Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Variations in epithelial Na+ transport and epithelial sodium channel localisation in the vaginal cul-de-sac of the brushtail possum, Trichosurus vulpecula, during the oestrous cycle

T.-A. Alsop A C , B. J. McLeod B and A. G. Butt A
+ Author Affiliations
- Author Affiliations

A Department of Physiology, Otago School of Medical Sciences, University of Otago, PO Box 56, Dunedin 9054, New Zealand.

B AgResearch Invermay, Private Bag 50034 Mosgiel 9053, New Zealand.

C Corresponding author. Email: toni-ann.alsop@otago.ac.nz

Reproduction, Fertility and Development 28(3) 328-336 https://doi.org/10.1071/RD13277
Submitted: 30 August 2013  Accepted: 27 May 2014   Published: 24 July 2014

Abstract

The fluid in the vaginal cul-de-sac of the brushtail possum, Trichosurus vulpecula, is copious at ovulation when it may be involved in sperm transport or maturation, but is rapidly reabsorbed following ovulation. We have used the Ussing short-circuit current (Isc) technique and measurements of transcript and protein expression of the epithelial Na+ channel (ENaC) to determine if variations in electrogenic Na+ transport are associated with this fluid absorption. Spontaneous Isc (<20 µA cm–2 during anoestrus, 60–80 µA cm–2 in cycling animals) was inhibited by serosal ouabain. Mucosal amiloride (10 µmol L–1), an inhibitor of ENaC, had little effect on follicular Isc but reduced luteal Isc by ~35%. This amiloride-sensitive Isc was dependent on mucosal Na+ and the half-maximal inhibitory concentration (IC50)–amiloride (0.95 μmol L–1) was consistent with ENaC-mediated Na+ absorption. Results from polymerase chain reaction with reverse transcription (RT-PCR) indicate that αENaC mRNA is expressed in anoestrous, follicular and luteal phases. However, in follicular animals αENaC immunoreactivity in epithelial cells was distributed throughout the cytoplasm, whereas immunoreactivity was restricted to the apical pole of cells from luteal animals. These data suggest that increased Na+ absorption contributes to fluid absorption during the luteal phase and is regulated by insertion of ENaC into the apical membrane of cul-de-sac epithelial cells.


References

Asher, C., Wald, H., Rossier, B. C., and Garty, H. (1996). Aldosterone-induced increase in the abundance of Na+ channel subunits. Am. J. Physiol. Cell Physiol. 271, C605–C611.
| 1:CAS:528:DyaK28XlsV2ksro%3D&md5=cc202ec0b07e689f01191ae36b3a4f83CAS |

Bhalla, V., Soundararajan, R., Pao, A. C., Li, H. Y., and Pearce, D. (2006). Disinhibitory pathways for control of sodium transport: regulation of ENaC by SGK1 and GILZ. Am. J. Physiol. Renal Physiol. 291, F714–F721.
Disinhibitory pathways for control of sodium transport: regulation of ENaC by SGK1 and GILZ.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFegtLnJ&md5=b4d469eadca3c8c000a6aa5bf977419aCAS | 16720863PubMed |

Boyd, C., and Naray-Fejes-Toth, A. (2005). Gene regulation of ENaC subunits by serum- and glucocorticoid-inducible kinase-1. Am. J. Physiol. Renal Physiol. 288, F505–F512.
Gene regulation of ENaC subunits by serum- and glucocorticoid-inducible kinase-1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXisVOjtbs%3D&md5=a20ecf679f0a7274eb555308b4230e8fCAS | 15536167PubMed |

Butt, A. G., Mathieson, S. E., and McLeod, B. J. (2002a). Aldosterone does not regulate amiloride-sensitive Na+ transport in the colon of the Australian common brushtail possum, Trichosurus vulpecula. J. Comp. Physiol. B 172, 519–527.
Aldosterone does not regulate amiloride-sensitive Na+ transport in the colon of the Australian common brushtail possum, Trichosurus vulpecula.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XosFGlsrY%3D&md5=85a2d921473d4b97f5ad7706979527c3CAS | 12192514PubMed |

