Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Long term-cultured and cryopreserved primordial germ cells from various chicken breeds retain high proliferative potential and gonadal colonisation competency

Céline Tonus A , Karine Cloquette A D , Fabien Ectors B , Joëlle Piret C , Laurent Gillet E , Nadine Antoine C , Daniel Desmecht D , Alain Vanderplasschen E , Olivier Waroux A and Luc Grobet A F
+ Author Affiliations
- Author Affiliations

A Embryology Unit, FARAH (Fundamental and Applied Research in Animal Health) Research Center and Faculty of Veterinary Medicine, University of Liège, 20 Boulevard de Colonster, 4000 Liège, Belgium.

B Transgenic facility, FARAH Research Center and Faculty of Veterinary Medicine, University of Liège, 20 Boulevard de Colonster, 4000 Liège, Belgium.

C Histology Unit, FARAH Research Center and Faculty of Veterinary Medicine, University of Liège, 20 Boulevard de Colonster, 4000 Liège, Belgium.

D Pathology Unit, FARAH Research Center and Faculty of Veterinary Medicine, University of Liège, 20 Boulevard de Colonster, 4000 Liège, Belgium.

E Immunology and Vaccinology Unit, FARAH Research Center and Faculty of Veterinary Medicine, University of Liège, 20 Boulevard de Colonster, 4000 Liège, Belgium.

F Corresponding author. Email: lgrobet@ulg.ac.be

Reproduction, Fertility and Development 28(5) 628-639 https://doi.org/10.1071/RD14194
Submitted: 7 June 2014  Accepted: 31 August 2014   Published: 9 October 2014

Abstract

When derived from chicken embryos, avian primordial germ cells (PGCs) have been reported to keep their germline-specific properties and proliferative potential even after long-term culture and genetic modifications. Few teams to date have reported such long-term expansion and engineering without differentiation of primary avian PGCs’ cultures. We have developed original and robust methods that allow more than 1 year culture, expansion and cryobanking of primary cultures of PGCs without obvious effects on their biological properties, including their ability to colonise the genital ridges. Overall, 38% of embryonic samples gave rise to PGCs lines derived from three commercial layers and two Belgian endangered breeds. The lines kept their proliferative potential and their characteristic PGCs phenotype after 20 months in culture, whether or not interrupted by a cryopreservation step. All the resulting lines appeared devoid of female cells, although initially pooled from male and female embryos. Labelled PGCs from 12 long-term cultured lines colonised the genital ridges of recipient embryos. Thus, this procedure allows derivation, long-term expansion and cryobanking of primary cultures of PGCs without obvious changes to their original characteristics, providing an alternative access to applications in avian biotechnology and preservation of genetic resources.

Additional keywords: avian PGCs characterization, germplasm-based breed preservation.


References

Abrahamsen, J. F., Bakken, A. M., and Bruserud, O. (2002). Cryopreserving human peripheral blood progenitor cells with 5-percent rather than 10-percent DMSO results in less apoptosis and necrosis in CD34+ cells. Transfusion 42, 1573–1580.
Cryopreserving human peripheral blood progenitor cells with 5-percent rather than 10-percent DMSO results in less apoptosis and necrosis in CD34+ cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkslWmtg%3D%3D&md5=8a4d93f73e2e8abeb83f8202524b2a74CAS | 12473137PubMed |

Aramaki, S., Sato, F., Kato, T., Soh, T., Kato, Y., and Hattori, M. (2007). Molecular cloning and expression of dead end homologue in chicken primordial germ cells. Cell Tissue Res. 330, 45–52.
Molecular cloning and expression of dead end homologue in chicken primordial germ cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVGmsbnF&md5=e5fb90719527aa8084fc2b6fc2f36f63CAS | 17610087PubMed |

Aye, M., Di Giorgio, C., De Mo, M., Botta, A., Perrin, J., and Courbiere, B. (2010). Assessment of the genotoxicity of three cryoprotectants used for human oocyte vitrification: dimethyl sulfoxide, ethylene glycol and propylene glycol. Food Chem. Toxicol. 48, 1905–1912.
Assessment of the genotoxicity of three cryoprotectants used for human oocyte vitrification: dimethyl sulfoxide, ethylene glycol and propylene glycol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXntFSiuro%3D&md5=45f91cc079fc13d2ee5f90a210562490CAS | 20433889PubMed |

