Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Analysis of STAT1 expression and biological activity reveals interferon-tau-dependent STAT1-regulated SOCS genes in the bovine endometrium

A. Vitorino Carvalho A , C. Eozenou A , G. D. Healey B , N. Forde C , P. Reinaud A , M. Chebrout A , L. Gall A , N. Rodde D , A. Lesage Padilla A , C. Giraud Delville A , M. Leveugle E , C. Richard A , I. M. Sheldon B , P. Lonergan C , G. Jolivet A and O. Sandra A F
+ Author Affiliations
- Author Affiliations

A INRA, UMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, France.

B Centre for Reproductive Immunology, Institute of Life Science, College of Medicine, Swansea University, Swansea, SA2 8PP, UK.

C School of Agriculture and Food Science, University College Dublin, Dublin, Ireland.

D INRA, UPR1258 Centre National des Ressources Génomiques Végétales, F-31326 Castanet Tolosan, France.

E INRA, UR1077 Unité Mathématique Informatique et Génome, Jouy-en-Josas, France.

F Corresponding author. Email: olivier.sandra@jouy.inra.fr

Reproduction, Fertility and Development 28(4) 459-474 https://doi.org/10.1071/RD14034
Submitted: 30 January 2014  Accepted: 12 July 2014   Published: 13 August 2014

Abstract

Signal transducer and activator of transcription (STAT) proteins are critical for the regulation of numerous biological processes. In cattle, microarray analyses identified STAT1 as a differentially expressed gene in the endometrium during the peri-implantation period. To gain new insights about STAT1 during the oestrous cycle and early pregnancy, we investigated STAT1 transcript and protein expression, as well as its biological activity in bovine tissue and cells of endometrial origin. Pregnancy increased STAT1 expression on Day 16, and protein and phosphorylation levels on Day 20. In cyclic and pregnant females, STAT1 was located in endometrial cells but not in the luminal epithelium at Day 20 of pregnancy. The expression of STAT1 during the oestrous cycle was not affected by progesterone supplementation. In vivo and in vitro, interferon-tau (IFNT) stimulated STAT1 mRNA expression, protein tyrosine phosphorylation and nuclear translocation. Using chromatin immunoprecipitation in IFNT-stimulated endometrial cells, we demonstrated an increase of STAT1 binding on interferon regulatory factor 1 (IRF1), cytokine-inducible SH2-containing protein (CISH), suppressor of cytokine signaling 1 and 3 (SOCS1, SOCS3) gene promoters consistent with the induction of their transcripts. Our data provide novel molecular insights into the biological functions of STAT1 in the various cells composing the endometrium during maternal pregnancy recognition and implantation.

Additional keywords: cattle, chromatin immunoprecipitation, implantation, transcription factor, uterus.


References

Arosh, J. A., Parent, J., Chapdelaine, P., Sirois, J., and Fortier, M. A. (2002). Expression of cyclooxygenases 1 and 2 and prostaglandin E synthase in bovine endometrial tissue during the oestrous cycle. Biol. Reprod. 67, 161–169.
Expression of cyclooxygenases 1 and 2 and prostaglandin E synthase in bovine endometrial tissue during the oestrous cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XkvV2itL0%3D&md5=b3e245338627b484fbbca074779c7df2CAS | 12080013PubMed |

Bauersachs, S., and Wolf, E. (2012). Transcriptome analyses of bovine, porcine and equine endometrium during the pre-implantation phase. Anim. Reprod. Sci. 134, 84–94.
Transcriptome analyses of bovine, porcine and equine endometrium during the pre-implantation phase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1ekurrP&md5=55555bc587bea5834d0bb7d82104cdd5CAS | 22917876PubMed |

Bauersachs, S., Ulbrich, S. E., Gross, K., Schmidt, S. E., Meyer, H. H., Wenigerkind, H., Vermehren, M., Sinowatz, F., Blum, H., and Wolf, E. (2006). Embryo-induced transcriptome changes in bovine endometrium reveal species-specific and common molecular markers of uterine receptivity. Reproduction 132, 319–331.
Embryo-induced transcriptome changes in bovine endometrium reveal species-specific and common molecular markers of uterine receptivity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xpt1Wjs7s%3D&md5=d3d5b5a9d9e7237ce86ed59fdd8d44e1CAS | 16885540PubMed |

