation, induces a rapid and reversible change in the lipid architecture of boar sperm plasma membranes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmslWlu7g%3D&md5=184d60547e53853df0fad7cb739246d4CAS |

Hibuse, T., Maeda, N., Nakatsuji, H., Tochino, Y., Fujita, K., Kihara, S., Funahashi, T., and Shimomura, I. (2009). The heart requires glycerol as an energy substrate through aquaporin 7, a glycerol facilitator. Cardiovasc. Res. 83, 34–41.
The heart requires glycerol as an energy substrate through aquaporin 7, a glycerol facilitator.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXntlGhtb4%3D&md5=32c6f4b6bf2b8d41cc76d6e18dce874eCAS | 19297367PubMed |

Huang, H. F., He, R. H., Sun, C. C., Zhang, Y., Meng, Q. X., and Ma, Y. Y. (2006). Function of aquaporins in female and male reproductive systems. Hum. Reprod. Update 12, 785–795.
Function of aquaporins in female and male reproductive systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFeisbzL&md5=515022a508f0eef7f7e20bde082ec844CAS | 16840793PubMed |

Ishibashi, K., Kuwahara, M., Kageyama, Y., Tohsaka, A., Marumo, F., and Sasaki, S. (1997). Cloning and functional expression of a second new aquaporin abundantly expressed in testis. Biochem. Biophys. Res. Commun. 237, 714–718.
Cloning and functional expression of a second new aquaporin abundantly expressed in testis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmtV2gtrY%3D&md5=d49b3152445a3581bf31c0d0860dae43CAS | 9299432PubMed |

Ishibashi, K., Morinaga, T., Kuwahara, M., Sasaki, S., and Imai, M. (2002). Cloning and identification of a new member of water channel (AQP10) as an aquaglyceroporin. Biochim. Biophys. Acta 1576, 335–340.
Cloning and identification of a new member of water channel (AQP10) as an aquaglyceroporin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XkslGnu7k%3D&md5=729a24226ff88b6d4a611259af9f368dCAS | 12084581PubMed |

Ishibashi, K., Hara, S., and Kondo, S. (2009). Aquaporin water channels in mammals. Clin. Exp. Nephrol. 13, 107–117.
Aquaporin water channels in mammals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmt1Wltbg%3D&md5=3bc62b0f857d50b40ed9ed66650bb360CAS | 19085041PubMed |

Klein, C., Troedsson, M. H. T., and Rutllant, J. (2013). Region-specific expression of aquaporin subtypes in equine testis, epididymis and ductus deferens. Anat. Rec. (Hoboken) 296, 1115–1126.
Region-specific expression of aquaporin subtypes in equine testis, epididymis and ductus deferens.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpslCgtbs%3D&md5=cc1b6b7a86eb9569b0d6eb86ba211f8bCAS | 23712968PubMed |

Kondo, H., Shimomura, I., Kishida, K., Kuriyama, H., Makino, Y., Nishizawa, H., Matsuda, M., Maeda, N., Nagaretani, H., Kihara, S., Kurachi, Y., Nakamura, T., Funahashi, T., and Matsuzawa, Y. (2002). Human aquaporin adipose (AQPap) gene. Genomic structure, promoter analysis and functional mutation. Eur. J. Biochem. 269, 1814–1826.
Human aquaporin adipose (AQPap) gene. Genomic structure, promoter analysis and functional mutation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjtVOns74%3D&md5=274d6c83c4642400fb680dbaf7f6154dCAS | 11952783PubMed |

Lee, J. A., Spidlen, J., Boyce, K., Cai, J., Crosbie, N., Dalphin, M., Furlong, J., Gasparetto, M., Goldberg, M., Goralczyk, E. M., Hyun, B., Jansen, K., Kollmann, T., Kong, M., Leif, R., McWeeney, S., Moloshok, T. D., Moore, W., Nolan, G., Nolan, J., Nikolich-Zugich, J., Parrish, D., Purcell, B., Qian, Y., Selvaraj, B., Smith, C., Tchuvatkina, O., Wertheimer, A., Wilkinson, P., Wilson, C., Wood, J., Zigon, R., Scheuermann, R. H., and Brinkman, R. R. (2008). MIFlowCyt: the minimum information about a flow cytometry experiment. Cytometry A 73A, 926–930.
MIFlowCyt: the minimum information about a flow cytometry experiment.Crossref | GoogleScholarGoogle Scholar |