Bodnar, A. G., Ouellette, M., Frolkis, M., Holt, S. E., Chiu, C. P., Morin, G. B., Harley, C. B., Shay, J. W., Lichtsteiner, S., and Wright, W. E. (1998). Extension of life-span by introduction of telomerase into normal human cells. Science 279, 349–352.
Extension of life-span by introduction of telomerase into normal human cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmtlOjug%3D%3D&md5=efdbcc1b98ecba958c5b5344a1d00650CAS | 9454332PubMed |

Cañón, S., Herranz, C., and Manzanares, M. (2006). Germ cell restricted expression of chick Nanog. Dev. Dyn. 235, 2889–2894.
Germ cell restricted expression of chick Nanog.Crossref | GoogleScholarGoogle Scholar | 16921504PubMed |

Carlin, R., Davis, D., Weiss, M., Schultz, B., and Troyer, D. (2006). Expression of early transcription factors Oct-4, Sox-2 and Nanog by porcine umbilical cord (PUC) matrix cells. Reprod. Biol. Endocrinol. 4, 8.
Expression of early transcription factors Oct-4, Sox-2 and Nanog by porcine umbilical cord (PUC) matrix cells.Crossref | GoogleScholarGoogle Scholar | 16460563PubMed |

Choi, J. W., Kim, S., Kim, T. M., Kim, Y. M., Seo, H. W., Park, T. S., Jeong, J. W., Song, G., and Han, J. Y. (2010). Basic fibroblast growth factor activates MEK/ERK cell signaling pathway and stimulates the proliferation of chicken primordial germ cells. PLoS ONE 5, e12968.
Basic fibroblast growth factor activates MEK/ERK cell signaling pathway and stimulates the proliferation of chicken primordial germ cells.Crossref | GoogleScholarGoogle Scholar | 20886037PubMed |

Clinton, M., Haines, L., Belloir, B., and McBride, D. (2001). Sexing chick embryos: a rapid and simple protocol. Br. Poult. Sci. 42, 134–138.
Sexing chick embryos: a rapid and simple protocol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjsFSgu7g%3D&md5=e7eecafd0b5edb0fa2877dfd0b148e19CAS | 11337963PubMed |

Glick, B., Chang, T. S., and Jaap, R. G. (1956). The Bursa of Fabricius and antibody production. Poult. Sci. 35, 224–225.
The Bursa of Fabricius and antibody production.Crossref | GoogleScholarGoogle Scholar |

Hamburger, V., and Hamilton, H. L. (1951). A series of normal stages in the development of the chick embryo. J. Morphol. 88, 49–92.
A series of normal stages in the development of the chick embryo.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaG3M%2FpvV2jtQ%3D%3D&md5=0478eb0e715451a08379b236ed07432eCAS | 24539719PubMed |

Han, J. Y., Park, T. S., Hong, Y. H., Jeong, D. K., Kim, J. N., Kim, K. D., and Lim, J. M. (2002). Production of germline chimeras by transfer of chicken gonadal primordial germ cells maintained in vitro for an extended period. Theriogenology 58, 1531–1539.
Production of germline chimeras by transfer of chicken gonadal primordial germ cells maintained in vitro for an extended period.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xms1yntrw%3D&md5=76238e4a61e1870c738af4f3b1c1f29cCAS |

Inzunza, J., Sahlen, S., Holmberg, K., Stromberg, A. M., Teerijoki, H., Blennow, E., Hovatta, O., and Malmgren, H. (2004). Comparative genomic hybridization and karyotyping of human embryonic stem cells reveals the occurrence of an isodicentric X chromosome after long-term cultivation. Mol. Hum. Reprod. 10, 461–466.
Comparative genomic hybridization and karyotyping of human embryonic stem cells reveals the occurrence of an isodicentric X chromosome after long-term cultivation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjvVSju7s%3D&md5=a4cf62ebd8c3e8f247c49df00c173057CAS | 15044603PubMed |

