Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Dynamic changes in nuclear import of a nuclear localisation signal-bearing substrate in 8-cell stage porcine embryos

Yanfang Li A , Ki-Eun Park A B and Ryan A. Cabot A C
+ Author Affiliations
- Author Affiliations

A Department of Animal Sciences, Purdue University, 915 W. State St., West Lafayette, IN 47907, USA.

B Present address: Department of Avian and Animal Sciences, University of Maryland, College Park, MD 20742, USA.

C Corresponding author. Email: rcabot@purdue.edu

Reproduction, Fertility and Development 27(2) 385-394 https://doi.org/10.1071/RD13205
Submitted: 28 June 2013  Accepted: 29 October 2013   Published: 17 December 2013

Abstract

Coordinated intracellular trafficking is critically important for proper timing of major cellular events during embryogenesis. Nuclear import mediated by the karyopherin α/β (importin α/β) heterodimer is perhaps the best characterised nuclear trafficking system in eukaryotic cells. Seven karyopherin α subtypes have been identified in the domestic pig, and although each karyopherin α subtype transports proteins bearing classical nuclear localisation signals (NLSs), individual karyopherin α subtypes have been shown to preferentially transport specific cargoes. The aim of the present study was to determine the mechanism by which BRN2, a transcription factor previously reported to be transported by the karyopherin α/β heterodimer, gains access to the nucleus in porcine oocytes and embryos. Using a combination of in vivo and in vitro assays, we tested the hypothesis that discrete karyopherin α subtypes transport BRN2 into the nuclei of porcine oocytes and cleavage stage embryos. Our results show that ectopically expressed BRN2 adopts a nuclear localisation in all nuclei through the 4-cell stage of development, whereas only a subset of blastomeres in 8-cell stage embryos possess nuclear BRN2. This pattern is unique to BRN2 because another ectopically expressed NLS-containing protein is able to adopt a nuclear localisation in all blastomeres of 8-cell stage embryos.

Additional keywords: BRN2, karyopherin, NLS, trafficking.


References

Abeydeera, L. R., and Day, B. N. (1997). Fertilization and subsequent development in vitro of pig oocytes inseminated in a modified tris-buffered medium with frozen–thawed ejaculated spermatozoa. Biol. Reprod. 57, 729–734.
Fertilization and subsequent development in vitro of pig oocytes inseminated in a modified tris-buffered medium with frozen–thawed ejaculated spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmtFCqs7c%3D&md5=7abaea11f386d024b7602360bd7e0f7bCAS | 9314573PubMed |

Abeydeera, L. R., Wang, W. H., Prather, R. S., and Day, B. N. (1998). Maturation in vitro of pig oocytes in protein-free culture media: fertilization and subsequent embryo development in vitro. Biol. Reprod. 58, 1316–1320.
Maturation in vitro of pig oocytes in protein-free culture media: fertilization and subsequent embryo development in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXivFCrtLc%3D&md5=a19a1db662a9c577b73ecf3333b4223bCAS | 9603270PubMed |

Adam, S. A., and Gerace, L. (1991). Cytosolic proteins that specifically bind nuclear localization signals are receptors for nuclear import. Cell 66, 837–847.
Cytosolic proteins that specifically bind nuclear localization signals are receptors for nuclear import.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXmt1Khu7k%3D&md5=f54e0518de9c076a1e64b1c5e295f892CAS | 1653647PubMed |

Cabot, R. A., and Prather, R. S. (2003). Cleavage stage porcine embryos may have differing developmental requirements for karyopherins α2 and α3. Mol. Reprod. Dev. 64, 292–301.
Cleavage stage porcine embryos may have differing developmental requirements for karyopherins α2 and α3.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXos1Whtg%3D%3D&md5=3f4130a926046524e710501636ca7449CAS | 12548662PubMed |