Matsuzaki, T., Tajika, Y., Tserentsoodol, N., Suzuki, T., Aoki, T., Hagiwara, H., and Takata, K. (2002). Aquaporins: a water channel family. Anat. Sci. Int. 77, 85–93.
Aquaporins: a water channel family.Crossref | GoogleScholarGoogle Scholar | 12418088PubMed |

Moretti, E., Terzuoli, G., Mazzi, L., Iacoponi, F., and Collodel, G. (2012). Immunolocalisation of aquaporin 7 in human sperm and its relationship with semen parameters. Syst. Biol. Reprod. Med. 58, 129–135.
Immunolocalisation of aquaporin 7 in human sperm and its relationship with semen parameters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XntFynsL8%3D&md5=58f33f743153e244674cdeb145aee781CAS | 22206455PubMed |

Nagy, S., Jansen, J., Topper, E. K., and Gadella, B. M. (2003). A triple-stain flow cytometric method to assess plasma- and acrosome-membrane integrity of cryopreserved bovine sperm immediately after thawing in presence of egg-yolk particles. Biol. Reprod. 68, 1828–1835.
A triple-stain flow cytometric method to assess plasma- and acrosome-membrane integrity of cryopreserved bovine sperm immediately after thawing in presence of egg-yolk particles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjt12ltLk%3D&md5=b94bad8cefddf0f9548d60373194a2d0CAS | 12606354PubMed |

Noiles, E. E., Mazur, P., Watson, P. F., Kleinhans, F. W., and Crister, J. K. (1993). Determination of water permeability for human spermatozoa and its activation energy. Biol. Reprod. 48, 99–109.
Determination of water permeability for human spermatozoa and its activation energy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXjs1Klsg%3D%3D&md5=ab046132f5c324270bcdb7c6f8acfe7bCAS | 8418921PubMed |

Perez, J., Soto, G., Alleva, K., Jozefkowicz, C., Amodeo, G., Prometeo, J., and Ayub, N. (2014). Prediction of aquaporin function by integrating evolutionary and functional analyses. J. Membr. Biol. 247, 107–125.

Petrunkina, A. M., Waberski, D., Bollwein, H., and Sieme, H. (2010). Identifying non-sperm particles during flow cytometric physiological assessment: a simple approach. Theriogenology 73, 995–1000.
Identifying non-sperm particles during flow cytometric physiological assessment: a simple approach.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3c3gsVejtQ%3D%3D&md5=6b3d1703f95a0e618a2d4e9304d4bdfeCAS | 20171719PubMed |

Pons-Rejraji, H., Brugnon, F., Sion, B., Maqdasy, S., Gouby, G., Pereira, B., Marceau, G., Gremeau, A. S., Drevet, J., Grizard, G., Janny, L., and Tauveron, I. (2014). Evaluation of atorvastatin efficacy and toxicity on spermatozoa, accessory glands and gonadal hormones of healthy men: a pilot prospective clinical trial. Reprod. Biol. Endocrinol. 12, 65.
Evaluation of atorvastatin efficacy and toxicity on spermatozoa, accessory glands and gonadal hormones of healthy men: a pilot prospective clinical trial.Crossref | GoogleScholarGoogle Scholar | 25016482PubMed |

Saito, K., Kageyama, Y., Okada, Y., Kawakami, S., Kihara, K., Ishibashi, K., and Sasaki, S. (2004). Localisation of aquaporin-7 in human testis and ejaculated sperm: possible involvement in maintenance of sperm quality. J. Urol. 172, 2073–2076.
Localisation of aquaporin-7 in human testis and ejaculated sperm: possible involvement in maintenance of sperm quality.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXps12js7o%3D&md5=6861bed022f0bbafc4b19844c3c3f7a8CAS | 15540792PubMed |

Sales, A. D., Lobo, C. H., Carvalho, A. A., Moura, A. A., and Rodrigues, A. P. R. (2013). Structure, function and localisation of aquaporins: their possible implications on gamete cryopreservation. Genet. Mol. Res. 12, 6718–6732.
Structure, function and localisation of aquaporins: their possible implications on gamete cryopreservation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXovV2nu7k%3D&md5=9f98d02490238cb48399a8ee0ab4938fCAS | 24391013PubMed |

