Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
REVIEW

Interleukin 11: similar or opposite roles in female reproduction and reproductive cancer?

Amy Winship A B , Ellen Menkhorst A , Michelle Van Sinderen A and Evdokia Dimitriadis A B C
+ Author Affiliations
- Author Affiliations

A Embryo Implantation Laboratory, MIMR-PHI Institute, 27–31 Wright Street, Clayton, Vic. 3168, Australia.

B Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, Vic. 3800, Australia.

C Corresponding author. Email: evdokia.dimitriadis@princehenrys.org

Reproduction, Fertility and Development 28(4) 395-405 https://doi.org/10.1071/RD14128
Submitted: 11 April 2014  Accepted: 3 July 2014   Published: 25 August 2014

Abstract

During placental development and carcinogenesis, cell invasion and migration are critical events in establishing a self-supporting vascular supply. Interleukin (IL)-11 is a pleiotropic cytokine that affects the invasive and migratory capabilities of trophoblast cells that form the placenta during pregnancy, as well as various malignant cell types. The endometrium is the site of embryo implantation during pregnancy; conversely, endometrial carcinoma is the most common gynaecological malignancy. Here, we review what is known about the role of IL-11 in trophoblast function and in gynaecological malignancies, focusing primarily on the context of the uterine environment.

Additional keywords: endometrium, placenta, pregnancy, trophoblast.


References

Australian Institute of Health and Welfare (AIHW) (2012) ‘Gynaecological cancers in Australia: an overview. Cancer series no. 70. CAN 66’. (AIHW: Canberra.)

Ain, R., Trinh, M. L., and Soares, M. J. (2004). Interleukin-11 signaling is required for the differentiation of natural killer cells at the maternal–fetal interface. Dev. Dyn. 231, 700–708.
Interleukin-11 signaling is required for the differentiation of natural killer cells at the maternal–fetal interface.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtFakurzM&md5=366ec7227c4b3284d4fee36615823b25CAS | 15499555PubMed |

Amant, F., Moerman, P., Neven, P., Timmerman, D., Limbergen, E. V., and Vergote, I. (2005). Endometrial cancer. Lancet 366, 491–505.
Endometrial cancer.Crossref | GoogleScholarGoogle Scholar | 16084259PubMed |

Bao, L., Devi, Y. S., Bowen-Shauver, J., Ferguson-Gottschall, S., Robb, L., and Gibori, G. (2006). The role of interleukin-11 in pregnancy involves up-regulation of alpha2-macroglobulin gene through janus kinase 2-signal transducer and activator of transcription 3 pathway in the decidua. Mol. Endocrinol. 20, 3240–3250.
The role of interleukin-11 in pregnancy involves up-regulation of alpha2-macroglobulin gene through janus kinase 2-signal transducer and activator of transcription 3 pathway in the decidua.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlWks77F&md5=cd97ca2ef04d7280c82087e70ac8a16fCAS | 16959875PubMed |

Basar, M., Yen, C., Buchwalder, L., Murk, W., Huang, S., Godlewski, K., Kocamaz, E., Arda, O., Schatz, F., Lockwood, C., and Kayisli, U. (2010). Preeclampsia-related increase of interleukin-11 expression in human decidual cells. Reproduction 140, 605–612.
Preeclampsia-related increase of interleukin-11 expression in human decidual cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlCqurvM&md5=456189746ce34164cb95b44a53f072a4CAS | 20668109PubMed |

Bellone, G., Smirne, C., Mauri, F. A., Tonel, E., Carbone, A., Buffolino, A., Dughera, L., Robecchi, A., Pirisi, M., and Emanuelli, G. (2006). Cytokine expression profile in human pancreatic carcinoma cells and in surgical specimens: implications for survival. Cancer Immunol. Immunother. 55, 684–698.
Cytokine expression profile in human pancreatic carcinoma cells and in surgical specimens: implications for survival.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhvFWqt7w%3D&md5=4ad73a6245930883bcb19231b1cd1c82CAS | 16094523PubMed |

Benedet, J. L., Pecorelli, S., Bender, H., Benedet, J., and Ngan, H. (2000). Cancer of the corpus uteri. Int. J. Gynaecol. Obstet. 70, 207–208.
| 10960610PubMed |

Bilinski, P., Roopenian, D., and Gossler, A. (1998). Maternal IL-11Ralpha function is required for normal decidua and fetoplacental development in mice. Genes Dev. 12, 2234–2243.
Maternal IL-11Ralpha function is required for normal decidua and fetoplacental development in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXltVSht78%3D&md5=1f6f6a174d030caf87390f9c5345a1b3CAS | 9679067PubMed |

Bulmer, J. N., Morrison, L., and Johnson, P. M. (1988). Expression of the proliferation markers Ki67 and transferrin receptor by human trophoblast populations. J. Reprod. Immunol. 14, 291–302.
Expression of the proliferation markers Ki67 and transferrin receptor by human trophoblast populations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXpt1Omsw%3D%3D&md5=12cc55c8814e06c8772554c84d7b5b62CAS | 3225818PubMed |

Burton, G. J., Yung, H. W., Cindrova-Davies, T., and Charnock-Jones, D. S. (2009). Placental endoplasmic reticulum stress and oxidative stress in the pathophysiology of unexplained intrauterine growth restriction and early onset preeclampsia. Placenta 30, S43–S48.
Placental endoplasmic reticulum stress and oxidative stress in the pathophysiology of unexplained intrauterine growth restriction and early onset preeclampsia.Crossref | GoogleScholarGoogle Scholar | 19081132PubMed |

Burton, G. J., Jauniaux, E., and Charnock-Jones, D. S. (2010). The influence of the intrauterine environment on human placental development. Int. J. Dev. Biol. 54, 303–312.
The influence of the intrauterine environment on human placental development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltVajtb8%3D&md5=b20f3bf852930d796a4d54e60f3eb80aCAS | 19757391PubMed |