Bauersachs, S., Ulbrich, S. E., Zakhartchenko, V., Minten, M., Reichenbach, M., Reichenbach, H. D., Blum, H., Spencer, T. E., and Wolf, E. (2009). The endometrium responds differently to cloned versus fertilised embryos. Proc. Natl. Acad. Sci. USA 106, 5681–5686.
The endometrium responds differently to cloned versus fertilised embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkvFGhurk%3D&md5=e6e25025a6f5a5031547b8991c5c1ca1CAS | 19307558PubMed |

Bauersachs, S., Ulbrich, S. E., Reichenbach, H. D., Reichenbach, M., Buttner, M., Meyer, H. H., Spencer, T. E., Minten, M., Sax, G., Winter, G., and Wolf, E. (2012). Comparison of the effects of early pregnancy with human interferon, alpha 2 (IFNA2), on gene expression in bovine endometrium. Biol. Reprod. 86, 46.
Comparison of the effects of early pregnancy with human interferon, alpha 2 (IFNA2), on gene expression in bovine endometrium.Crossref | GoogleScholarGoogle Scholar | 22034527PubMed |

Bednorz, N. L., Brill, B., Klein, A., Gabel, K., and Groner, B. (2011). Tracking the activation of Stat5 through the expression of an inducible reporter gene in a transgenic mouse line. Endocrinology 152, 1935–1947.
Tracking the activation of Stat5 through the expression of an inducible reporter gene in a transgenic mouse line.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsVKqu7k%3D&md5=65ca77be8ac883a35060f784c43d43a1CAS | 21427222PubMed |

Biener, E., Martin, C., Daniel, N., Frank, S. J., Centonze, V. E., Herman, B., Djiane, J., and Gertler, A. (2003). Ovine placental lactogen-induced heterodimerisation of ovine growth hormone and prolactin receptors in living cells is demonstrated by fluorescence resonance energy transfer microscopy and leads to prolonged phosphorylation of signal transducer and activator of transcription (STAT)1 and STAT3. Endocrinology 144, 3532–3540.
Ovine placental lactogen-induced heterodimerisation of ovine growth hormone and prolactin receptors in living cells is demonstrated by fluorescence resonance energy transfer microscopy and leads to prolonged phosphorylation of signal transducer and activator of transcription (STAT)1 and STAT3.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlslGjt78%3D&md5=03a72a51c4f5589c922cdb46e1b2dae7CAS | 12865335PubMed |

Binelli, M., Subramaniam, P., Diaz, T., Johnson, G. A., Hansen, T. R., Badinga, L., and Thatcher, W. W. (2001). Bovine interferon-tau stimulates the Janus kinase–signal transducer and activator of transcription pathway in bovine endometrial epithelial cells. Biol. Reprod. 64, 654–665.
Bovine interferon-tau stimulates the Janus kinase–signal transducer and activator of transcription pathway in bovine endometrial epithelial cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnsVOgsg%3D%3D&md5=efaab8803ed0de86ba627204dff671feCAS | 11159370PubMed |

Carter, F., Forde, N., Duffy, P., Wade, M., Fair, T., Crowe, M. A., Evans, A. C., Kenny, D. A., Roche, J. F., and Lonergan, P. (2008). Effect of increasing progesterone concentration from Day 3 of pregnancy on subsequent embryo survival and development in beef heifers. Reprod. Fertil. Dev. 20, 368–375.
Effect of increasing progesterone concentration from Day 3 of pregnancy on subsequent embryo survival and development in beef heifers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjtVKksLg%3D&md5=15723b1422e021cc8b7ba8d924d97509CAS | 18402756PubMed |