Butt, A. G., Mathieson, S. E., and McLeod, B. J. (2002b). Electrogenic ion transport in the intestine of the Australian common brushtail possum, Trichosurus vulpecula: indications of novel transport patterns in a marsupial. J. Comp. Physiol. B 172, 495–502.
Electrogenic ion transport in the intestine of the Australian common brushtail possum, Trichosurus vulpecula: indications of novel transport patterns in a marsupial.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XosFGlsr8%3D&md5=0b249be6c6e040dcc4e1992f58bd4eb9CAS | 12192511PubMed |

Canessa, C. M., Schild, L., Buell, G., Thorens, B., Gautschi, I., Horisberger, J. D., and Rossier, B. C. (1994). Amiloride-sensitive epithelial Na+ channel is made of 3 homologous subunits. Nature 367, 463–467.
Amiloride-sensitive epithelial Na+ channel is made of 3 homologous subunits.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXitlymsL4%3D&md5=5fea0152f42404eb1e056d783527a966CAS | 8107805PubMed |

Casslén, B. (1986). Uterine fluid volume. Cyclical variations and possible extrauterine contributions. J. Reprod. Med. 31, 506–510.
| 3735263PubMed |

Chan, L. N., Wang, X. F., Tsang, L. L., So, S. C., Chung, Y. W., Liu, C. Q., and Chan, H. C. (2001). Inhibition of amiloride-sensitive Na+ absorption by activation of CFTR in mouse endometrial epithelium. Pflugers Arch. 443, S132–S136.
Inhibition of amiloride-sensitive Na+ absorption by activation of CFTR in mouse endometrial epithelium. Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXoslSmtb8%3D&md5=35f28bcd64f2f822e7b822ce326ba70dCAS | 11845319PubMed |

Chan, L. N., Tsang, L. L., Rowlands, D. K., Rochelle, L. G., Boucher, R. C., Liu, C. Q., and Chan, H. C. (2002). Distribution and regulation of ENaC subunit and CFTR mRNA expression in murine female reproductive tract. J. Membr. Biol. 185, 165–176.
Distribution and regulation of ENaC subunit and CFTR mRNA expression in murine female reproductive tract.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XitFyrtb8%3D&md5=f9f3339b451648d40ddc29ca2ccd1689CAS | 11891575PubMed |

Chan, H. C., Ruan, Y. C., He, Q., Chen, M. H., Chen, H., Xu, W. M., Chen, W. Y., Xie, C., Zhang, X. H., and Zhou, Z. (2009). The cystic fibrosis transmembrane conductance regulator in reproductive health and disease. J. Physiol. 587, 2187–2195.
The cystic fibrosis transmembrane conductance regulator in reproductive health and disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXntlSis70%3D&md5=6746c15dddd994f3a34bf31292292a23CAS | 19015188PubMed |

Chraïbi, A., and Horisberger, J.-D. (2002). Na self-inhibition of human epithelial Na channel: temperature dependence and effect of extracellular proteases. J. Gen. Physiol. 120, 133–145.
| 12149276PubMed |

Coleman, J. D., Coleman, M. C., and Warburton, B. (2006). Trends in the incidence of tuberculosis in possums and livestock, associated with differing control intensities applied to possum populations. N. Z. Vet. J. 54, 52–60.
Trends in the incidence of tuberculosis in possums and livestock, associated with differing control intensities applied to possum populations.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD287ptVymsg%3D%3D&md5=6d68d643e0a51d535516bebb6ac9db51CAS | 16596155PubMed |

Crawford, J. L., Shackell, G. H., Thompson, E. G., McLeod, B. J., and Hurst, P. R. (1997). Preovulatory follicle development and ovulation in the brushtail possum (Trichosurus vulpecula) monitored by repeated laparoscopy. J. Reprod. Fertil. 110, 361–370.
Preovulatory follicle development and ovulation in the brushtail possum (Trichosurus vulpecula) monitored by repeated laparoscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlvFKrsLo%3D&md5=9c3f5169456059c3f04decbb52ea555cCAS | 9306991PubMed |