Shannonhouse, J. L., Urbanski, H. F., Woo, S. L., Fong, L. A., Goddard, S. D., Lucas, W. F., Jones, E. R., Wu, C., and Morgan, C. (2014). Aquaporin-11 control of testicular fertility markers in Syrian hamsters. Mol. Cell. Endocrinol. 391, 1–9.
Aquaporin-11 control of testicular fertility markers in Syrian hamsters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXoslCru78%3D&md5=248a1c768c5fa57bcb76ba886fca44acCAS | 24791736PubMed |

Sidel, V. W., and Salomon, A. K. (1957). Entrance of water into human red blood cells under osmotic pressure gradient. J. Gen. Physiol. 41, 243–257.
Entrance of water into human red blood cells under osmotic pressure gradient.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG1cXjtV2ksA%3D%3D&md5=b626495b0c2dce3143efe1090bb358adCAS | 13475689PubMed |

Skowronski, M. T., Lebeck, J., Rojek, A., Praetorius, J., Fuchtbauer, E. M., Frokiaer, J., and Nielsen, S. (2007). AQP7 is localized in capillaries of adipose tissue, cardiac and striated muscle: implications in glycerol metabolism. Am. J. Physiol. Renal Physiol. 292, F956–F965.
AQP7 is localized in capillaries of adipose tissue, cardiac and striated muscle: implications in glycerol metabolism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjsVyksrw%3D&md5=ba49e8b25587cfc9c411f7bdbe5ca5b1CAS | 17077387PubMed |

Sohara, E., Ueda, O., Tachibe, T., Hani, T., Jishage, K., Rai, T., Sasaki, S., and Uchida, S. (2007). Morphologic and functional analysis of sperm and testes in aquaporin 7 knockout mice. Fertil. Steril. 87, 671–676.
Morphologic and functional analysis of sperm and testes in aquaporin 7 knockout mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXksVyltbk%3D&md5=95588b174a9564cfb89f839464a1c427CAS | 17123523PubMed |

Thoroddsen, A., Dahm-Kähler, P., Lind, A. K., Weijdegård, B., Lindenthal, B., Müller, J., and Brännström, M. (2011). The water permeability channels aquaporins 1–4 are differentially expressed in granulosa and theca cells of the preovulatory follicle during precise stages of human ovulation. J. Clin. Endocrinol. Metab. 96, 1021–1028.
The water permeability channels aquaporins 1–4 are differentially expressed in granulosa and theca cells of the preovulatory follicle during precise stages of human ovulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltF2qtLw%3D&md5=f689bc5dfe23090989c32515d01a1361CAS | 21252246PubMed |

Törnroth-Horsefield, S., Hedfalk, K., Fischer, G., Lindkvist-Petersson, K., and Richard, N. (2010). Structural insights into eukaryotic aquaporin regulation. FEBS Lett. 584, 2580–2588.
Structural insights into eukaryotic aquaporin regulation.Crossref | GoogleScholarGoogle Scholar | 20416297PubMed |

Vilagran, I., Castillo, J., Bonet, S., Sancho, S., Yeste, M., Estanyol, J. M., and Oliva, R. (2013). Acrosin-binding protein (ACRBP) and triosephosphate isomerase (TPI) are good markers to predict boar sperm freezing capacity. Theriogenology 80, 443–450.
Acrosin-binding protein (ACRBP) and triosephosphate isomerase (TPI) are good markers to predict boar sperm freezing capacity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpsV2rurg%3D&md5=10dc96dec7d511036865e72ad62c96e1CAS | 23768753PubMed |

Vilagran, I., Yeste, M., Sancho, S., Casas, I., Rivera Del Álamo, M. M., and Bonet, S. (2014). Relationship of sperm small heat-shock protein 10 and voltage-dependent anion channel 2 with semen freezability in boars. Theriogenology 82, 418–426.
Relationship of sperm small heat-shock protein 10 and voltage-dependent anion channel 2 with semen freezability in boars.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVWmtrnP&md5=3739b0be3ad191e632a11c6db950ecebCAS | 24933094PubMed |