Campbell, C. L., Guardiani, R., Ollari, C., Nelson, B. E., Quesenberry, P. J., and Savarese, T. M. (2001a). Interleukin-11 receptor expression in primary ovarian carcinomas. Gynecol. Oncol. 80, 121–127.
Interleukin-11 receptor expression in primary ovarian carcinomas.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmsFCjtw%3D%3D&md5=a60eade40425ca167a6b59fbde3f83f9CAS | 11161848PubMed |

Campbell, C. L., Jiang, Z., Savarese, D. M., and Savarese, T. M. (2001b). Increased expression of the interleukin-11 receptor and evidence of STAT3 activation in prostate carcinoma. Am. J. Pathol. 158, 25–32.
Increased expression of the interleukin-11 receptor and evidence of STAT3 activation in prostate carcinoma.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmsFKrsw%3D%3D&md5=d3d36202c29a7dc07770feb40ad4e73cCAS | 11141475PubMed |

Castellucci, M., Theelen, T., Pompili, E., Fumagalli, L., De Renzis, G., and Muhlhauser, J. (1994). Immunohistochemical localization of serine-protease inhibitors in the human placenta. Cell Tissue Res. 278, 283–289.
Immunohistochemical localization of serine-protease inhibitors in the human placenta.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXit1Wmtbg%3D&md5=a1fb9f19c4cd69ea81b4909ee14d8a05CAS | 7528097PubMed |

Chen, H., Lin, C., Chao, K., Wu, M., Yang, Y., and Ho, H. (2002). Defective production of interleukin-11 by decidua and chorionic villi in human anembryonic pregnancy. J. Clin. Endocrinol. Metab. 87, 2320–2328.
| 1:CAS:528:DC%2BD38XjsFGgsrw%3D&md5=005916e6aa2d984c821663956d0a2299CAS | 11994383PubMed |

Chen, C. L., Hsieh, F. C., Lieblein, J. C., Brown, J., Chan, C., Wallace, J. A., Cheng, G., Hall, B. M., and Lin, J. (2007). Stat3 activation in human endometrial and cervical cancers. Br. J. Cancer 96, 591–599.
Stat3 activation in human endometrial and cervical cancers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhvV2jtrc%3D&md5=0ef0981400141f56311c7efeb0671007CAS | 17311011PubMed |

Corvinus, F. M., Fitzgerald, J. S., Friedrich, K., and Markert, U. R. (2003). Evidence for a correlation between trophoblast invasiveness and STAT3 activity. Am. J. Reprod. Immunol. 50, 316–321.
Evidence for a correlation between trophoblast invasiveness and STAT3 activity.Crossref | GoogleScholarGoogle Scholar | 14672334PubMed |

Davidson, A. J., Freeman, S. A., Crosier, K. E., Wood, C. R., and Crosier, P. S. (1997). Expression of murine interleukin 11 and its receptor alpha-chain in adult and embryonic tissues. Stem Cells 15, 119–124.
Expression of murine interleukin 11 and its receptor alpha-chain in adult and embryonic tissues.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXis1GqtLc%3D&md5=2586c8c71074c075fde0f21b1ae42f2eCAS | 9090788PubMed |

Dessus-Babus, S., Darville, T. L., Cuozzo, F. P., Ferguson, K., and Wyrick, P. B. (2002). Differences in innate immune responses (in vitro) to HeLa cells infected with nondisseminating serovar E and disseminating serovar L2 of Chlamydia trachomatis. Infect. Immun. 70, 3234–3248.
Differences in innate immune responses (in vitro) to HeLa cells infected with nondisseminating serovar E and disseminating serovar L2 of Chlamydia trachomatis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XktFGhsrs%3D&md5=06e0361a93a37893acc12918f74c64f8CAS | 12011019PubMed |

Di Cristofano, A., and Ellenson, L. H. (2007). Endometrial carcinoma. Annu. Rev. Pathol. 2, 57–85.
Endometrial carcinoma.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXivV2isLY%3D&md5=9ed0e153f66f490db45fd1ddd09c5c02CAS | 18039093PubMed |

Dimitriadis, E., Salamonsen, L. A., and Robb, L. (2000). Expression of interleukin-11 during the human menstrual cycle: coincidence with stromal cell decidualization and relationship to leukaemia inhibitory factor and prolactin. Mol. Hum. Reprod. 6, 907–914.
Expression of interleukin-11 during the human menstrual cycle: coincidence with stromal cell decidualization and relationship to leukaemia inhibitory factor and prolactin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnslSgt7o%3D&md5=0041e85ee0bf880edde35f502eac1decCAS | 11006319PubMed |

Dimitriadis, E., Robb, L., and Salamonsen, L. (2002). Interleukin 11 advances progesterone-induced decidualization of human endometrial stromal cells. Mol. Hum. Reprod. 8, 636–643.
Interleukin 11 advances progesterone-induced decidualization of human endometrial stromal cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlvFKlsb4%3D&md5=1b918b91a5e24ca6ce7c669eddd99794CAS | 12087078PubMed |

Dimitriadis, E., Robb, L., Liu, Y., Enders, A., Martin, H., Stoikos, C., Wallace, E., and Salamonsen, L. A. (2003). IL-11 and IL-11Rα immunolocalisation at primate implantation sites supports a role for IL-11 in placentation and fetal development. Reprod. Biol. Endocrinol. 1, 34–44.
IL-11 and IL-11Rα immunolocalisation at primate implantation sites supports a role for IL-11 in placentation and fetal development.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2cznslylsw%3D%3D&md5=82ac24e809ace71fe58afaaa02dedf3fCAS | 12740032PubMed |

Dimitriadis, E., White, C. A., Jones, R. L., and Salamonsen, L. A. (2005). Cytokines, chemokines and growth factors in endometrium related to implantation. Hum. Reprod. Update 11, 613–630.
Cytokines, chemokines and growth factors in endometrium related to implantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFWltrzJ&md5=8123787f713e53567c9c9092894490c0CAS | 16006437PubMed |