Crawford, J. L., McLeod, B. J., and Hurst, P. R. (1999). Cyclical changes in epithelial cells of the vaginal cul-de-sac of brushtail possums (Trichosurus vulpecula). Anat. Rec. 254, 307–321.
Cyclical changes in epithelial cells of the vaginal cul-de-sac of brushtail possums (Trichosurus vulpecula).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1M7psVehtA%3D%3D&md5=14348d9d6fa3dba9a53d60dfd8d2be97CAS | 10096662PubMed |

Curlewis, J. D., Axelson, M., and Stone, G. M. (1985). Identification of the major steroids in ovarian and adrenal venous plasma of the brush-tail possum (Trichosurus, vulpecula) and changes in the peripheral plasma levels of oestradiol and progesterone during the reproductive cycle. J. Endocrinol. 105, 53–62.
Identification of the major steroids in ovarian and adrenal venous plasma of the brush-tail possum (Trichosurus, vulpecula) and changes in the peripheral plasma levels of oestradiol and progesterone during the reproductive cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXhs1Sltr8%3D&md5=0b02e664790e62f307ce9848d62f6713CAS | 3989423PubMed |

Eckery, D. C., Whale, L. J., Lawrence, S. B., Wylde, K. A., McNatty, K. P., and Juengel, J. L. (2002). Expression of mRNA encoding growth differentiation factor 9 and bone morphogenetic protein 15 during follicular formation and growth in a marsupial, the brushtail possum (Trichosurus vulpecula). Mol. Cell. Endocrinol. 192, 115–126.
Expression of mRNA encoding growth differentiation factor 9 and bone morphogenetic protein 15 during follicular formation and growth in a marsupial, the brushtail possum (Trichosurus vulpecula).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XkslGrtLY%3D&md5=b36cd08c10161ce939b6f921a0e28387CAS | 12088873PubMed |

Fitzgerald, G., Wilkinson, R., and Saunders, L. (2000) Public perceptions and issues in possum control. In ‘The Brushtail Possum’. (Ed. TL Montague.) pp. 187–197. (Manaaki Whenua Press: Lincon, Canterbury.)

Frömter, E. (1988). Mechanisms and regulations of ion transport in the renal collecting duct. Comp. Biochem. Physiol. A 90, 701–707.
Mechanisms and regulations of ion transport in the renal collecting duct.Crossref | GoogleScholarGoogle Scholar | 2460286PubMed |

Garty, H., and Palmer, L. G. (1997). Epithelial sodium channels: function, structure and regulation. Physiol. Rev. 77, 359–396.
| 1:CAS:528:DyaK2sXjtF2ktrg%3D&md5=4f2053c95b0a3b19bf72f7bcf95a05b5CAS | 9114818PubMed |

Gautron, J., Hincke, M. T., and Nys, Y. (1997). Precursor matrix proteins in the uterine fluid change with stages of eggshell formation in hens. Connect. Tissue Res. 36, 195–210.
Precursor matrix proteins in the uterine fluid change with stages of eggshell formation in hens.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhtlOrsrc%3D&md5=0f23c00755cb210600ec6a37a650e925CAS | 9512888PubMed |

Hughes, R. L., and Rodger, J. C. (1971). Studies on the vaginal mucus of the marsupial Trichosurus vulpecula. Aust. J. Zool. 19, 19–33.
Studies on the vaginal mucus of the marsupial Trichosurus vulpecula.Crossref | GoogleScholarGoogle Scholar |

Jasti, J., Furukawa, H., Gonzales, E., and Gouaux, E. (2007). Structure of acid-sensing ion channel 1 at 1.9 Å resolution and low pH. Nature 449, 316–323.
Structure of acid-sensing ion channel 1 at 1.9 Å resolution and low pH.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVKiu7vE&md5=d78e4566b5c039ea62fb6b39f9adbedeCAS | 17882215PubMed |

