Relocalisation and activation of integrins induced rapidly by oestrogen via G-protein-coupled receptor 30 in mouse blastocysts
Ting Qu A , Shi-mao Zhang A , Lin-lin Yu A B , Sheng Zhang A , Dong-Zhi Yuan A , Qian Xu A , Jin-Hu Zhang A , Ya-ping He A and Li-min Yue A CA Department of Physiology, West China School of Preclinical and Forensic Medicine, Sichuan University, No. 17, Section 3 Renmin South Road, Chengdu 610041, China.
B Department of Infertility and Sterility, Chengdu Institute of Family Planning, No. 24, Dongchenggenxia Street, Chengdu 610031,China.
C Corresponding author. Email: yuelimin@scu.edu.cn
Reproduction, Fertility and Development 28(11) 1679-1685 https://doi.org/10.1071/RD14227
Submitted: 24 June 2014 Accepted: 21 March 2015 Published: 8 May 2015
Abstract
Integrins are the dominant and final adhesion molecules in the attachment process between the blastocysts and endometrium. It is necessary for oestrogen to rapidly activate mouse blastocysts so that they attach to the endometrial epithelium. Our previous study suggested that oestrogen can rapidly induce an increase in intracellular calcium in mouse blastocysts via G-protein-coupled receptor 30 (GPR30). Thus, we deduced that integrins may be involved in GPR30 mediation of the fast effect of oestrogen on mouse blastocysts in implantation. To prove our hypothesis, we used immunofluorescence staining and in vitro coculture of mouse blastocysts and endometrial epithelial cell line (EECs), Ishikawa cells, in the present study. We found that αv and β1 integrin clustered in mouse blastocysts, and that β3 integrin was relocalised to the apical membrane of blastocyst cells when embryos were treated with 1 μM 17β-estradiol (E2), 1 μM E2 conjugated to bovine serum albumin (E2-BSA) and 1 μM G-1, a specific GPR30 agonist, for 30 min respectively, whereas pretreatment with 1 μM G15, a specific GPR30 antagonist, and 5 μM 1,2-Bis(2-aminophenoxy)ethane-N,N,N′′,N′′-tetraacetic acid tetrakis (acetoxymethyl ester)(BAPTA/AM), a cellular Ca2+ chelator, blocked the localisation of integrins induced by oestrogen via GPR30 in mouse blastocyst cells. E2, E2-BSA and G-1 increased the fibronectin (FN)-binding activity of integrins in blastocysts, whereas G15 and BAPTA/AM blocked the activation of integrins induced by oestrogen via GPR30 in mouse blastocysts. Inhibition of integrins by Arg-Gly-Asp peptide in blastocysts resulted in their failure to adhere to EECs in vitro, even if oestrogen or G-1 was provided. Together, the results indicate the fast effect of oestrogen via the GPR30 membrane receptor further induces relocalisation and activation of integrins in mouse blastocysts, which play important roles in the adhesion of blastocysts to EECs.
Additional keyword: fibronectin.
References
Albers, A., Thie, M., Hohn, H. P., and Denker, H. W. (1995). Differential expression and localization of integrins and CD44 in the membrane domains of human uterine epithelial cells during the menstrual cycle. Acta Anat. (Basel) 153, 12–19.| Differential expression and localization of integrins and CD44 in the membrane domains of human uterine epithelial cells during the menstrual cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXpsFGmu7c%3D&md5=b6caea96466fc835abfea0e380976cc3CAS | 8560955PubMed |
Aplin, J. D. (1997). Adhesion molecules in implantation. Rev. Reprod. 2, 84–93.
| Adhesion molecules in implantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXktV2nurw%3D&md5=296a8fe3a25dd159af277b6cea73fd39CAS | 9414470PubMed |
Arnaout, M. A. (2002). Integrin structure: new twists and turns in dynamic cell adhesion. Immunol. Rev. 186, 125–140.
| Integrin structure: new twists and turns in dynamic cell adhesion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XotFeht7k%3D&md5=3c76523f5d04716ac134455d30f93497CAS | 12234368PubMed |
Basak, S., Dhar, R., and Das, C. (2002). Steroids modulate the expression of α4 integrin in mouse blastocysts and uterus during implantation. Biol. Reprod. 66, 1784–1789.