Dimitriadis, E., Stoikos, C., Stafford-Bell, M., Clark, I., Paiva, P., Kovacs, G., and Salamonsen, L. A. (2006a). Interleukin-11, IL-11 receptoralpha and leukemia inhibitory factor are dysregulated in endometrium of infertile women with endometriosis during the implantation window. J. Reprod. Immunol. 69, 53–64.
Interleukin-11, IL-11 receptoralpha and leukemia inhibitory factor are dysregulated in endometrium of infertile women with endometriosis during the implantation window.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnslyktQ%3D%3D&md5=c1fbdfbe7c7bfe3b88fe11333566ef2fCAS | 16310857PubMed |

Dimitriadis, E., Stoikos, C., Tan, Y. L., and Salamonsen, L. A. (2006b). Interleukin 11 signaling components signal transducer and activator of transcription 3 (STAT3) and suppressor of cytokine signaling 3 (SOCS3) regulate human endometrial stromal cell differentiation. Endocrinology 147, 3809–3817.
Interleukin 11 signaling components signal transducer and activator of transcription 3 (STAT3) and suppressor of cytokine signaling 3 (SOCS3) regulate human endometrial stromal cell differentiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnsVWmsrc%3D&md5=6e76fde2898346134ec44f38aa46ac1aCAS | 16709613PubMed |

Dimitriadis, E., Sharkey, A., Tan, Y., Salamonsen, L. A., and Sherwin, J. (2007). Immunolocalisation of phosphorylated STAT3, interleukin 11 and leukaemia inhibitory factor in endometrium of women with unexplained infertility during the implantation window. Reprod. Biol. Endocrinol. 5, 44–51.
Immunolocalisation of phosphorylated STAT3, interleukin 11 and leukaemia inhibitory factor in endometrium of women with unexplained infertility during the implantation window.Crossref | GoogleScholarGoogle Scholar | 18047677PubMed |

Du, X. X., and Williams, D. A. (1994). Interleukin-11: a multifunctional growth factor derived from the hematopoietic microenvironment. Blood 83, 2023–2030.
| 1:CAS:528:DyaK2cXis1Omu7c%3D&md5=5e0e69a8de531d77194e1f55c348babeCAS | 7512836PubMed |

Elias, J. A., Zheng, T., Einarsson, O., Landry, M., Trow, T., Rebert, N., and Panuska, J. (1994). Epithelial interleukin-11. Regulation by cytokines, respiratory syncytial virus, and retinoic acid. J. Biol. Chem. 269, 22 261–22 268.
| 1:CAS:528:DyaK2cXlslOnsr4%3D&md5=b9f3802dd7f54900da25adcaf0cdcd59CAS |

Ellis, M., Hedstrom, U., Frampton, C., Alizadeh, H., Kristensen, J., Shammas, F. V., and al-Ramadi, B. K. (2006). Modulation of the systemic inflammatory response by recombinant human interleukin-11: a prospective randomized placebo controlled clinical study in patients with hematological malignancy. Clin. Immunol. 120, 129–137.
Modulation of the systemic inflammatory response by recombinant human interleukin-11: a prospective randomized placebo controlled clinical study in patients with hematological malignancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xnt1ynu7s%3D&md5=9ce377c9b172179f05d013bf1fff7596CAS | 16644288PubMed |

Ferretti, C., Bruni, L., Dangles-Marie, V., Pecking, A., and Bellet, D. (2007). Molecular circuits shared by placental and cancer cells, and their implications in the proliferative, invasive and migratory capacities of trophoblasts. Hum. Reprod. Update 13, 121–141.
Molecular circuits shared by placental and cancer cells, and their implications in the proliferative, invasive and migratory capacities of trophoblasts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhvFWlsrw%3D&md5=09621655e7a3e85d7778d4c33a6dd18cCAS | 17068222PubMed |

Friedl, P., and Wolf, K. (2003). Tumour-cell invasion and migration: diversity and escape mechanisms. Nat. Rev. Cancer 3, 362–374.
Tumour-cell invasion and migration: diversity and escape mechanisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtlals7o%3D&md5=a8a057cb9a74003badb238f79d0824eeCAS | 12724734PubMed |

Fuhrer, D. K., and Yang, Y. C. (1996a). Activation of Src-family protein tyrosine kinases and phosphatidylinositol 3-kinase in 3T3–L1 mouse preadipocytes by interleukin-11. Exp. Hematol. 24, 195–203.
| 1:CAS:528:DyaK28XitVyjsLc%3D&md5=00272d4a35617a46aaabb8bcbb9054b7CAS | 8641341PubMed |

Fuhrer, D. K., and Yang, Y. C. (1996b). Complex formation of JAK2 with PP2A, P13K, and in response to the hematopoietic cytokine interleukin-11. Biochem. Biophys. Res. Commun. 224, 289–296.
Complex formation of JAK2 with PP2A, P13K, and in response to the hematopoietic cytokine interleukin-11.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xktl2qt70%3D&md5=21026d886ca62ba6a36f44c95487b104CAS | 8702385PubMed |

Gruslin, A., and Lemyre, B. (2011). Pre-eclampsia: fetal assessment and neonatal outcomes. Best Pract. Res. Clin. Obstet. Gynaecol. 25, 491–507.
Pre-eclampsia: fetal assessment and neonatal outcomes.Crossref | GoogleScholarGoogle Scholar | 21474384PubMed |

Guo, Y., Xu, F., Lu, T., Duan, Z., and Zhang, Z. (2012). Interleukin-6 signaling pathway in targeted therapy for cancer. Cancer Treat. Rev. 38, 904–910.
Interleukin-6 signaling pathway in targeted therapy for cancer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xnsl2rtLc%3D&md5=d43d82d3c0e2a85628264787a0ce0654CAS | 22651903PubMed |

Gupta, J., Robbins, J., Jilling, T., and Seth, P. (2011). TGFbeta-dependent induction of interleukin-11 and interleukin-8 involves SMAD and p38 MAPK pathways in breast tumor models with varied bone metastases potential. Cancer Biol. Ther. 11, 311–316.
TGFbeta-dependent induction of interleukin-11 and interleukin-8 involves SMAD and p38 MAPK pathways in breast tumor models with varied bone metastases potential.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXivFWhurc%3D&md5=ba8897d0daaa2468422c7daf2d03175cCAS | 21099351PubMed |