Dingwall, C., and Laskey, R. A. (1991). Nuclear targeting sequences: a consensus? Trends Biochem. Sci. 16, 478–481.
Nuclear targeting sequences: a consensus?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XhtVWiu7Y%3D&md5=e80578b7a7c45ec1e20062310415028cCAS | 1664152PubMed |

Foust, K. B., Li, Y., Park, K., Wang, X., Liu, S., and Cabot, R. A. (2012). The polycomb group protein EED varies in its ability to access the nucleus in porcine oocytes and cleavage stage embryos. Anim. Reprod. Sci. 133, 198–204.
The polycomb group protein EED varies in its ability to access the nucleus in porcine oocytes and cleavage stage embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFGisLjO&md5=b4d942838d352cd69e48b14a4d830d88CAS | 22871331PubMed |

Fukumoto, M., Sekimoto, T., and Yoneda, Y. (2011). Proteomic analysis of importin α-interacting proteins in adult mouse brain. Cell Struct. Funct. 36, 57–67.
Proteomic analysis of importin α-interacting proteins in adult mouse brain.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XkvVertLY%3D&md5=263819a27e32e3639ce8862fee10521fCAS | 21307607PubMed |

Görlich, D., and Kutay, U. (1999). Transport between the cell nucleus and the cytoplasm. Annu. Rev. Cell Dev. Biol. 15, 607–660.
Transport between the cell nucleus and the cytoplasm.Crossref | GoogleScholarGoogle Scholar | 10611974PubMed |

Görlich, D., Henklein, P., Laskey, R. A., and Hartmann, E. (1996). A 41 amino acid motif in importin alpha confers binding to importin beta and hence transit into the nucleus. EMBO J. 15, 1810–1817.
| 8617226PubMed |

Kamei, Y., Yuba, S., Nakayama, T., and Yoneda, Y. (1999). Three distinct classes of the α-subunit of the nuclear pore-targeting complex (importin-α) are differentially expressed in adult mouse tissues. J. Histochem. Cytochem. 47, 363–372.
Three distinct classes of the α-subunit of the nuclear pore-targeting complex (importin-α) are differentially expressed in adult mouse tissues.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhvVWhtLo%3D&md5=da6212dea32dee9a481d8d083e99c1f7CAS | 10026238PubMed |

Kelley, J. B., Talley, A. M., Spencer, A., Gioeli, D., and Paschal, B. M. (2010). Karyopherin alpha7 (KPNA7), a divergent member of the importin alpha family of nuclear import receptors. BMC Cell Biol. 11, 63.
Karyopherin alpha7 (KPNA7), a divergent member of the importin alpha family of nuclear import receptors.Crossref | GoogleScholarGoogle Scholar | 20701745PubMed |

Köhler, M., Speck, C., Christiansen, M., Bischoff, F. R., Prehn, S., Haller, H., Görlich, D., and Hartmann, E. (1999). Evidence for distinct substrate specificities of importin α family members in nuclear protein import. Mol. Cell. Biol. 19, 7782–7791.
| 10523667PubMed |

Ly-Huynh, J. D., Lieu, K. G., Major, A. T., Whiley, P. A., Holt, J. E., Loveland, K. L., and Jans, D. A. (2011). Importin alpha2-interacting proteins with nuclear roles during mammalian spermatogenesis. Biol. Reprod. 85, 1191–1202.
Importin alpha2-interacting proteins with nuclear roles during mammalian spermatogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1ShsLbE&md5=5d26f194953db2647c439c3044e78fbdCAS | 21900684PubMed |

Park, K. E., Inerowicz, H. D., Wang, X., Li, X., Koser, S., and Cabot, R. A. (2012). Identification of karyopherin α1 and α7 interacting proteins in porcine tissue. PLoS One 7, e38990.
Identification of karyopherin α1 and α7 interacting proteins in porcine tissue.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpvVyisbk%3D&md5=d2838b8c8284238c89d41f59c67ec673CAS | 22720010PubMed |