| Steroids modulate the expression of α4 integrin in mouse blastocysts and uterus during implantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjvFegu7g%3D&md5=f853deeb4dbcead41a873352ae4d3b01CAS | 12021063PubMed |
Bednar, B., Cunningham, M. E., McQueney, P. A., Egbertson, M. S., Askew, B. C., Bednar, R. A., Hartman, G. D., and Gould, R. J. (1997). Flow cytometric measurement of kinetic and equilibrium binding parameters of arginine-glycine-aspartic acid ligands in binding to glycoprotein IIb/IIIa on platelets. Cytometry 28, 58–65.
| Flow cytometric measurement of kinetic and equilibrium binding parameters of arginine-glycine-aspartic acid ligands in binding to glycoprotein IIb/IIIa on platelets.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjt1Glu7w%3D&md5=beb8966c0b6d6fc4accc98fc66a2e44aCAS | 9136756PubMed |
Bonini, J. A., Anderson, S. M., and Steiner, D. F. (1997). Molecular cloning and tissue expression of a novel orphan G protein-coupled receptor from rat lung. Biochem. Biophys. Res. Commun. 234, 190–193.
| Molecular cloning and tissue expression of a novel orphan G protein-coupled receptor from rat lung.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjt1ynsbw%3D&md5=0546ce07ebe1199e56131e17e8b48caeCAS | 9168987PubMed |
Calderwood, D. A. (2004). Integrin activation. J. Cell Sci. 117, 657–666.
| Integrin activation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhvVOntrc%3D&md5=ed5479f6b6426d5540ed71bd65b7b44dCAS | 14754902PubMed |
Campbell, S., Swann, H. R., Seif, M. W., Kimber, S. J., and Aplin, J. D. (1995). Cell adhesion molecules on the oocyte and preimplantation human embryo. Hum. Reprod. 10, 1571–1578.
| Cell adhesion molecules on the oocyte and preimplantation human embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXnt12hsro%3D&md5=14ce550dfe6d0a6b0a2a3f0e28b825ffCAS | 7593541PubMed |
Carman, C. V., and Springer, T. A. (2003). Integrin avidity regulation: are changes in affinity and conformation underemphasized? Curr. Opin. Cell Biol. 15, 547–556.
| Integrin avidity regulation: are changes in affinity and conformation underemphasized?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnslSqsLc%3D&md5=ca276b87e932bf8ecc61af50cfb39e20CAS | 14519389PubMed |
Carmeci, C., Thompson, D. A., Ring, H. Z., Francke, U., and Weigel, R. J. (1997). Identification of a gene (GPR30) with homology to the G-protein-coupled receptor superfamily associated with estrogen receptor expression in breast cancer. Genomics 45, 607–617.
| Identification of a gene (GPR30) with homology to the G-protein-coupled receptor superfamily associated with estrogen receptor expression in breast cancer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXnsVejsbo%3D&md5=90abc032baee04aa55ba548b14a75fabCAS | 9367686PubMed |
Chan, J. R., Hyduk, S. J., and Cybulsky, M. I. (2001). Chemoattractants induce a rapid and transient upregulation of monocyte α4 integrin affinity for vascular cell adhesion molecule 1 which mediates arrest: an early step in the process of emigration. J. Exp. Med. 193, 1149–1158.
| Chemoattractants induce a rapid and transient upregulation of monocyte α4 integrin affinity for vascular cell adhesion molecule 1 which mediates arrest: an early step in the process of emigration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjvVSju70%3D&md5=7058a39e4a2e507b78392362528df202CAS | 11369786PubMed |
Dominguez, F., Pellicer, A., and Simon, C. (2002). Paracrine dialogue in implantation. Mol. Cell. Endocrinol. 186, 175–181.
| Paracrine dialogue in implantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XitFaqtrY%3D&md5=6e282d0517070412d5ebcb74b92fea1bCAS | 11900893PubMed |
Hewitt, S. C., and Korach, K. S. (2002). Estrogen receptors: structure, mechanisms and function. Rev. Endocr. Metab. Disord. 3, 193–200.
| Estrogen receptors: structure, mechanisms and function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmslGgtbw%3D&md5=e4334b0f84fa785c7573416adfe52b28CAS | 12215714PubMed |
Hughes, P. E., and Pfaff, M. (1998). Integrin affinity modulation. Trends Cell Biol. 8, 359–364.