Hanavadi, S., Martin, T. A., Watkins, G., Mansel, R. E., and Jiang, W. G. (2006). Expression of interleukin 11 and its receptor and their prognostic value in human breast cancer. Ann. Surg. Oncol. 13, 802–808.
Expression of interleukin 11 and its receptor and their prognostic value in human breast cancer.Crossref | GoogleScholarGoogle Scholar | 16614887PubMed |

Hanna, J., Goldman-Wohl, D., Hamani, Y., Avraham, I., Greenfield, C., Natanson-Yaron, S., Prus, D., Cohen-Daniel, L., Arnon, T. I., Manaster, I., Gazit, R., Yutkin, V., Benharroch, D., Porgador, A., Keshet, E., Yagel, S., and Mandelboim, O. (2006). Decidual NK cells regulate key developmental processes at the human fetal-maternal interface. Nat. Med. 12, 1065–1074.
Decidual NK cells regulate key developmental processes at the human fetal-maternal interface.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XptFCltbs%3D&md5=699bd08ba25e129f5a0ce64315da93e4CAS | 16892062PubMed |

Heinrich, P. C., Behrmann, I., Haan, S., Hermanns, H. H., Müller-Newen, G., and Schaper, F. (2003). Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem. J. 374, 1–20.
Principles of interleukin (IL)-6-type cytokine signalling and its regulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmtF2hurs%3D&md5=bf640acd79f014e547a5355b0af4c95dCAS | 12773095PubMed |

Hess, S., Rheinheimer, C., Tidow, F., Bartling, G., Kaps, C., Lauber, J., Buer, J., and Klos, A. (2001). The reprogrammed host: Chlamydia trachomatis-induced up-regulation of glycoprotein 130 cytokines, transcription factors, and antiapoptotic genes. Arthritis Rheum. 44, 2392–2401.
The reprogrammed host: Chlamydia trachomatis-induced up-regulation of glycoprotein 130 cytokines, transcription factors, and antiapoptotic genes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtVei&md5=962c2f8285e985b1ca30aae5731dabe4CAS | 11665982PubMed |

Hilton, D. J., Hilton, A. A., Raicevic, A., Rakar, S., Harrison-Smith, M., Gough, N. M., Begley, C. G., Metcalf, D., Nicola, N. A., and Willson, T. A. (1994). Cloning of a murine IL-11 receptor alpha-chain; requirement for gp130 for high affinity binding and signal transduction. EMBO J. 13, 4765–4775.
| 1:CAS:528:DyaK2MXhvF2iurk%3D&md5=54447e9763661a82a91b6210958d4887CAS | 7957045PubMed |

Holtan, S. G., Creedon, D. J., Haluska, P., and Markovic, S. N. (2009). Cancer and pregnancy: parallels in growth, invasion, and immune modulation and implications for cancer therapeutic agents. Mayo Clin. Proc. 84, 985–1000.
Cancer and pregnancy: parallels in growth, invasion, and immune modulation and implications for cancer therapeutic agents.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVGms7vP&md5=7fc8c0a22a133c63116b003752eaaef5CAS | 19880689PubMed |

Huppertz, B., Kertschanska, S., Demir, A. Y., Frank, H. G., and Kaufmann, P. (1997). Immunohistochemistry of matrix metalloproteinases (MMP), their substrates, and their inhibitors (TIMP) during trophoblast invasion in the human placenta. Cell Tissue Res. 291, 133–148.
Immunohistochemistry of matrix metalloproteinases (MMP), their substrates, and their inhibitors (TIMP) during trophoblast invasion in the human placenta.Crossref | GoogleScholarGoogle Scholar |

Jemal, A., Bray, F., Center, M. M., Ferlay, J., Ward, E., and Forman, D. (2011). Global cancer statistics. CA Cancer J. Clin. 61, 69–90.
Global cancer statistics.Crossref | GoogleScholarGoogle Scholar | 21296855PubMed |

Karpovich, N., Chobotova, K., Carver, J., Heath, J., Barlow, D., and Mardon, H. (2003). Expression and function of interleukin-11 and its receptor a in the human endometrium. Mol. Hum. Reprod. 8, 75–80.
Expression and function of interleukin-11 and its receptor a in the human endometrium.Crossref | GoogleScholarGoogle Scholar |

Kaufmann, P., Black, S., and Huppertz, B. (2003). Endovascular trophoblast invasion: implications for the pathogenesis of intrauterine growth retardation and preeclampsia. Biol. Reprod. 69, 1–7.
Endovascular trophoblast invasion: implications for the pathogenesis of intrauterine growth retardation and preeclampsia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkvFCnsbY%3D&md5=612dc655f73938a7f07ee13e2fe5253eCAS | 12620937PubMed |

Kessenbrock, K., Plaks, V., and Werb, Z. (2010). Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141, 52–67.
Matrix metalloproteinases: regulators of the tumor microenvironment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlsVSgtb4%3D&md5=d98f7f6e80f95c7241b0413bbde673e8CAS | 20371345PubMed |

Koumantaki, Y., Matalliotakis, I., Sifakis, S., Kyriakou, D., Neonaki, M., Goymenou, A., and Koumantakis, E. (2001). Detection of interleukin-6, interleukin-8, and interleukin-11 in plasma from women with spontaneous abortion. Eur. J. Obstet. Gynecol. Reprod. Biol. 98, 66–71.
Detection of interleukin-6, interleukin-8, and interleukin-11 in plasma from women with spontaneous abortion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmtV2mu7s%3D&md5=518190eec3d6bb15aecd1115a6d194f6CAS | 11516802PubMed |

Lay, V., Yap, J., Sonderegger, S., and Dimitriadis, E. (2012). Interleukin 11 regulates endometrial cancer cell adhesion and migration via STAT3. Int. J. Oncol. 41, 759–764.
| 1:CAS:528:DC%2BC38Xht1WltLrI&md5=0eca7fd21c2994144d98a113ccaddb56CAS | 22614117PubMed |