Kang, S. J., Choi, J. W., Kim, S. Y., Park, K. J., Kim, T. M., Lee, Y. M., Kim, H., Lim, J. M., and Han, J. Y. (2008). Reproduction of wild birds via interspecies germ cell transplantation. Biol. Reprod. 79, 931–937.
Reproduction of wild birds via interspecies germ cell transplantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlSrtLvF&md5=c3d55bb638cd08e1aa45fd9c94ea63eeCAS | 18685127PubMed |

Karagenç, L., Cinnamon, Y., Ginsburg, M., and Petitte, J. N. (1996). Origin of primordial germ cells in the prestreak chick embryo. Dev. Genet. 19, 290–301.
Origin of primordial germ cells in the prestreak chick embryo.Crossref | GoogleScholarGoogle Scholar | 9023982PubMed |

Kim, J. N., Park, T. S., Park, S. H., Park, K. J., Kim, T. M., Lee, S. K., Lim, J. M., and Han, J. Y. (2010). Migration and proliferation of intact and genetically modified primordial germ cells and the generation of a transgenic chicken. Biol. Reprod. 82, 257–262.
Migration and proliferation of intact and genetically modified primordial germ cells and the generation of a transgenic chicken.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVSns7c%3D&md5=460cd5181589fb596f5394a4045c9dbeCAS | 19710509PubMed |

Kito, G., Aramaki, S., Tanaka, K., Soh, T., Yamauchi, N., and Hattori, M. A. (2010). Temporal and spatial differential expression of chicken germline-specific proteins cDAZL, CDH and CVH during gametogenesis. J. Reprod. Dev. 56, 341–346.
Temporal and spatial differential expression of chicken germline-specific proteins cDAZL, CDH and CVH during gametogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXps1ektLw%3D&md5=07b8c0684909ddd7061014ac89d24469CAS | 20332590PubMed |

Lavial, F., Acloque, H., Bachelard, E., Nieto, M. A., Samarut, J., and Pain, B. (2009). Ectopic expression of Cvh (chicken vasa homologue) mediates the reprogramming of chicken embryonic stem cells to a germ cell fate. Dev. Biol. 330, 73–82.
Ectopic expression of Cvh (chicken vasa homologue) mediates the reprogramming of chicken embryonic stem cells to a germ cell fate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtVaqt7k%3D&md5=9f0abeb2621d197ce2c18875082f7cc9CAS | 19324033PubMed |

Le Douarin, N., Dieterlen‐Lièvre, F., Creuzet, S., and Teillet, M. A. (2008). Quail–chick transplantations. In ‘Avian Embryology. Vol. 87.’ 2nd edn. (Ed. M. Bronner-Fraser.) pp. 19–58. (Academic Press: London.)

Leighton, P. A., van de Lavoir, M.-C., Diamond, J. H., Xia, C., and Etches, R. J. (2008). Genetic modification of primordial germ cells by gene trapping, gene targeting, and phiC31 integrase. Mol. Reprod. Dev. 75, 1163–1175.
Genetic modification of primordial germ cells by gene trapping, gene targeting, and phiC31 integrase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXntFWgt7c%3D&md5=d70343cd9c5bdece44e85dbe39700414CAS | 18213680PubMed |

Liu, J., Song, Y., Cheng, K. M., and Silversides, F. G. (2010). Production of donor-derived offspring from cryopreserved ovarian tissue in Japanese quail (Coturnix japonica). Biol. Reprod. 83, 15–19.
Production of donor-derived offspring from cryopreserved ovarian tissue in Japanese quail (Coturnix japonica).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotlWqt7c%3D&md5=7b9aae50573781f7c7e1666bdcd97474CAS | 20237335PubMed |

Liu, C., Khazanehdari, K. A., Baskar, V., Saleem, S., Kinne, J., Wernery, U., and Chang, I. K. (2012). Production of chicken progeny (Gallus gallus domesticus) from interspecies germline chimeric duck (Anas domesticus) by primordial germ cell transfer. Biol. Reprod. 86, 101.
Production of chicken progeny (Gallus gallus domesticus) from interspecies germline chimeric duck (Anas domesticus) by primordial germ cell transfer.Crossref | GoogleScholarGoogle Scholar | 22190706PubMed |