| Integrin affinity modulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlvVCjtr0%3D&md5=0349e0cf0c8c5e00aac566dbb97bf776CAS | 9728397PubMed |
Hyduk, S. J., Chan, J. R., Duffy, S. T., Chen, M., Peterson, M. D., Waddell, T. K., Digby, G. C., Szaszi, K., Kapus, A., and Cybulsky, M. I. (2007). Phospholipase C, calcium, and calmodulin are critical for α4β1 integrin affinity up-regulation and monocyte arrest triggered by chemoattractants. Blood 109, 176–184.
| Phospholipase C, calcium, and calmodulin are critical for α4β1 integrin affinity up-regulation and monocyte arrest triggered by chemoattractants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXivVyrtbk%3D&md5=6c4779eaeb176a5a2c60f3b4cd13e347CAS | 16960156PubMed |
Hyduk, S. J., Rullo, J., Cano, A. P., Xiao, H., Chen, M., Moser, M., and Cybulsky, M. I. (2011). Talin-1 and kindlin-3 regulate alpha4beta1 integrin-mediated adhesion stabilization, but not G protein-coupled receptor-induced affinity upregulation. J. Immunol. 187, 4360–4368.
| Talin-1 and kindlin-3 regulate alpha4beta1 integrin-mediated adhesion stabilization, but not G protein-coupled receptor-induced affinity upregulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1GmsrnO&md5=e41dbe511dd88cd3f678a34a15437b90CAS | 21911599PubMed |
Hynes, R. O. (2002). Integrins: bidirectional, allosteric signaling machines. Cell 110, 673–687.
| Integrins: bidirectional, allosteric signaling machines.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnsFKis70%3D&md5=83907c7a5597cae4e95396d4d549a441CAS | 12297042PubMed |
Illera, M. J., Cullinan, E., Gui, Y., Yuan, L., Beyler, S. A., and Lessey, B. A. (2000). Blockade of the αvβ3 integrin adversely affects implantation in the mouse. Biol. Reprod. 62, 1285–1290.
| Blockade of the αvβ3 integrin adversely affects implantation in the mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXisl2htLo%3D&md5=0810995770f80fab147ac2edb9ee0679CAS | 10775178PubMed |
Kaneko, Y., Day, M. L., and Murphy, C. R. (2011). Integrin β3 in rat blastocysts and epithelial cells is essential for implantation in vitro: studies with Ishikawa cells and small interfering RNA transfection. Hum. Reprod. 26, 1665–1674.
| Integrin β3 in rat blastocysts and epithelial cells is essential for implantation in vitro: studies with Ishikawa cells and small interfering RNA transfection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnvFantLo%3D&md5=a75cfe97f553b2b3f28207de735a682cCAS | 21531996PubMed |
Leitinger, B., McDowall, A., Stanley, P., and Hogg, N. (2000). The regulation of integrin function by Ca2+. Biochim. Biophys. Acta 1498, 91–98.
| The regulation of integrin function by Ca2+.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXosFCjsr8%3D&md5=83e10079276b830c485be0f5e61ddcf7CAS | 11108953PubMed |
Lessey, B. A. (1997). Integrins and the endometrium: new markers of uterine receptivity. Ann. N. Y. Acad. Sci. 828, 111–122.
| Integrins and the endometrium: new markers of uterine receptivity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmvFyksL0%3D&md5=1efa8eed99c8453c22ce9f732c2ca028CAS | 9329829PubMed |
Liu, Z., and Armant, D. R. (2004). Lysophosphatidic acid regulates murine blastocyst development by transactivation of receptors for heparin-binding EGF-like growth factor. Exp. Cell Res. 296, 317–326.
| Lysophosphatidic acid regulates murine blastocyst development by transactivation of receptors for heparin-binding EGF-like growth factor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXktVKgsbY%3D&md5=6c76e85cac6299b600cb0952f4a8fe11CAS | 15149861PubMed |
Liu, S., Calderwood, D. A., and Ginsberg, M. H. (2000). Integrin cytoplasmic domain-binding proteins. J. Cell Sci. 113, 3563–3571.