Lehner, R., Bobak, J., Kim, N., Shroyer, A., and Shroyer, K. (2001). Localization of telomerase hTERT protein and survivin in placenta: relation to placental development and hydatidiform mole. Obstet. Gynecol. 97, 965–970.
Localization of telomerase hTERT protein and survivin in placenta: relation to placental development and hydatidiform mole.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjvV2ktb4%3D&md5=0932c98180fe6faaf3eef6a795a11acfCAS | 11384704PubMed |

Lemoli, R. M., Fogli, M., Fortuna, A., Amabile, M., Zucchini, P., Grande, A., Martinelli, G., Visani, G., Ferrari, S., and Tura, S. (1995). Interleukin-11 (IL-11) acts as a synergistic factor for the proliferation of human myeloid leukaemic cells. Br. J. Haematol. 91, 319–326.
Interleukin-11 (IL-11) acts as a synergistic factor for the proliferation of human myeloid leukaemic cells.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK28%2FislKmsw%3D%3D&md5=f903fc76f0ed35d5b2aa89f1ee03521aCAS | 8547068PubMed |

Lessey, B. A., Damjanovich, L., Coutifaris, C., Castelbaum, A., Albelda, S. M., and Buck, C. A. (1992). Integrin adhesion molecules in the human endometrium. Correlation with the normal and abnormal menstrual cycle. J. Clin. Invest. 90, 188–195.
Integrin adhesion molecules in the human endometrium. Correlation with the normal and abnormal menstrual cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XltVyruro%3D&md5=ec74ac6dceb035693bdc0c60e9100223CAS | 1378853PubMed |

Li, F., Ambrosini, G., Chu, E. Y., Plescia, J., Tognin, S., Marchisio, P. C., and Altieri, D. C. (1998). Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396, 580–584.
Control of apoptosis and mitotic spindle checkpoint by survivin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXotVWns70%3D&md5=dc0c3510cffe38b42977f23ba765705aCAS | 9859993PubMed |

Li, F., Devi, Y. S., Bao, L., Mao, J., and Gibori, G. (2008). Involvement of cyclin D3, CDKN1A (p21), and BIRC5 (Survivin) in interleukin 11 stimulation of decidualization in mice. Biol. Reprod. 78, 127–133.
Involvement of cyclin D3, CDKN1A (p21), and BIRC5 (Survivin) in interleukin 11 stimulation of decidualization in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlsl0%3D&md5=7461536c33d9516dd02ad6d635c53352CAS | 17881769PubMed |

Mahboubi, K., Li, F., Plescia, J., Kirkiles-Smith, N., Mesri, M., Du, Y., Carroll, L., Elias, J., Altieri, D., and Pober, J. (2001). Interleukin-11 up-regulates survivin expression in endothelial cells through a signal transducer and activator of transcription-3 pathway. Lab. Invest. 81, 327–334.
Interleukin-11 up-regulates survivin expression in endothelial cells through a signal transducer and activator of transcription-3 pathway.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXivVKqsLw%3D&md5=d5caaedeea4ca70e426bbe5d1f630980CAS | 11310826PubMed |

Markman, M. (1992). Systemic therapy for gynecologic cancer. Curr. Opin. Oncol. 4, 939–945.
Systemic therapy for gynecologic cancer.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3s%2FptVyksA%3D%3D&md5=796c80542e6f6d4d41340b45bb23d133CAS | 1457510PubMed |

Matadeen, R., Hon, W. C., Heath, J. K., Jones, E. Y., and Fuller, S. (2007). The dynamics of signal triggering in a gp130–receptor complex. Structure 15, 441–448.
The dynamics of signal triggering in a gp130–receptor complex.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkt1aisr8%3D&md5=b53dce5ce519fde36ebbf0288b5d0f5eCAS | 17437716PubMed |

Menkhorst, E., Salamonsen, L. A., Robb, L., and Dimitriadis, E. (2009). IL11 antagonist inhibits uterine stromal differentiation, causing pregnancy failure in mice. Biol. Reprod. 80, 920–927.
IL11 antagonist inhibits uterine stromal differentiation, causing pregnancy failure in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlsVWqu7g%3D&md5=bc82a72021cc0baf2d752fcfe08083f0CAS | 19144959PubMed |

Necula, L. G., Chivu-Economescu, M., Stanciulescu, E. L., Bleotu, C., Dima, S. O., Alexiu, I., Dumitru, A., Constantinescu, G., Popescu, I., and Diaconu, C. C. (2012). IL-6 and IL-11 as markers for tumor aggressiveness and prognosis in gastric adenocarcinoma patients without mutations in Gp130 subunits. J. Gastrointestin. Liver Dis. 21, 23–29.
| 22457856PubMed |

Neijt, J. P. (1994). Advances in the chemotherapy of gynecologic cancer. Curr. Opin. Oncol. 6, 531–538.
Advances in the chemotherapy of gynecologic cancer.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2M7islOrtA%3D%3D&md5=37e11f99304535b0f22308f1f1c52fecCAS | 7827159PubMed |

Nishina, T., Komazawa-Sakon, S., Yanaka, S., Piao, X., Zheng, D. M., Piao, J. H., Kojima, Y., Yamashina, S., Sano, E., Putoczki, T., Doi, T., Ueno, T., Ezaki, J., Ushio, H., Ernst, M., Tsumoto, K., Okumura, K., and Nakano, H. (2012). Interleukin-11 links oxidative stress and compensatory proliferation. Sci. Signal. 5, ra5.
Interleukin-11 links oxidative stress and compensatory proliferation.Crossref | GoogleScholarGoogle Scholar | 22253262PubMed |

Paiva, P., Salamonsen, L. A., Manuelpillai, U., Walker, C., Tapia, A., Wallace, U. M., and Dimitriadis, E. (2007). Interleukin-11 promotes migration, but not proliferation, of human trophoblast cells, implying a role in placentation. Endocrinology 148, 5566–5572.
Interleukin-11 promotes migration, but not proliferation, of human trophoblast cells, implying a role in placentation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1aisr7P&md5=e3f2bb93432e6b0b1c5cad276bde7916CAS | 17702845PubMed |