Long, J. A., Bongalhardo, D. C., Pelaez, J., Saxena, S., Settar, P., O’Sullivan, N. P., and Fulton, J. E. (2010). Rooster semen cryopreservation: effect of pedigree line and male age on postthaw sperm function. Poult. Sci. 89, 966–973.
Rooster semen cryopreservation: effect of pedigree line and male age on postthaw sperm function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmtVSht74%3D&md5=ee07e6299ad99348eb6af48f1f6a5c99CAS | 20371849PubMed |

Macdonald, J., Glover, J. D., Taylor, L., Sang, H. M., and McGrew, M. J. (2010). Characterisation and germline transmission of cultured avian primordial germ cells. PLoS ONE 5, e15518.
Characterisation and germline transmission of cultured avian primordial germ cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFaqu7bE&md5=6900aa72963777a39d0bd2751867f631CAS | 21124737PubMed |

Macdonald, J., Taylor, L., Sherman, A., Kawakami, K., Takahashi, Y., Sang, H. M., and McGrew, M. J. (2012). Efficient genetic modification and germ-line transmission of primordial germ cells using piggyBac and Tol2 transposons. Proc. Natl Acad. Sci. USA 109, E1466–E1472.
Efficient genetic modification and germ-line transmission of primordial germ cells using piggyBac and Tol2 transposons.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XovF2ns7c%3D&md5=7a478db37bc13f49b8bfef83101907f9CAS | 22586100PubMed |

Mahapatra, P. S., and Bag, S. (2014). Reprogramming of buffalo (Bubalus bubalis) foetal fibroblasts with avian egg extract for generation of pluripotent stem cells. Res. Vet. Sci. 96, 292–298.
Reprogramming of buffalo (Bubalus bubalis) foetal fibroblasts with avian egg extract for generation of pluripotent stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXjsVOguro%3D&md5=2d27c206f0e94c2180db9a8b453a87f2CAS | 24602917PubMed |

Moore, D. T., Purdy, P. H., and Blackburn, H. D. (2006). A method for cryopreserving chicken primordial germ cells. Poult. Sci. 85, 1784–1790.
A method for cryopreserving chicken primordial germ cells.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28rotlCnsw%3D%3D&md5=595234875f49577b82d9056a3bf6b60eCAS | 17012169PubMed |

Motono, M., Ohashi, T., Nishijima, K., and Iijima, S. (2008). Analysis of chicken primordial germ cells. Cytotechnology 57, 199–205.
Analysis of chicken primordial germ cells.Crossref | GoogleScholarGoogle Scholar | 19003166PubMed |

Mozdziak, P. E., Angerman-Stewart, J., Rushton, B., Pardue, S. L., and Petitte, J. N. (2005). Isolation of chicken primordial germ cells using fluorescence-activated cell sorting. Poult. Sci. 84, 594–600.
Isolation of chicken primordial germ cells using fluorescence-activated cell sorting.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2M3htVKlsg%3D%3D&md5=dc7f6ac9b2ea19f81f03a68b0480aeaaCAS | 15844816PubMed |

Murphy, J. B. (1916). The effect of adult chicken organ grafts on the chick embryo. J. Exp. Med. 24, 1–5.
The effect of adult chicken organ grafts on the chick embryo.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3crhvFWgsQ%3D%3D&md5=a825f931a3c6f906512456fbfc1eaed0CAS | 19868024PubMed |

Naeemipour, M., Dehghani, H., Bassami, M., and Bahrami, A. (2013). Expression dynamics of pluripotency genes in chicken primordial germ cells before and after colonization of the genital ridges. Mol. Reprod. Dev. 80, 849–861.
Expression dynamics of pluripotency genes in chicken primordial germ cells before and after colonization of the genital ridges.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1Srs7zM&md5=45d32ba032f9db5d406d1ff5efc00e00CAS | 23877993PubMed |

Naito, M., Harumi, T., and Kuwana, T. (2010). Long term in vitro culture of chicken primordial germ cells isolated from embryonic blood and incorporation into germline of recipient embryo. J. Poult. Sci. 47, 57–64.
Long term in vitro culture of chicken primordial germ cells isolated from embryonic blood and incorporation into germline of recipient embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXis1ajsrs%3D&md5=92c141aff8c03e99024f3321d8176f92CAS |