Yang, B., Song, Y., Zhao, D., and Verkman, A. S. (2005). Phenotype analysis of aquaporin-8 null mice. Am. J. Physiol. Cell Physiol. 288, C1161–C1170.
Phenotype analysis of aquaporin-8 null mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktlOrsrY%3D&md5=c9e6de742fe27554b985137f97696184CAS | 15647389PubMed |

Yang, J. H., Yan, C. X., Chen, X. J., and Zhu, Y. S. (2011). Expression of aquaglyceroporins in epithelial ovarian tumours and their clinical significance. J. Int. Med. Res. 39, 702–711.
Expression of aquaglyceroporins in epithelial ovarian tumours and their clinical significance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1Shs7fO&md5=0271d9d30bc1d1506d691effcd50f1a7CAS | 21819701PubMed |

Yeste, M., Briz, M., Pinart, E., Sancho, S., Garcia-Gil, N., Badia, E., Bassols, J., Pruneda, A., Bussalleu, E., Casas, I., and Bonet, S. (2008). Boar spermatozoa and prostaglandin F2α. Quality of boar sperm after the addition of prostaglandin F2α to the short-term extender over cooling time. Anim. Reprod. Sci. 108, 180–195.
Boar spermatozoa and prostaglandin F. Quality of boar sperm after the addition of prostaglandin F2α to the short-term extender over cooling time.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVejtLnP&md5=da993e3dc8fec9ddbfe5ac6796819147CAS | 17897798PubMed |

Yeste, M., Flores, E., Estrada, E., Bonet, S., Rigau, T., and Rodríguez-Gil, J. E. (2013). Reduced glutathione and procaine hydrochloride protect the nucleoprotein structure of boar spermatozoa during freeze–thawing by stabilising disulfide bonds. Reprod. Fertil. Dev. 25, 1036–1050.
Reduced glutathione and procaine hydrochloride protect the nucleoprotein structure of boar spermatozoa during freeze–thawing by stabilising disulfide bonds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1Gms7rM&md5=76f528f8d3ab54b0cf4fc7c510ef567aCAS | 23089308PubMed |

Yeste, M., Estrada, E., Rivera Del Álamo, M. M., Bonet, S., Rigau, T., and Rodríguez-Gil, J. E. (2014). The increase in phosphorylation levels of serine residues of protein HSP70 during holding time at 17°C is concomitant with a higher cryotolerance of boar spermatozoa. PLoS ONE , .
The increase in phosphorylation levels of serine residues of protein HSP70 during holding time at 17°C is concomitant with a higher cryotolerance of boar spermatozoa.Crossref | GoogleScholarGoogle Scholar | 24603527PubMed |

Yeung, C. H. (2010). Aquaporins in spermatozoa and testicular germ cells: identification and potential role. Asian J. Androl. 12, 490–499.
Aquaporins in spermatozoa and testicular germ cells: identification and potential role.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotlSksrw%3D&md5=d68a20acea9d6942c2c7ca9ea6113839CAS | 20562895PubMed |

Yeung, C. H., and Cooper, T. G. (2010). Aquaporin AQP11 in the testis: molecular identity and association with the processing of residual cytoplasm of elongated spermatids. Reproduction 139, 209–216.
Aquaporin AQP11 in the testis: molecular identity and association with the processing of residual cytoplasm of elongated spermatids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXovVWlsw%3D%3D&md5=c76a146ce95c9656a04d511efd0a27e8CAS | 19812234PubMed |

Yeung, C. H., Callies, C., Rojek, A., Nielsen, S., and Cooper, T. G. (2009). Aquaporin isoforms involved in physiological volume regulation of murine spermatozoa. Biol. Reprod. 80, 350–357.
Aquaporin isoforms involved in physiological volume regulation of murine spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFOitbk%3D&md5=27b76d9d2169f284153d1455baa6fae4CAS | 18829704PubMed |

Zilli, L., Schiavone, R., Chauvigné, F., Cerdà, J., Storelli, C., and Vilella, S. (2009). Evidence for the involvement of aquaporins in sperm motility activation of the teleost gilthead sea bream (Sparus aurata). Biol. Reprod. 81, 880–888.
Evidence for the involvement of aquaporins in sperm motility activation of the teleost gilthead sea bream (Sparus aurata).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlWrtr%2FE&md5=ccd60ee4afeddf00c0f7a09b34741db9CAS | 19571262PubMed |