Paiva, P., Menkhorst, E., Salamonsen, L. A., and Dimitriadis, E. (2009a). Leukemia inhibitory factor and interleukin-11: critical regulators in the establishment of pregnancy. Cytokine Growth Factor Rev. 20, 319–328.
Leukemia inhibitory factor and interleukin-11: critical regulators in the establishment of pregnancy.Crossref | GoogleScholarGoogle Scholar | 19647472PubMed |

Paiva, P., Salamonsen, L. A., Manuelpillai, U., and Dimitriadis, E. (2009b). Interleukin 11 inhibits human trophoblast invasion indicating a likely role in the decidual restraint of trophoblast invasion during placentation. Biol. Reprod. 80, 302–310.
Interleukin 11 inhibits human trophoblast invasion indicating a likely role in the decidual restraint of trophoblast invasion during placentation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFOitb8%3D&md5=a29dc04e6b7e06d089b082ded9b0de12CAS | 18987331PubMed |

Paul, S. R., Bennett, F., Calvetti, J. A., Kelleher, K., Wood, C. R., O'Hara, R. M., Leary, A. C., Sibley, B., Clark, S. C., and Williams, D. A. (1990). Molecular cloning of a cDNA encoding interleukin 11, a stromal cell-derived lymphopoietic and hematopoietic cytokine. Proc. Natl Acad. Sci. USA 87, 7512–7516.
Molecular cloning of a cDNA encoding interleukin 11, a stromal cell-derived lymphopoietic and hematopoietic cytokine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXhsl2gsrs%3D&md5=4a68fb9302e3a0bf80fe545640e8ceedCAS | 2145578PubMed |

Pensa, S., Regis, G., Boselli, D., Novelli, F., and Poli, V. (2009) STAT1 and STAT3 in tumorigenesis: two sides of the same coin? Available at http://www.ncbi.nlm.nih.gov/books/NBK6568/ [verified 30 March 2014].

Pignatelli, M., Ansari, T. W., Gunter, P., Liu, D., Hirano, S., Takeichi, M., Kloppel, G., and Lemoine, N. R. (1994). Loss of membranous E-cadherin expression in pancreatic cancer: correlation with lymph node metastasis, high grade, and advanced stage. J. Pathol. 174, 243–248.
Loss of membranous E-cadherin expression in pancreatic cancer: correlation with lymph node metastasis, high grade, and advanced stage.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2M7ptVKrtw%3D%3D&md5=f6845876878b50f5e29166894d7b6108CAS | 7884585PubMed |

Putoczki, T., and Ernst, M. (2010). More than a sidekick: the IL-6 family cytokine IL-11 links inflammation to cancer. J. Leukoc. Biol. 88, 1109–1117.
More than a sidekick: the IL-6 family cytokine IL-11 links inflammation to cancer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFGgtLzL&md5=a77d5222b9edd4d51b22cacbbb5d87abCAS | 20610798PubMed |

Putoczki, T. L., Thiem, S., Loving, A., Busuttil, R. A., Wilson, N. J., Ziegler, P. K., Nguyen, P. M., Preaudet, A., Farid, R., Edwards, K. M., Boglev, Y., Luwor, R. B., Jarnicki, A., Horst, D., Boussioutas, A., Heath, J. K., Sieber, O. M., Pleines, I., Kile, B. T., Nash, A., Greten, F. R., McKenzie, B. S., and Ernst, M. (2013). Interleukin-11 is the dominant IL-6 family cytokine during gastrointestinal tumorigenesis and can be targeted therapeutically. Cancer Cell 24, 257–271.
Interleukin-11 is the dominant IL-6 family cytokine during gastrointestinal tumorigenesis and can be targeted therapeutically.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1Kgur3M&md5=eb0f743cb67791df201b71143a96619aCAS | 23948300PubMed |

Red-Horse, K., Zhou, Y., Genbacev, O., Prakobphol, A., Foulk, R., McMaster, M., and Fisher, S. J. (2004). Trophoblast differentiation during embryo implantation and formation of the maternal-fetal interface. J. Clin. Invest. 114, 744–754.
Trophoblast differentiation during embryo implantation and formation of the maternal-fetal interface.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnslWitbk%3D&md5=8723eabf70a968db33b3f741467a44f3CAS | 15372095PubMed |

Redman, C. W., and Sargent, I. L. (2005). Latest advances in understanding preeclampsia. Science 308, 1592–1594.
Latest advances in understanding preeclampsia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltFemsbo%3D&md5=038bae55eee731cff5df383fef15e790CAS | 15947178PubMed |

Robb, L., Li, R., Hartley, L., Nandrukar, H., Koentgen, F., and Begley, C. (1998). Infertility in femal mice lacking the receptor for interleukin 11 is due to a deffective uterine response to implantation. Nat. Med. 4, 303–308.
Infertility in femal mice lacking the receptor for interleukin 11 is due to a deffective uterine response to implantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhs1Kjtbo%3D&md5=ba381cee27a6fb5a0372d68f028f2454CAS | 9500603PubMed |

Ropeleski, M. J., Tang, J., Walsh-Reitz, M. M., Musch, M. W., and Chang, E. B. (2003). Interleukin-11-induced heat shock protein 25 confers intestinal epithelial-specific cytoprotection from oxidant stress. Gastroenterology 124, 1358–1368.
Interleukin-11-induced heat shock protein 25 confers intestinal epithelial-specific cytoprotection from oxidant stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktVSkt70%3D&md5=6dfe0bb3ad1b1f508bb4c7d9dbc2437cCAS | 12730876PubMed |