Nakamura, Y., Usui, F., Miyahara, D., Mori, T., Ono, T., Takeda, K., Nirasawa, K., Kagami, H., and Tagami, T. (2010). Efficient system for preservation and regeneration of genetic resources in chicken: concurrent storage of primordial germ cells and live animals from early embryos of a rare indigenous fowl (Gifujidori). Reprod. Fertil. Dev. 22, 1237–1246.
Efficient system for preservation and regeneration of genetic resources in chicken: concurrent storage of primordial germ cells and live animals from early embryos of a rare indigenous fowl (Gifujidori).Crossref | GoogleScholarGoogle Scholar | 20883649PubMed |

Park, T. S., and Han, J. Y. (2012). piggyBac transposition into primordial germ cells is an efficient tool for transgenesis in chickens. Proc. Natl Acad. Sci. USA 109, 9337–9341.
piggyBac transposition into primordial germ cells is an efficient tool for transgenesis in chickens.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xptlaiurw%3D&md5=bfd40a790f5c8a6e7f7f685682f96d38CAS | 22645326PubMed |

Petitte, J. N., and Mozdziak, P. E. (2007). The incredible, edible, and therapeutic egg. Proc. Natl Acad. Sci. USA 104, 1739–1740.
The incredible, edible, and therapeutic egg.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitVaqur0%3D&md5=c78e2a2bccd77f505db62f62a772eb75CAS | 17272493PubMed |

Qu, Y., Mao, M., Li, X., Zhang, L., Huang, X., Yang, C., Zhao, F., Xiong, Y., and Mu, D. (2008). Enhanced migration and CXCR4 over-expression in fibroblasts with telomerase reconstitution. Mol. Cell. Biochem. 313, 45–52.
Enhanced migration and CXCR4 over-expression in fibroblasts with telomerase reconstitution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtlSru7c%3D&md5=7acccf43db81ce7f9d0c92573475a88eCAS | 18363039PubMed |

Schusser, B., Collarini, E. J., Yi, H., Izquierdo, S. M., Fesler, J., Pedersen, D., Klasing, K. C., Kaspers, B., Harriman, W. D., van de Lavoir, M. C., Etches, R. J., and Leighton, P. A. (2013). Immunoglobulin knockout chickens via efficient homologous recombination in primordial germ cells. Proc. Natl Acad. Sci. USA 110, 20 170–20 175.
Immunoglobulin knockout chickens via efficient homologous recombination in primordial germ cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFKmsL7E&md5=e3a56cb36ae05eec8a3fcc79335f5001CAS |

Setioko, A. R., Tagami, T., Tase, H., Nakamura, Y., Takeda, K., and Nirasawa, K. (2007). Cryopreservation of primordial germ cells (PGCs) from White Leghorn embryos using commercial cryoprotectants. J. Poult. Sci. 44, 73–77.
Cryopreservation of primordial germ cells (PGCs) from White Leghorn embryos using commercial cryoprotectants.Crossref | GoogleScholarGoogle Scholar |

Song, Y., Duraisamy, S., Ali, J., Kizhakkayil, J., Jacob, V. D., Mohammed, M. A., Eltigani, M. A., Amisetty, S., Shukla, M. K., Etches, R. J., and de Lavoir, M. C. (2014). Characteristics of long-term cultures of avian primordial germ cells and gonocytes. Biol. Reprod. 90, 15.
Characteristics of long-term cultures of avian primordial germ cells and gonocytes.Crossref | GoogleScholarGoogle Scholar | 24337317PubMed |

Stebler, J., Spieler, D., Slanchev, K., Molyneaux, K. A., Richter, U., Cojocaru, V., Tarabykin, V., Wylie, C., Kessel, M., and Raz, E. (2004). Primordial germ cell migration in the chick and mouse embryo: the role of the chemokine SDF-1/CXCL12. Dev. Biol. 272, 351–361.
Primordial germ cell migration in the chick and mouse embryo: the role of the chemokine SDF-1/CXCL12.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmt1CjsLw%3D&md5=54fe848c90d403bbd9f674d64b757d5bCAS | 15282153PubMed |