Kopito, L. E., Kosasky, H. J., and Shwachman, H. (1973). Water and electrolytes in cervical mucus from patients with cystic fibrosis. Fertil. Steril. 24, 512–516.
| 1:CAS:528:DyaE3sXksFWnsr4%3D&md5=19aa3a21a7eb38367b79f1dfb51c6e96CAS | 4715225PubMed |

Kunzelmann, K., and Mall, M. (2002). Electrolyte transport in the mammalian colon: mechanisms and implications for disease. Physiol. Rev. 82, 245–289.
| 1:CAS:528:DC%2BD38XovFSitA%3D%3D&md5=380c90f03f9d0ce15dec05c5d91dd856CAS | 11773614PubMed |

Legge, M., Hill, B. L., Shackell, G. H., and McLeod, B. J. (1996). Glycosaminoglycans of the uterine and vaginal cul-de-sac tissue in the brushtail possum (Trichosurus vulpecula). Reprod. Fertil. Dev. 8, 819–823.
Glycosaminoglycans of the uterine and vaginal cul-de-sac tissue in the brushtail possum (Trichosurus vulpecula).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XlvVWksbY%3D&md5=61d2f5262b60651c4125f0c69dc97479CAS | 8870103PubMed |

Levin, R. J., and Edwards, F. (1968). Transuterine endometrial potential difference, its variation during oestrous cycle and its relation to uterine secretion. Life Sci. 7, 1019–1036.
Transuterine endometrial potential difference, its variation during oestrous cycle and its relation to uterine secretion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1MXmtFw%3D&md5=7313fb625a924c16e9d12600a47e0955CAS | 5753190PubMed |

Loffing, J., Zecevic, M., Feraille, E., Kaissling, B., Asher, C., Rossier, B. C., Firestone, G. L., Pearce, D., and Verrey, F. (2001). Aldosterone induces rapid apical translocation of ENaC in early portion of renal collecting system: possible role of SGK. Am. J. Physiol. Renal Physiol. 280, F675–F682.
| 1:CAS:528:DC%2BD3MXjtV2gs78%3D&md5=5c3863bc63d7a6846daefc617fd0839cCAS | 11249859PubMed |

Maier, D. B., and Kuslis, S. T. (1988). Human uterine luminal fluid volumes and prolactin levels in normal menstrual cycles. Am. J. Obstet. Gynecol. 159, 434–439.
Human uterine luminal fluid volumes and prolactin levels in normal menstrual cycles.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1czgslGjug%3D%3D&md5=3fd51c6ed4db50d803e62109b62f0afdCAS | 3407703PubMed |

Matthews, C. J., McEwan, G. T. A., Redfern, C. P. F., Thomas, E. J., and Hirst, B. H. (1998). Absorptive apical amiloride-sensitive Na+ conductance in human endometrial epithelium. J. Physiol. 513, 443–452.
Absorptive apical amiloride-sensitive Na+ conductance in human endometrial epithelium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhtFehsQ%3D%3D&md5=bed35cb5d47cf8f566c91a69cfde451cCAS | 9806994PubMed |

McLeod, B. J., Thompson, E. G., Crawford, J. L., and Shackell, G. H. (1997). Successful group housing of wild-caught brushtail possums (Trichosurus vulpecula). Anim. Welf. 6, 67–76.