Ribbeck, K., Lipowsky, G., Kent, H. M., Stewar, M., and Görlich, D. (1998). NTF2 mediates nuclear import of Ran. EMBO J. 17, 6587–6598.
NTF2 mediates nuclear import of Ran.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnvF2jtrY%3D&md5=dce06155240ce4c8ad07a49e0840107cCAS | 9822603PubMed |

Rother, F., Shmidt, T., Popova, E., Krivokharchenko, A., Hügel, S., Vilianovich, L., Ridders, M., Tenner, K., Alenina, N., Köhler, M., Hartmann, E., and Bader, M. (2011). Importin α7 is essential for zygotic genome activation and early mouse development. PLoS One 6, e18310.
Importin α7 is essential for zygotic genome activation and early mouse development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXks1Klu7k%3D&md5=17bf0d2fadddd919449f873c0b26b198CAS | 21479251PubMed |

Shmidt, T., Hampich, F., Ridders, M., Schultrich, S., Hans, V. H., Tenner, K., Vilianovich, L., Qadri, F., Alenina, N., Hartmann, E., Köhler, M., and Bader, M. (2007). Normal brain development in importin-alpha5 deficient-mice. Nat. Cell Biol. 9, 1337–1338.
Normal brain development in importin-alpha5 deficient-mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlOns7fE&md5=99257e180fd400b224b273db257e861dCAS | 18059353PubMed |

Talcott, B., and Moore, M. S. (2000). The nuclear import of RCC1 requires a specific nuclear localization sequence receptor, karyopherin α3/Qip. J. Biol. Chem. 275, 10 099–10 104.
The nuclear import of RCC1 requires a specific nuclear localization sequence receptor, karyopherin α3/Qip.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXisFWjs7o%3D&md5=978eb2381816c09a0084dbcb480ae47aCAS |

Tejomurtula, J., Lee, K. B., Tripurani, S. K., Smith, G. W., and Yao, J. (2009). Role of importin alpha8, a new member of the importin alpha family of nuclear transport proteins, in early embryonic development in cattle. Biol. Reprod. 81, 333–342.
Role of importin alpha8, a new member of the importin alpha family of nuclear transport proteins, in early embryonic development in cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptVaitbk%3D&md5=db26ee2f23076f97dfe33cfe086090e5CAS | 19420384PubMed |

Wang, X. (2012). ‘Karyopherin Alpha 7 and Porcine Embryo Development.’ (Purdue University: West Lafayette, IN.)

Wang, X., Park, K. E., Koser, S., Liu, S., Magnani, L., and Cabot, R. A. (2012). KPNA7, an oocyte- and embryo-specific karyopherin α subtype, is required for porcine embryo development. Reprod. Fertil. Dev. 24, 382–391.
KPNA7, an oocyte- and embryo-specific karyopherin α subtype, is required for porcine embryo development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1OitLs%3D&md5=86f909bd8c4bad6e1de1f2b6ec5bacf7CAS | 22281085PubMed |

Yasuhara, N., Shibazaki, N., Tanaka, S., Nagai, M., Kamikawa, Y., Oe, S., Asally, M., Kamachi, Y., Kondoh, H., and Yoneda, Y. (2007). Triggering neural differentiation of ES cells by subtype switching of importin-alpha. Nat. Cell Biol. 9, 72–79.
Triggering neural differentiation of ES cells by subtype switching of importin-alpha.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXltV2r&md5=d5568dcd36948b4661bcec2f6e62f9dcCAS | 17159997PubMed |

Yoshioka, K., Suzuki, C., Tanaka, A., Anas, I. M., and Iwamura, S. (2002). Birth of piglets derived from porcine zygotes cultured in a chemically defined medium. Biol. Reprod. 66, 112–119.
Birth of piglets derived from porcine zygotes cultured in a chemically defined medium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xht1yksQ%3D%3D&md5=336db91a01f713c0bc52fe07782a3876CAS | 11751272PubMed |