Salamonsen, L. A., Nie, G., Hannan, N. J., and Dimitriadis, E. (2009). Society for Reproductive Biology Founders’ Lecture 2009. Preparing fertile soil: the importance of endometrial receptivity. Reprod. Fertil. Dev. 21, 923–934.
Society for Reproductive Biology Founders’ Lecture 2009. Preparing fertile soil: the importance of endometrial receptivity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVartbfM&md5=9e94f65c7620cf36177eb6914c024c33CAS | 19698296PubMed |

Sales, K. J., Grant, V., Cook, I. H., Maldonado-Perez, D., Anderson, R. A., Williams, A. R. W., and Jabbour, H. N. (2010). Interleukin-11 in endometrial adenocarcinoma is regulated by prostaglandin F2 alpha-F-prostanoid receptor interaction via the calcium-calcineurin-nuclear factor of activate T cells and negatively regulated by the regulator of calcineurin-1. Am. J. Pathol. 176, 435–445.
Interleukin-11 in endometrial adenocarcinoma is regulated by prostaglandin F2 alpha-F-prostanoid receptor interaction via the calcium-calcineurin-nuclear factor of activate T cells and negatively regulated by the regulator of calcineurin-1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs12rtb8%3D&md5=d3c0be5ed40abd589c6c1bd30ced6685CAS | 20008143PubMed |

Schafer, Z. T., and Brugge, J. S. (2007). IL-6 involvement in epithelial cancers. J. Clin. Invest. 117, 3660–3663.
IL-6 involvement in epithelial cancers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVals7fJ&md5=cdb94061ebd9b41d80883032ffaa8182CAS | 18060028PubMed |

Seckl, M. J., Sebire, N. J., and Berkowitz, R. S. (2010). Gestational trophoblastic disease. Lancet 376, 717–729.
Gestational trophoblastic disease.Crossref | GoogleScholarGoogle Scholar | 20673583PubMed |

Sharkey, A. M., Gardner, L., Hiby, S., Farrell, L., Apps, R., Masters, L., Goodridge, J., Lathbury, L., Stewart, C. A., Verma, S., and Moffett, A. (2008). Killer Ig-like receptor expression in uterine NK cells is biased toward recognition of HLA-C and alters with gestational age. J. Immunol. 181, 39–46.
Killer Ig-like receptor expression in uterine NK cells is biased toward recognition of HLA-C and alters with gestational age.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnsVGjurc%3D&md5=b465248f49ea7ba42324d782b01825c4CAS | 18566368PubMed |

Shaw, J. L. V., Dey, S. K., Critchley, H. O. D., and Horne, A. W. (2010). Current knowledge of the aetiology of human tubal ectopic pregnancy. Hum. Reprod. Update 16, 432–444.
Current knowledge of the aetiology of human tubal ectopic pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3cvhtlyjtg%3D%3D&md5=5be39c0488b1e8704c6519d309f18ab9CAS |

Sibai, B., Dekker, G., and Kupferminc, M. (2005). Pre-eclampsia. Lancet 365, 785–799.
Pre-eclampsia.Crossref | GoogleScholarGoogle Scholar | 15733721PubMed |

Silva, J., Cerqueira, F., and Medeiros, R. (2014). Chlamydia trachomatis infection: implications for HPV status and cervical cancer. Arch. Gynecol. Obstet. 289, 715–723.
Chlamydia trachomatis infection: implications for HPV status and cervical cancer.Crossref | GoogleScholarGoogle Scholar | 24346121PubMed |

Soda, H., Raymond, E., Sharma, S., Lawrence, R., Cerna, C., Gomez, L., Schaub, R., Von Hoff, D. D., and Izbicka, E. (1999). Recombinant human interleukin-11 is unlikely to stimulate the growth of the most common solid tumors. Anticancer Drugs 10, 97–102.
Recombinant human interleukin-11 is unlikely to stimulate the growth of the most common solid tumors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXisVCmsro%3D&md5=fbee3a41ecc6dc324fe6ac9f43102f4bCAS | 10194552PubMed |

Sonderegger, S., Yap, J., Menkhorst, E., Weston, G., Stanton, P., and Dimitriadis, E. (2011). Interleukin (IL) 11 mediates protein secretion and modification in human extravillous trophoblasts. Hum. Reprod. 26, 2841–2849.
Interleukin (IL) 11 mediates protein secretion and modification in human extravillous trophoblasts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1SiurzL&md5=7720d1ce8169712db76620b183b21fdfCAS | 21840908PubMed |

Soundararajan, R., and Jagannadha-Rao, A. (2004). Trophoblast ‘pseudo-tumorigenesis’: significance and contributory factors. Reprod. Biol. Endocrinol. 2, 15–27.
Trophoblast ‘pseudo-tumorigenesis’: significance and contributory factors.Crossref | GoogleScholarGoogle Scholar | 15043753PubMed |

Suman, P., and Gupta, S. K. (2012). Comparative analysis of the invasion-associated genes expression pattern in first trimester trophoblastic (HTR-8/SVneo) and JEG-3 choriocarcinoma cells. Placenta 33, 874–877.
Comparative analysis of the invasion-associated genes expression pattern in first trimester trophoblastic (HTR-8/SVneo) and JEG-3 choriocarcinoma cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlamtrjI&md5=f8d6c52df7f984d1795f6d63c7fc4164CAS | 22800585PubMed |

Suman, P., Poehlmann, T. G., Prakash, G. J., Markert, U. R., and Gupta, S. K. (2009). Interleukin-11 increases invasiveness of JEG-3 choriocarcinoma cells by modulating STAT3 expression. J. Reprod. Immunol. 82, 1–11.
Interleukin-11 increases invasiveness of JEG-3 choriocarcinoma cells by modulating STAT3 expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFGltbnO&md5=e056d5532ef543dcc796d10b323219e0CAS | 19716605PubMed |