Catalano, R. D., Johnson, M. H., Campbell, E. A., Charnock-Jones, D. S., Smith, S. K., and Sharkey, A. M. (2005). Inhibition of Stat3 activation in the endometrium prevents implantation: a nonsteroidal approach to contraception. Proc. Natl. Acad. Sci. USA 102, 8585–8590.
Inhibition of Stat3 activation in the endometrium prevents implantation: a nonsteroidal approach to contraception.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlsFCgtrk%3D&md5=ebeb1c0714ee7bafadb05d73f2f8172fCAS | 15937114PubMed |

Choi, Y., Johnson, G. A., Burghardt, R. C., Berghman, L. R., Joyce, M. M., Taylor, K. M., Stewart, M. D., Bazer, F. W., and Spencer, T. E. (2001). Interferon regulatory factor-two restricts expression of interferon-stimulated genes to the endometrial stroma and glandular epithelium of the ovine uterus. Biol. Reprod. 65, 1038–1049.
Interferon regulatory factor-two restricts expression of interferon-stimulated genes to the endometrial stroma and glandular epithelium of the ovine uterus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnt1Cmsr0%3D&md5=82e03c7da628555ca11fc1bf6768ec4cCAS | 11566724PubMed |

Cronin, J. G., Turner, M. L., Goetze, L., Bryant, C. E., and Sheldon, I. M. (2012). Toll-like receptor 4 and MYD88-dependent signalling mechanisms of the innate immune system are essential for the response to lipopolysaccharide by epithelial and stromal cells of the bovine endometrium. Biol. Reprod. 86, 51.
Toll-like receptor 4 and MYD88-dependent signalling mechanisms of the innate immune system are essential for the response to lipopolysaccharide by epithelial and stromal cells of the bovine endometrium.Crossref | GoogleScholarGoogle Scholar | 22053092PubMed |

Degrelle, S. A., Campion, E., Cabau, C., Piumi, F., Reinaud, P., Richard, C., Renard, J. P., and Hue, I. (2005). Molecular evidence for a critical period in mural trophoblast development in bovine blastocysts. Dev. Biol. 288, 448–460.
Molecular evidence for a critical period in mural trophoblast development in bovine blastocysts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlaitrjN&md5=216e877060e03e0a0eada43eb15c5bcaCAS | 16289134PubMed |

Dimitriadis, E., Sharkey, A. M., Tan, Y. L., Salamonsen, L. A., and Sherwin, J. R. (2007). Immunolocalisation of phosphorylated STAT3, interleukin 11 and leukaemia inhibitory factor in endometrium of women with unexplained infertility during the implantation window. Reprod. Biol. Endocrinol. 5, 44.
Immunolocalisation of phosphorylated STAT3, interleukin 11 and leukaemia inhibitory factor in endometrium of women with unexplained infertility during the implantation window.Crossref | GoogleScholarGoogle Scholar | 18047677PubMed |

Ealy, A. D., and Yang, Q. E. (2009). Control of interferon-tau expression during early pregnancy in ruminants. Am. J. Reprod. Immunol. 61, 95–106.
Control of interferon-tau expression during early pregnancy in ruminants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXislOhu7s%3D&md5=c27c46a6f499f53280b6ab1b99cfc0a6CAS | 19143673PubMed |

Eozenou, C., Vitorino Carvalho, A., Forde, N., Giraud-Delville, C., Gall, L., Lonergan, P., Auguste, A., Charpigny, G., Richard, C., Pannetier, M., and Sandra, O. (2012). FOXL2 is regulated during the bovine oestrous cycle and its expression in the endometrium is independent of conceptus-derived interferon tau. Biol. Reprod. 87, 32.
FOXL2 is regulated during the bovine oestrous cycle and its expression in the endometrium is independent of conceptus-derived interferon tau.Crossref | GoogleScholarGoogle Scholar | 22623620PubMed |

Forde, N., Beltman, M. E., Duffy, G. B., Duffy, P., Mehta, J. P., O’Gaora, P., Roche, J. F., Lonergan, P., and Crowe, M. A. (2011a). Changes in the endometrial transcriptome during the bovine oestrous cycle: effect of low circulating progesterone and consequences for conceptus elongation. Biol. Reprod. 84, 266–278.
Changes in the endometrial transcriptome during the bovine oestrous cycle: effect of low circulating progesterone and consequences for conceptus elongation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVeltr4%3D&md5=bab46e16cdaf3632053797274c23f3cfCAS | 20881316PubMed |