McNicholas, C. M., and Canessa, C. M. (1997). Diversity of channels generated by different combinations of epithelial sodium channel subunits. J. Gen. Physiol. 109, 681–692.
Diversity of channels generated by different combinations of epithelial sodium channel subunits.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXktFaqtrg%3D&md5=59800a43719e0975a94c5d81d70a4bacCAS | 9222895PubMed |

Muchekehu, R. W., and Quinton, P. M. (2010). A new role for bicarbonate secretion in cervico–uterine mucus release. J. Physiol. 588, 2329–2342.
A new role for bicarbonate secretion in cervico–uterine mucus release.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpt1eqsL8%3D&md5=2b14c086145d1f5d5dbcda6d585dc48aCAS | 20478977PubMed |

Naftalin, R. J., Thiagarajah, J. R., Pedley, K. C., Pocock, V. J., and Milligan, S. R. (2002). Progesterone stimulation of fluid absorption by the rat uterine gland. Reproduction 123, 633–638.
Progesterone stimulation of fluid absorption by the rat uterine gland.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjvVGgtL0%3D&md5=3d45712c950a737f9978f680f59c10b1CAS | 12006091PubMed |

Palmer, L. G., Li, J. H. Y., Lindemann, B., and Edelman, I. S. (1982). Aldosterone control of the density of sodium channels in the toad urinary-bladder. J. Membr. Biol. 64, 91–102.
Aldosterone control of the density of sodium channels in the toad urinary-bladder.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38Xpsl2nug%3D%3D&md5=05f3b729cf16e90b499817d3696525e6CAS | 6276550PubMed |

Rochwerger, L., and Buchwald, M. (1993). Stimulation of the cystic fibrosis transmembrane regulator expression by oestrogen in vivo. Endocrinology 133, 921–930.
| 1:CAS:528:DyaK3sXmtFOksrg%3D&md5=94342ecd58543bd9230b4b21544cc5e3CAS | 7688293PubMed |

Salker, M. S., Christian, M., Steel, J. H., Nautiyal, J., Lavery, S., Trew, G., Webster, Z., Al-Sabbagh, M., Puchchakayala, G., Foller, M., Landles, C., Sharkey, A. M., Quenby, S., Aplin, J. D., Regan, L., Lang, F., and Brosens, J. J. (2011). Deregulation of the serum and glucocorticoid-inducible kinase SGK1 in the endometrium causes reproductive failure. Nat. Med. 17, 1509–1513.
Deregulation of the serum and glucocorticoid-inducible kinase SGK1 in the endometrium causes reproductive failure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlWltbrN&md5=dfbe7d98c6596fd03884edde260f94afCAS | 22001908PubMed |

Salleh, N., Baines, D. L., Naftalin, R. J., and Milligan, S. R. (2005). The hormonal control of uterine luminal-fluid secretion and absorption. J. Membr. Biol. 206, 17–28.
The hormonal control of uterine luminal-fluid secretion and absorption.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XntVKnsQ%3D%3D&md5=aed50d58f82ee01b38c55e7b535a8402CAS | 16440178PubMed |

Shorey, C. D., and Hughes, R. L. (1973). Cyclical changes in the uterine endometrium and peripheral plasma concentration of progesterone in the Marsupial Trichosurus vulpecula. Aust. J. Zool. 21, 1–19.
Cyclical changes in the uterine endometrium and peripheral plasma concentration of progesterone in the Marsupial Trichosurus vulpecula.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXksFSqu7k%3D&md5=0ec09b5a3a1d2aa2e436bf4c6485130aCAS | 4803460PubMed |

Sizemore, R. J., Hurst, P. R., and McLeod, B. J. (2004). Effect of steroid hormones on tissue remodelling and progesterone receptors in the uterus of seasonally anoestrous brushtail possums (Trichosurus vulpecula). Reproduction 127, 255–264.
Effect of steroid hormones on tissue remodelling and progesterone receptors in the uterus of seasonally anoestrous brushtail possums (Trichosurus vulpecula).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXitVWrtLw%3D&md5=4e891c462bc3e7e3d149fa47832845a8CAS | 15056791PubMed |

Smith, P. R., and Benos, D. J. (1991). Epithelial Na+ channels. Annu. Rev. Physiol. 53, 509–530.
Epithelial Na+ channels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXktVGmsrw%3D&md5=19da3e0a5f208854bbdf5ab8bd41da6bCAS | 1645947PubMed |