Suman, P., Godbole, G., Thakur, R., Morales-Prieto, D. M., Modi, D. N., Markert, U. R., and Gupta, S. K. (2012). AP-1 transcription factors, mucin-type molecules and MMPs regulate the IL-11 mediated invasiveness of JEG-3 and HTR-8/SVneo trophoblastic cells. PLoS ONE 7, e29745.
AP-1 transcription factors, mucin-type molecules and MMPs regulate the IL-11 mediated invasiveness of JEG-3 and HTR-8/SVneo trophoblastic cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XptFKqug%3D%3D&md5=fcea2a78285c4bbac8901c34c5ddeee7CAS | 22235337PubMed |

von Rango, U., Alfer, J., Kertschanska, S., Kemp, B., Muller-Newen, G., Heinrich, P. C., Beier, H. M., and Classen-Linke, I. (2004). Interleukin-11 expression: its significance in eutopic and ectopic human implantation. Mol. Hum. Reprod. 10, 783–792.
Interleukin-11 expression: its significance in eutopic and ectopic human implantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXovVOis7w%3D&md5=8684d2746ccb29903322559112f8d010CAS | 15465850PubMed |

Walboomers, J. M., Jacobs, M. V., Manos, M. M., Bosch, F. X., Kummer, J. A., Shah, K. V., Snijders, P. J., Peto, J., Meijer, C. J., and Munoz, N. (1999). Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J. Pathol. 189, 12–19.
Human papillomavirus is a necessary cause of invasive cervical cancer worldwide.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1Mzot1CjsQ%3D%3D&md5=a9cdde39630621b87274c3125c358b18CAS | 10451482PubMed |

Wen, C. Y., Ito, M., Wang, H., Chen, L. D., Xu, Z. M., Matsuu, M., Shichijo, K., Nakayama, T., Nakashima, M., and Sekine, I. (2003). IL-11 up-regulates Tie-2 expression during the healing of gastric ulcers in rats. World J. Gastroenterol. 9, 788–790.
| 1:CAS:528:DC%2BD3sXjs1agtLw%3D&md5=e5feffce06459919e362e35621b01790CAS | 12679933PubMed |

White, C. A, Zhang, J. G., Salamonsen, L. A., Baca, M., Fairlie, W. D., Metcalf, D., Nicola, N. A., Robb, L., and Dimitriadis, E. (2007). Blocking LIF action in the uterus by using a PEGylated antagonist prevents implantation: a nonhormonal contraceptive strategy. Proc. Natl Acad. Sci. USA 104, 19 357–19 362.
Blocking LIF action in the uterus by using a PEGylated antagonist prevents implantation: a nonhormonal contraceptive strategy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXisVOjuw%3D%3D&md5=82e7ac770ce84a5ae72348a9a1b1c18cCAS |

Wu, D., Tao, J., Ding, J., Qu, P., Lu, Q., and Zhang, W. (2013). Interleukin-11, an interleukin-6-like cytokine, is a promising predictor for bladder cancer prognosis. Mol. Med. Rep. 7, 684–688.
Interleukin-11, an interleukin-6-like cytokine, is a promising predictor for bladder cancer prognosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFSmu7s%3D&md5=5c5d5080bfe4412aa97dae083ffdb89dCAS | 23179440PubMed |

Xiang, Z. L., Zeng, Z. C., Fan, J., Tang, Z. Y., and Zeng, H. Y. (2012). Expression of connective tissue growth factor and interleukin-11 in intratumoral tissue is associated with poor survival after curative resection of hepatocellular carcinoma. Mol. Biol. Rep. 39, 6001–6006.
Expression of connective tissue growth factor and interleukin-11 in intratumoral tissue is associated with poor survival after curative resection of hepatocellular carcinoma.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XksVChtLw%3D&md5=d3b530e44037ed6ef40e89e29a1ba9aaCAS | 22205539PubMed |

Yamasaki, K., Taga, T., Hirata, Y., Yawata, H., Kawanishi, Y., Seed, B., Taniguchi, T., Hirano, T., and Kishimoto, T. (1988). Cloning and expression of the human interleukin-6 (BSF-2/IFN beta 2) receptor. Science 241, 825–828.
Cloning and expression of the human interleukin-6 (BSF-2/IFN beta 2) receptor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXitFSmur4%3D&md5=958a2eb8d3dad2de602eb9174208449dCAS | 3136546PubMed |

Yamazumi, K., Nakayama, T., Kusaba, T., Wen, C. Y., Yoshizaki, A., Yakata, Y., Nagayasu, T., and Sekine, I. (2006). Expression of interleukin-11 and interleukin-11 receptor alpha in human colorectal adenocarcinoma; immunohistochemical analyses and correlation with clinicopathological factors. World J. Gastroenterol. 12, 317–321.
| 1:CAS:528:DC%2BD28Xis1yitrk%3D&md5=30ae1c4a6b1982cda53cdcd69985316fCAS | 16482637PubMed |

Yap, J., Salamonsen, L. A., Jobling, T., Nicholls, P., and Dimitriadis, E. (2010). Interleukin 11 is upregulated in uterine lavage and endometrial cancer cells in women with endometrial carcinoma. Reprod. Biol. Endocrinol. 8, 63–73.
Interleukin 11 is upregulated in uterine lavage and endometrial cancer cells in women with endometrial carcinoma.Crossref | GoogleScholarGoogle Scholar | 20553623PubMed |

Yin, T., and Yang, Y. C. (1994). Mitogen-activated protein kinases and ribosomal S6 protein kinases are involved in signaling pathways shared by interleukin-11, interleukin-6, leukemia inhibitory factor, and oncostatin M in mouse 3T3–L1 cells. J. Biol. Chem. 269, 3731–3738.
| 1:CAS:528:DyaK2cXhs1Wht74%3D&md5=579d87fc4639f4388204f90f5e12c254CAS | 7508917PubMed |

Yoshizaki, A., Nakayama, T., Yamazumi, K., Yakata, Y., Taba, M., and Sekine, I. (2006). Expression of interleukin (IL)-11 and IL-11 receptor in human colorectal adenocarcinoma: IL-11 up-regulation of the invasive and proliferative activity of human colorectal carcinoma cells. Int. J. Oncol. 29, 869–876.
| 1:CAS:528:DC%2BD28XhtV2rtrvJ&md5=e4c980d5f21223d13df3d2352ef5484dCAS | 16964382PubMed |