Forde, N., Carter, F., Spencer, T. E., Bazer, F. W., Sandra, O., Mansouri-Attia, N., Okumu, L. A., McGettigan, P. A., Mehta, J. P., McBride, R., O’Gaora, P., Roche, J. F., and Lonergan, P. (2011b). Conceptus-induced changes in the endometrial transcriptome: how soon does the cow know she is pregnant? Biol. Reprod. 85, 144–156.
Conceptus-induced changes in the endometrial transcriptome: how soon does the cow know she is pregnant?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotFOlsL4%3D&md5=c9cd981bf71eaa15e0127368e8424965CAS | 21349821PubMed |

Forde, N., Mehta, J. P., Minten, M., Crowe, M. A., Roche, J. F., Spencer, T. E., and Lonergan, P. (2012). Effects of low progesterone on the endometrial transcriptome in cattle. Biol. Reprod. 87, 124.
Effects of low progesterone on the endometrial transcriptome in cattle.Crossref | GoogleScholarGoogle Scholar | 23018184PubMed |

Gray, C. A., Abbey, C. A., Beremand, P. D., Choi, Y., Farmer, J. L., Adelson, D. L., Thomas, T. L., Bazer, F. W., and Spencer, T. E. (2006). Identification of endometrial genes regulated by early pregnancy, progesterone and interferon tau in the ovine uterus. Biol. Reprod. 74, 383–394.
Identification of endometrial genes regulated by early pregnancy, progesterone and interferon tau in the ovine uterus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xot1Kktg%3D%3D&md5=0eb05bb9199961fe399d9976947a91d6CAS | 16251498PubMed |

Hess, A. P., Hamilton, A. E., Talbi, S., Dosiou, C., Nyegaard, M., Nayak, N., Genbecev-Krtolica, O., Mavrogianis, P., Ferrer, K., Kruessel, J., Fazleabas, A. T., Fisher, S. J., and Giudice, L. C. (2007). Decidual stromal cell response to paracrine signals from the trophoblast: amplification of immune and angiogenic modulators. Biol. Reprod. 76, 102–117.
Decidual stromal cell response to paracrine signals from the trophoblast: amplification of immune and angiogenic modulators.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhs1Ojuw%3D%3D&md5=e2ed98a6c5dfda5e6ffa7ae342883411CAS | 17021345PubMed |

Ivashkiv, L. B., and Hu, X. (2004). Signalling by STATs. Arthritis Res. Ther. 6, 159–168.
Signalling by STATs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXotFanurw%3D&md5=e3eb4b0fe02bdf1f1449419b11df6e02CAS | 15225360PubMed |

Jabbour, H. N., Critchley, H. O., and Boddy, S. C. (1998). Expression of functional prolactin receptors in non-pregnant human endometrium: Janus kinase-2, signal transducer and activator of transcription-1 (STAT1) and STAT5 proteins are phosphorylated after stimulation with prolactin. J. Clin. Endocrinol. Metab. 83, 2545–2553.
Expression of functional prolactin receptors in non-pregnant human endometrium: Janus kinase-2, signal transducer and activator of transcription-1 (STAT1) and STAT5 proteins are phosphorylated after stimulation with prolactin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXksVSisLw%3D&md5=413e5e12af775d653a143a1eb847cbe1CAS | 9661641PubMed |

Ji, Y. Q., Zhang, Y. Q., Li, M. Q., Du, M. R., Wei, W. W., and Li da, J. (2011). EPO improves the proliferation and inhibits apoptosis of trophoblast and decidual stromal cells through activating STAT-5 and inactivating p38 signal in human early pregnancy. Int. J. Clin. Exp. Pathol. 4, 765–774.
| 1:CAS:528:DC%2BC3MXhs1KhtLrI&md5=34bfc1ab069d75913a7d47e87a906bbfCAS | 22135724PubMed |