Snyder, P. M., Olson, D. R., and Thomas, B. C. (2002). Serum and glucocorticoid-regulated kinase modulates Nedd4–2-mediated inhibition of the epithelial Na+ channel. J. Biol. Chem. 277, 5–8.
Serum and glucocorticoid-regulated kinase modulates Nedd4–2-mediated inhibition of the epithelial Na+ channel.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjslCksA%3D%3D&md5=6c2f82d6c2561fa35444f1bd197d3871CAS | 11696533PubMed |

Staruschenko, A., Adams, E., Booth, R. E., and Stockand, J. D. (2005). Epithelial Na+ channel subunit stoichiometry. Biophys. J. 88, 3966–3975.
Epithelial Na+ channel subunit stoichiometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXksl2jsbc%3D&md5=148cf952b4c290853e0b1b8dfadc78cdCAS | 15821171PubMed |

Sweezey, N., Tchepichev, S., Gagnon, S., Fertuck, K., and O’Brodovich, H. (1998). Female gender hormones regulate mRNA levels and function of the rat lung epithelial Na+ channel. Am. J. Physiol. 274, C379–C386.
| 1:CAS:528:DyaK1cXis1yqsLs%3D&md5=5573eb08b94461f210e90ff14d9df330CAS | 9486127PubMed |

Taggart, D. A. (1994). A comparison of sperm and embryo transport in the female reproductive tract of marsupial and eutherian mammals. Reprod. Fertil. Dev. 6, 451–472.
A comparison of sperm and embryo transport in the female reproductive tract of marsupial and eutherian mammals.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2M7otlOgtQ%3D%3D&md5=92255698520855002316ab0b7190720cCAS | 7878221PubMed |

Tyndale-Biscoe, C. H. (1966) The marsupial birth canal. In ‘Comparative Biology of Reproduction in Mammals. Symposia of the Zoological Society of London. Vol. 15’. (Ed. I. W. Rowlands.) pp. 233–250. (Academic Press: London.)

Van Driessche, W., and Lindemann, B. (1979). Concentration dependence of currents through single sodium-selective pores in frog skin. Nature 282, 519–520.
Concentration dependence of currents through single sodium-selective pores in frog skin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXht1Gksrw%3D&md5=411ca53691bc1d82f3a0c9db7ccbb41bCAS | 315521PubMed |

Vetter, A. E., and O’Grady, S. M. (1996). Mechanisms of electrolyte transport across the endometrium. I. Regulation by PGF2 alpha and cAMP. Am. J. Physiol. Cell Physiol. 270, C663–C672.
| 1:CAS:528:DyaK28XhsFykur8%3D&md5=33a1a3f7c4b7aa0b23e41960c4048148CAS |

Vetter, A. E., and O’Grady, S. M. (2005). Sodium and anion transport across the avian uterine (shell gland) epithelium. J. Exp. Biol. 208, 479–486.
Sodium and anion transport across the avian uterine (shell gland) epithelium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXis1Cmt7g%3D&md5=524d54156fa153438aba61af610cc77bCAS | 15671336PubMed |

Wright, J. (2011). Evaluating the use of 1080: predators, poisons and silent forests. (Parliamentary Commissioner for the Environment: Wellington, New Zealand.) Available at http://www.pce.parliament.nz/publications/all-publications/evaluating-the-use-of-1080-predators-poisons-and-silent-forests [Verified 17 June 2014].

Yang, J. Z., Ajonuma, L. C., Tsang, L. L., Lam, S. Y., Rowlands, D. K., Ho, L. S., Zhou, C. X., Chung, Y. W., and Chan, H. C. (2004). Differential expression and localization of CFTR and ENaC in mouse endometrium during pre-implantation. Cell Biol. Int. 28, 433–439.
Differential expression and localization of CFTR and ENaC in mouse endometrium during pre-implantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlt1egu7o%3D&md5=8858d77497080ac0ef632bd84cf9dee2CAS | 15223019PubMed |