| 1:CAS:528:DC%2BD3cXosVKgtLY%3D&md5=2de194c3b4f8b1e665fde7ac00c31fc5CAS | 11017872PubMed |
Longhurst, C. M., and Jennings, L. K. (1998). Integrin-mediated signal transduction. Cell. Mol. Life Sci. 54, 514–526.
| Integrin-mediated signal transduction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXktFKktrg%3D&md5=e962a538e5f416047b29609aa48ac546CAS | 9676571PubMed |
Norman, A. W., Mizwicki, M. T., and Norman, D. P. (2004). Steroid-hormone rapid actions, membrane receptors and a conformational ensemble model. Nat. Rev. Drug Discov. 3, 27–41.
| Steroid-hormone rapid actions, membrane receptors and a conformational ensemble model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpvFKquw%3D%3D&md5=3d501f3c97d580fd6ec3e81e27bdb3d2CAS | 14708019PubMed |
Pang, Y., Dong, J., and Thomas, P. (2008). Estrogen signaling characteristics of Atlantic croaker G protein-coupled receptor 30 (GPR30) and evidence it is involved in maintenance of oocyte. Endocrinology 149, 3410–3426.
| Estrogen signaling characteristics of Atlantic croaker G protein-coupled receptor 30 (GPR30) and evidence it is involved in maintenance of oocyte.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXot1amu7c%3D&md5=2d3a545feae1b24d40843a998fceeb69CAS | 18420744PubMed |
Paria, B. C., Huet-Hudson, Y. M., and Dey, S. K. (1993). Blastocyst’s state of activity determines the ‘window’ of implantation in the receptive mouse uterus. Proc. Natl Acad. Sci. USA 90, 10 : 159–10 162.
| Blastocyst’s state of activity determines the ‘window’ of implantation in the receptive mouse uterus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXot1Y%3D&md5=12456985ecea8d7afce6defba31b4079CAS |
Paria, B. C., Reese, J., Das, S. K., and Dey, S. K. (2002). Deciphering the cross-talk of implantation: advances and challenges. Science 296, 2185–2188.
| Deciphering the cross-talk of implantation: advances and challenges.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XkvFGhsbs%3D&md5=39d9bf2d170d151027be169cb6654cf7CAS | 12077405PubMed |
Quinn, J. A., Graeber, T., Frackelton, A. R., Kim, M., Schwarzbauer, J. E., and Filardo, E. J. (2009). Coordinate regulation of estrogen–mediated fibronectin matrix assembly and epidermal growth factor receptor transactivation by the G protein-coupled receptor, GPR30. Mol. Endocrinol. 23, 1052–1064.
| Coordinate regulation of estrogen–mediated fibronectin matrix assembly and epidermal growth factor receptor transactivation by the G protein-coupled receptor, GPR30.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotlGju70%3D&md5=4ed7d30a5162f2a7bf44ca10828463f5CAS | 19342448PubMed |
Sampath, R., Gallagher, P. J., and Pavalko, F. M. (1998). Cytoskeletal interactions with the leukocyte integrin beta2 cytoplasmic tail. Activation-dependent regulation of associations with talin and alpha-actinin. J. Biol. Chem. 273, 33 588–33 594.
| Cytoskeletal interactions with the leukocyte integrin beta2 cytoplasmic tail. Activation-dependent regulation of associations with talin and alpha-actinin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhtVQ%3D&md5=3e1b373e2eadcaeed9b0e7cc38ba1411CAS |
Schultz, J. F., Mayernik, L., Rout, U. K., and Armant, D. R. (1997). Integrin trafficking regulates adhesion to fibronectin during differentiation of mouse peri-implantation blastocysts. Dev. Genet. 21, 31–43.
| Integrin trafficking regulates adhesion to fibronectin during differentiation of mouse peri-implantation blastocysts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmt1Sktbo%3D&md5=01d0e7dc96fe6553f6c46f52307f33c7CAS | 9291578PubMed |
Shiotani, M., Noda, Y., and Mori, T. (1993). Embryo-dependent induction of uterine receptivity assessed by an in vitro model of implantation in mice. Biol. Reprod. 49, 794–801.
| Embryo-dependent induction of uterine receptivity assessed by an in vitro model of implantation in mice.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2c%2Fjt1yiuw%3D%3D&md5=b5a6edb2b470b61a8c7ba019558d2116CAS | 8218644PubMed |
Stewart, M., and Hogg, N. (1996). Regulation of leukocyte integrin function: affinity vs. avidity. J. Cell. Biochem. 61, 554–561.