Joyce, M. M., Burghardt, R. C., Geisert, R. D., Burghardt, J. R., Hooper, R. N., Ross, J. W., Ashworth, M. D., and Johnson, G. A. (2007). Pig conceptuses secrete oestrogen and interferons to differentially regulate uterine STAT1 in a temporal and cell type-specific manner. Endocrinology 148, 4420–4431.
Pig conceptuses secrete oestrogen and interferons to differentially regulate uterine STAT1 in a temporal and cell type-specific manner.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpslCnurg%3D&md5=c371f5d7d88ea7aeca0f7cabe50f1617CAS | 17525118PubMed |

Kessler, M. A., Duello, T. M., and Schuler, L. A. (1991). Expression of prolactin-related hormones in the early bovine conceptus, and potential for paracrine effect on the endometrium. Endocrinology 129, 1885–1895.
Expression of prolactin-related hormones in the early bovine conceptus, and potential for paracrine effect on the endometrium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXmt1eqt7o%3D&md5=a126e518aec058598c53566387c97c83CAS | 1915073PubMed |

Kim, S., Choi, Y., Bazer, F. W., and Spencer, T. E. (2003). Identification of genes in the ovine endometrium regulated by interferon tau independent of signal transducer and activator of transcription 1. Endocrinology 144, 5203–5214.
Identification of genes in the ovine endometrium regulated by interferon tau independent of signal transducer and activator of transcription 1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpsV2gtLo%3D&md5=a4e7a9b289122906e481cc7377cadcb9CAS | 12960022PubMed |

Klein, C., Bauersachs, S., Ulbrich, S. E., Einspanier, R., Meyer, H. H., Schmidt, S. E., Reichenbach, H. D., Vermehren, M., Sinowatz, F., Blum, H., and Wolf, E. (2006). Monozygotic twin model reveals novel embryo-induced transcriptome changes of bovine endometrium in the pre-attachment period. Biol. Reprod. 74, 253–264.
Monozygotic twin model reveals novel embryo-induced transcriptome changes of bovine endometrium in the pre-attachment period.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xot1Kmuw%3D%3D&md5=9c7560ea1e2b08fae9774491ff463be0CAS | 16207835PubMed |

Lee, K. Y., and DeMayo, F. J. (2004). Animal models of implantation. Reproduction 128, 679–695.
Animal models of implantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFSltg%3D%3D&md5=2bf58c5c18adba8fbf7ccc6ffc98e768CAS | 15579585PubMed |

Levy, D. E., and Darnell, J. E. (2002). Stats: transcriptional control and biological impact. Nat. Rev. Mol. Cell Biol. 3, 651–662.
Stats: transcriptional control and biological impact.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xmslansrw%3D&md5=7bba61a3dedcf37d9e498e8bcf0e3d4eCAS | 12209125PubMed |

Maj, T., and Chelmonska-Soyta, A. (2007). Pleiotropy and redundancy of STAT proteins in early pregnancy. Reprod. Domest. Anim. 42, 343–353.
Pleiotropy and redundancy of STAT proteins in early pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXptlKnsrk%3D&md5=8e022f565f52cdc51c7d5d835b82e9ceCAS | 17635769PubMed |

Mak, I. Y., Brosens, J. J., Christian, M., Hills, F. A., Chamley, L., Regan, L., and White, J. O. (2002). Regulated expression of signal transducer and activator of transcription, Stat5, and its enhancement of PRL expression in human endometrial stromal cells in vitro. J. Clin. Endocrinol. Metab. 87, 2581–2588.
Regulated expression of signal transducer and activator of transcription, Stat5, and its enhancement of PRL expression in human endometrial stromal cells in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XkvFaku70%3D&md5=99961ee71e89094fe315998b6e694713CAS | 12050218PubMed |

Mamo, S., Mehta, J. P., Forde, N., McGettigan, P., and Lonergan, P. (2012). Conceptus–endometrium crosstalk during maternal recognition of pregnancy in cattle. Biol. Reprod. 87, 1–9.
Conceptus–endometrium crosstalk during maternal recognition of pregnancy in cattle.Crossref | GoogleScholarGoogle Scholar |