Sugawara, A., Goto, K., Sotomaru, Y., Sofuni, T., and Ito, T. (2006). Current status of chromosomal abnormalities in mouse embryonic stem cell lines used in Japan. Comp. Med. 56, 31–34.
| 1:CAS:528:DC%2BD28XhslCgtbs%3D&md5=ecff108bfc2fc830c96ad04fdb3964b1CAS | 16521857PubMed |

Swanberg, S. E., and Delany, M. E. (2005). Differential expression of genes associated with telomere length homeostasis and oncogenesis in an avian model. Mech. Ageing Dev. 126, 1060–1070.
Differential expression of genes associated with telomere length homeostasis and oncogenesis in an avian model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpvFeitr8%3D&md5=ee3f69c45b766529c5c6ffb8a4e32578CAS | 15922407PubMed |

Swanberg, S. E., Payne, W. S., Hunt, H. D., Dodgson, J. B., and Delany, M. E. (2004). Telomerase activity and differential expression of telomerase genes and c-myc in chicken cells in vitro. Dev. Dyn. 231, 14–21.
Telomerase activity and differential expression of telomerase genes and c-myc in chicken cells in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXns1Ggs7w%3D&md5=57663d53c199b30aff858d92d273f9b2CAS | 15305283PubMed |

Tsunekawa, N., Naito, M., Sakai, Y., Nishida, T., and Noce, T. (2000). Isolation of chicken vasa homolog gene and tracing the origin of primordial germ cells. Development 127, 2741–2750.
| 1:CAS:528:DC%2BD3cXkslOrs78%3D&md5=2e2a3f18742822df661d5f21e8764be0CAS | 10821771PubMed |

van de Lavoir, M. C., and Mather-Love, C. (2006). Avian embryonic stem cells. Methods Enzymol. 418, 38–64.
Avian embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtFKisbc%3D&md5=a9988cd588ba2ec00fae1c42da809092CAS | 17141028PubMed |

van de Lavoir, M.-C., Diamond, J. H., Leighton, P. A., Mather-Love, C., Heyer, B. S., Bradshaw, R., Kerchner, A., Hooi, L. T., Gessaro, T. M., Swanberg, S. E., Delany, M. E., and Etches, R. J. (2006). Germline transmission of genetically modified primordial germ cells. Nature 441, 766–769.
Germline transmission of genetically modified primordial germ cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XltlKqu78%3D&md5=f262a7e5d15e1436bb841a82045f4a29CAS | 16760981PubMed |

van de Lavoir, M. C., Collarini, E. J., Leighton, P. A., Fesler, J., Lu, D. R., Harriman, W. D., Thiyagasundaram, T. S., and Etches, R. J. (2012). Interspecific germline transmission of cultured primordial germ cells. PLoS ONE 7, e35664.
Interspecific germline transmission of cultured primordial germ cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XotVWgsb0%3D&md5=8803450876e645224d3cf31a6a5e7781CAS | 22629301PubMed |

Wang, Y., Hou, L., Li, C., Guan, W., Chen, L., Li, X., Yue, W., and Ma, Y. (2010). Isolation, culture and biological characteristics of primordial germ cells from Beijing fatty chicken. J. Reprod. Dev. 56, 303–308.
Isolation, culture and biological characteristics of primordial germ cells from Beijing fatty chicken.Crossref | GoogleScholarGoogle Scholar | 20228615PubMed |

Yadav, P. S., Mann, A., Singh, J., Kumar, D., Sharma, R. K., and Singh, I. (2012). Buffalo (Bubalus bubalis) fetal skin derived fibroblast cells exhibit characteristics of stem cells. Agric. Res. 1, 175–182.
Buffalo (Bubalus bubalis) fetal skin derived fibroblast cells exhibit characteristics of stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslOlur7F&md5=8b3f67be08d3fc6261a5e864d66e06d2CAS |

Yusuf, F., Rehimi, R., Dai, F., and Brand-Saberi, B. (2005). Expression of chemokine receptor CXCR4 during chick embryo development. Anat. Embryol. (Berl.) 210, 35–41.
Expression of chemokine receptor CXCR4 during chick embryo development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXps1alsbo%3D&md5=8532558dd685db8eb22926ca9ebe2303CAS | 16047188PubMed |