| Regulation of leukocyte integrin function: affinity vs. avidity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xkt1Wqu7o%3D&md5=a7ebf715cb3231fcd19a2eb5047b1f63CAS | 8806078PubMed |
Sutherland, A. E., Calarco, P. G., and Damsky, C. H. (1993). Developmental regulation of integrin expression at the time of implantation in the mouse embryo. Development 119, 1175–1186.
| 1:CAS:528:DyaK2cXitFemsLk%3D&md5=86dc26296e43cbdc368d5778bf8968efCAS | 8306881PubMed |
Takagi, J., Petre, B. M., Walz, T., and Springer, T. A. (2002). Global conformational rearrangements in integrin extracellular domains in outside-in and inside-out signaling. Cell 110, 599–611.
| Global conformational rearrangements in integrin extracellular domains in outside-in and inside-out signaling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XntlOhsbs%3D&md5=e99d659f9823f0943e952886418e79f1CAS | 12230977PubMed |
Wang, J., Rout, U. K., Bagchi, I. C., and Armant, D. R. (1998). Expression of calcitonin receptors in mouse preimplantation embryos and their function in the regulation of blastocyst differentiation by calcitonin. Development 125, 4293–4302.
| 1:CAS:528:DyaK1cXotVaqs7s%3D&md5=4333949c9e92084672ec178ac8866e00CAS | 9753683PubMed |
Wang, J., Mayernik, L., and Armant, D. R. (2007). Trophoblast adhesion of the peri-implantation mouse blastocyst is regulated by integrin signaling that targets phospholipase C. Dev. Biol. 302, 143–153.
| Trophoblast adhesion of the peri-implantation mouse blastocyst is regulated by integrin signaling that targets phospholipase C.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXntlOmtg%3D%3D&md5=cbbd58aaecccdbffbc207b0307589a5dCAS | 17027741PubMed |
Woodside, D. G., Liu, S., and Ginsberg, M. H. (2001). Integrin activation. Thromb. Haemost. 86, 316–323.
| 1:CAS:528:DC%2BD3MXlsVektrw%3D&md5=3af3781310192267cacb3335ce81f08fCAS | 11487020PubMed |
Xiong, J. P., Stehle, T., Goodman, S. L., and Arnaout, M. A. (2003). New insights into the structural basis of integrin activation. Blood 102, 1155–1159.
| New insights into the structural basis of integrin activation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmsFWksL8%3D&md5=335861e197729b0aa6a1599a75bc134bCAS | 12714499PubMed |
Yelian, F. D., Yang, Y., Hirata, J. D., Schultz, J. F., and Armant, D. R. (1995). Molecular interactions between fibronectin and integrins during mouse blastocyst outgrowth. Mol. Reprod. Dev. 41, 435–448.
| Molecular interactions between fibronectin and integrins during mouse blastocyst outgrowth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXnt1Wrsb8%3D&md5=b3165bc3e520fff56da8611d5d6947a2CAS | 7576611PubMed |
Yoshinaga, K., and Adams, C. E. (1966). Delayed implantation in spayed, progesterone-treated adult mouse. J. Reprod. Fertil. 12, 593–595.
| Delayed implantation in spayed, progesterone-treated adult mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2sXot1Oruw%3D%3D&md5=dc874591a673948b39393bae35a2b189CAS | 5928277PubMed |
Yu, L. L., Zhang, J. H., He, Y. P., Huang, P., and Yue, L. M. (2009). Fast action of estrogen on intracellular calcium in dormant mouse blastocyst and its possible mechanism. Fertil. Steril. 91, 611–615.
| Fast action of estrogen on intracellular calcium in dormant mouse blastocyst and its possible mechanism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnsF2ntrw%3D&md5=ca4eaf61dd34224adcf811c820770ee0CAS | 18295211PubMed |
Yu, L. L., Qu, T., Zhang, S. M., Yuan, D. Z., Xu, Q., Zhang, J. H., He, Y. P., and Yue, L. M (2015). GPR30 mediates the fast effect of estrogen on mouse blastocyst and its role in implantation. Reprod. Sci. , .
| 25820689PubMed |