Mansouri-Attia, N., Aubert, J., Reinaud, P., Giraud-Delville, C., Taghouti, G., Galio, L., Everts, R. E., Degrelle, S., Richard, C., Hue, I., Yang, X., Tian, X. C., Lewin, H. A., Renard, J. P., and Sandra, O. (2009a). Gene expression profiles of bovine caruncular and intercaruncular endometrium at implantation. Physiol. Genomics 39, 14–27.
Gene expression profiles of bovine caruncular and intercaruncular endometrium at implantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlakt7rM&md5=53fff39a7e5d2ec5d3682ffa511b7fa8CAS | 19622795PubMed |

Mansouri-Attia, N., Sandra, O., Aubert, J., Degrelle, S., Everts, R. E., Giraud-Delville, C., Heyman, Y., Galio, L., Hue, I., Yang, X., Tian, X. C., Lewin, H. A., and Renard, J. P. (2009b). Endometrium as an early sensor of in vitro embryo manipulation technologies. Proc. Natl. Acad. Sci. USA 106, 5687–5692.
Endometrium as an early sensor of in vitro embryo manipulation technologies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkvFGhurY%3D&md5=d0b1417d58eb701294e0579ca549548dCAS | 19297625PubMed |

Mohr, A., Chatain, N., Domoszlai, T., Rinis, N., Sommerauer, M., Vogt, M., and Muller-Newen, G. (2012). Dynamics and non-canonical aspects of JAK/STAT signalling. Eur. J. Cell Biol. 91, 524–532.
Dynamics and non-canonical aspects of JAK/STAT signalling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlvFyhtbo%3D&md5=373f9b935d0ee0918ea02850570740f3CAS | 22018664PubMed |

Nagashima, T., Maruyama, T., Uchida, H., Kajitani, T., Arase, T., Ono, M., Oda, H., Kagami, M., Masuda, H., Nishikawa, S., Asada, H., and Yoshimura, Y. (2008). Activation of SRC kinase and phosphorylation of signal transducer and activator of transcription-5 are required for decidual transformation of human endometrial stromal cells. Endocrinology 149, 1227–1234.
Activation of SRC kinase and phosphorylation of signal transducer and activator of transcription-5 are required for decidual transformation of human endometrial stromal cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXisVaqtL4%3D&md5=46f197af5fbf1bb97f209f877c605c3bCAS | 18063684PubMed |

Nakamura, H., Kimura, T., Koyama, S., Ogita, K., Tsutsui, T., Shimoya, K., Taniguchi, T., Koyama, M., Kaneda, Y., and Murata, Y. (2006). Mouse model of human infertility: transient and local inhibition of endometrial STAT-3 activation results in implantation failure. FEBS Lett. 580, 2717–2722.
Mouse model of human infertility: transient and local inhibition of endometrial STAT-3 activation results in implantation failure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksFaqs7o%3D&md5=6f0bd16d893a1b7381fdc2387f4478a2CAS | 16647058PubMed |

Oliveira, R., Taghouti, G., Heyman, Y., Hue, I., Sandra, O., Renard, J. P., Guillomot, M., and Lewin, H. A. (2010) Systems biology of mammalian embryo implantation and early placental development. In ‘Reproduction in domestic ruminants. Vol. VII. Proceedings of the eighth International Symposium on Reproduction in Domestic Ruminants’. 7th Edn. (Ed(s) M. C. Lucy, J. L. Pate, M. F. Smith and T. E. Spencer.) p. 104. (Nottingham University Press, Nottingham.)

Popovici, R. M., Betzler, N. K., Krause, M. S., Luo, M., Jauckus, J., Germeyer, A., Bloethner, S., Schlotterer, A., Kumar, R., Strowitzki, T., and von Wolff, M. (2006). Gene expression profiling of human endometrial–trophoblast interaction in a co-culture model. Endocrinology 147, 5662–5675.
Gene expression profiling of human endometrial–trophoblast interaction in a co-culture model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1yqtr%2FM&md5=7912dc70de9a0971606dba8e54154e3dCAS | 16946011PubMed |

Postel-Vinay, M. C., and Kelly, P. A. (1996). Growth hormone receptor signalling. Baillieres Clin. Endocrinol. Metab. 10, 323–336.
Growth hormone receptor signalling.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2s%2Fgs1Wnug%3D%3D&md5=ecc2e947e32dedbc4865749b34d29897CAS | 8853442PubMed |

Rico-Bautista, E., Flores-Morales, A., and Fernandez-Perez, L. (2006). Suppressor of cytokine signalling (SOCS) 2, a protein with multiple functions. Cytokine Growth Factor Rev. 17, 431–439.
Suppressor of cytokine signalling (SOCS) 2, a protein with multiple functions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1eqtb7O&md5=d1c446a0b41477dd271c1766b38c98d6CAS | 17070092PubMed |

Roberts, R. M. (2007). Interferon-tau, a Type 1 interferon involved in maternal recognition of pregnancy. Cytokine Growth Factor Rev. 18, 403–408.
Interferon-tau, a Type 1 interferon involved in maternal recognition of pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpvFGrsr4%3D&md5=6e631093695451845079a62b86e15065CAS | 17662642PubMed |

Roberts, R. M., Chen, Y., Ezashi, T., and Walker, A. M. (2008). Interferons and the maternal–conceptus dialog in mammals. Semin. Cell Dev. Biol. 19, 170–177.
Interferons and the maternal–conceptus dialog in mammals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitlGrsrg%3D&md5=fcc76ba6516b9f6f72fc55d60c1117feCAS | 18032074PubMed |

Sandra, O., Bataillon, I., Roux, P., Martal, J., Charpigny, G., Reinaud, P., Bolifraud, P., Germain, G., and Al-Gubory, K. H. (2005). Suppressor of cytokine signalling (SOCS) genes are expressed in the endometrium and regulated by conceptus signals during early pregnancy in the ewe. J. Mol. Endocrinol. 34, 637–644.
Suppressor of cytokine signalling (SOCS) genes are expressed in the endometrium and regulated by conceptus signals during early pregnancy in the ewe.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlslCisr4%3D&md5=4d53b52d15c50b435b90e47fbe5449f4CAS | 15956335PubMed |

Sandra, O., Mansouri-Attia, N., and Lea, R. G. (2012). Novel aspects of endometrial function: a biological sensor of embryo quality and driver of pregnancy success. Reprod. Fertil. Dev. 24, 68–79.
Novel aspects of endometrial function: a biological sensor of embryo quality and driver of pregnancy success.Crossref | GoogleScholarGoogle Scholar |

Song, M. M., and Shuai, K. (1998). The suppressor of cytokine signalling (SOCS) 1 and SOCS3 but not SOCS2 proteins inhibit interferon-mediated antiviral and antiproliferative activities. J. Biol. Chem. 273, 35 056–35 062.
The suppressor of cytokine signalling (SOCS) 1 and SOCS3 but not SOCS2 proteins inhibit interferon-mediated antiviral and antiproliferative activities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXisFaisQ%3D%3D&md5=265386dffc961abb8264b884a53178bbCAS |

Spencer, T. E., Johnson, G. A., Bazer, F. W., Burghardt, R. C., and Palmarini, M. (2007). Pregnancy recognition and conceptus implantation in domestic ruminants: roles of progesterone, interferons and endogenous retroviruses. Reprod. Fertil. Dev. 19, 65–78.
Pregnancy recognition and conceptus implantation in domestic ruminants: roles of progesterone, interferons and endogenous retroviruses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xhtleitr%2FN&md5=3d5cb5996b17d4bb68e5383e0006060eCAS | 17389136PubMed |

Spencer, T. E., Sandra, O., and Wolf, E. (2008). Genes involved in conceptus–endometrial interactions in ruminants: insights from reductionism and thoughts on holistic approaches. Reproduction 135, 165–179.
Genes involved in conceptus–endometrial interactions in ruminants: insights from reductionism and thoughts on holistic approaches.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXit1yrtL4%3D&md5=607698c758f5a9f06bd7f0e261146dafCAS | 18239047PubMed |

Stark, G. R., Kerr, I. M., Williams, B. R., Silverman, R. H., and Schreiber, R. D. (1998). How cells respond to interferons. Annu. Rev. Biochem. 67, 227–264.
How cells respond to interferons.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlsFOmsLo%3D&md5=ca16810f1469d4df9fad46c049dd6a79CAS | 9759489PubMed |

Stewart, M. D., Johnson, G. A., Vyhlidal, C. A., Burghardt, R. C., Safe, S. H., Yu-Lee, L. Y., Bazer, F. W., and Spencer, T. E. (2001). Interferon-tau activates multiple signal transducer and activator of transcription proteins and has complex effects on interferon-responsive gene transcription in ovine endometrial epithelial cells. Endocrinology 142, 98–107.
| 1:CAS:528:DC%2BD3MXltFWjsg%3D%3D&md5=93be9b047abe40f8a6ba81d78ffdfc04CAS | 11145571PubMed |

Stewart, M. D., Choi, Y., Johnson, G. A., Yu-Lee, L. Y., Bazer, F. W., and Spencer, T. E. (2002). Roles of Stat1, Stat2 and interferon regulatory factor-9 (IRF-9) in interferon tau regulation of IRF-1. Biol. Reprod. 66, 393–400.
Roles of Stat1, Stat2 and interferon regulatory factor-9 (IRF-9) in interferon tau regulation of IRF-1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XotVSluw%3D%3D&md5=f8cbe70e04daee4d9050789c0a5bbc01CAS | 11804954PubMed |

Talbi, S., Hamilton, A. E., Vo, K. C., Tulac, S., Overgaard, M. T., Dosiou, C., Le Shay, N., Nezhat, C. N., Kempson, R., Lessey, B. A., Nayak, N. R., and Giudice, L. C. (2006). Molecular phenotyping of human endometrium distinguishes menstrual cycle phases and underlying biological processes in normo-ovulatory women. Endocrinology 147, 1097–1121.
Molecular phenotyping of human endometrium distinguishes menstrual cycle phases and underlying biological processes in normo-ovulatory women.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhvFygsbo%3D&md5=149ec4bea81de570b089b3fb792e873aCAS | 16306079PubMed |

Teng, C. B., Diao, H. L., Ma, H., Cong, J., Yu, H., Ma, X. H., Xu, L. B., and Yang, Z. M. (2004). Signal transducer and activator of transcription 3 (Stat3) expression and activation in rat uterus during early pregnancy. Reproduction 128, 197–205.
Signal transducer and activator of transcription 3 (Stat3) expression and activation in rat uterus during early pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntFeitrc%3D&md5=f55269d280bc5187718445796f79e836CAS | 15280559PubMed |

Walker, C. G., Meier, S., Littlejohn, M. D., Lehnert, K., Roche, J. R., and Mitchell, M. D. (2010). Modulation of the maternal immune system by the pre-implantation embryo. BMC Genomics 11, 474.
Modulation of the maternal immune system by the pre-implantation embryo.Crossref | GoogleScholarGoogle Scholar | 20707927PubMed |

Wooding, F. B., Morgan, G., Forsyth, I. A., Butcher, G., Hutchings, A., Billingsley, S. A., and Gluckman, P. D. (1992). Light and electron microscopic studies of cellular localisation of oPL with monoclonal and polyclonal antibodies. J. Histochem. Cytochem. 40, 1001–1009.
Light and electron microscopic studies of cellular localisation of oPL with monoclonal and polyclonal antibodies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xks1ehsLc%3D&md5=0f7f46ecf2775099f15258e8e10f21a8CAS | 1607634PubMed |

Yoshimura, A., Naka, T., and Kubo, M. (2007). SOCS proteins, cytokine signalling and immune regulation. Nat. Rev. Immunol. 7, 454–465.
SOCS proteins, cytokine signalling and immune regulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXls1Kgtrc%3D&md5=34dfe17e38402538cd6cb10baa62db63CAS | 17525754PubMed |