Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Impact of gonadotropins on oocyte maturation, fertilisation and developmental competence in vitro

Xuemei Wang A B , Tony Tsai A , Jie Qiao C D , Zhan Zhang B D and Huai L. Feng A C D
+ Author Affiliations
- Author Affiliations

A Department of Obstetrics and Gynecology, New York Hospital Queens, Weill Medical College of Cornell University, New York, NY 11355, USA.

B Reproductive Medical Center, The Third Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou , 450052, China.

C Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100083, China.

D Corresponding authors. Emails: doctorf88@gmail.com; zhangzhanmd@yahoo.com; jie.qiao@263.net

Reproduction, Fertility and Development 26(5) 752-757 https://doi.org/10.1071/RD13024
Submitted: 26 January 2013  Accepted: 2 May 2013   Published: 3 June 2013

Abstract

The aim of the present study was to evaluate the dose-dependent effects of gonadotropins, either singly (Bravelle (B), Luveris (L), Menupur (M), Repronex (R), Gonal-F (G), Follism (F) and Norvarel (N)) or in combination (Menupur + Bravelle; Repronext + Bravelle; and Bravelle + Norvarel), on rates of oocyte maturation, fertilisation and early embryo development in vitro in an animal model. Bovine cumulus–oocyte complexes (COCs) were purchased commercially and cultured in TCM-199 with 10% fetal bovine serum supplemented with varying concentrations of gonadotropin (0, 5, 10, 20, 40 IU or United States Pharmacopoeia (USP) mL–1) for 24 and 48 h according to current IVF clinical stimulation protocols. All gonadotropins enhanced oocyte maturation in vitro in a dose-dependent manner. Individually, Gonal-F (Merck KGaA, Darmstadt, Germany), Follism (Merck Co, Whitehouse Station, NJ, USA) and Repronext (Ferring, Parsippany, NJ, USA) promoted oocyte maturation; in combination, they effectively enhanced COC expansion and increased the maturation competence of MII oocytes. However, high concentrations of gonadotropins may result in maturation arrest. Specific combinations of gonadotropins may change the rate of early embryonic development (8–16-cells) and morula–blastocyst formation. These data provide support for the responsiveness of bovine oocytes to gonadotropins in vitro and the need to consider variations in the relative concentrations and ratio of combinations (FSH/LH or human chorionic gonadotropin) for optimisation of oocyte developmental competence. The results of the present study could be applied to therapeutic clinical stimulation protocols and help improve IVF success rates.

Additional keywords: early embryo development, in vitro maturation, IVF.


References

Anderiesz, C., Ferraretti, A., Magli, C., Fiorentino, A., Fortini, D., Gianaroli, L., Jones, G. M., and Trounson, A. O. (2000). Effect of recombinant human gonadotrophins on human, bovine and murine oocyte meiosis, fertilization and embryonic development in vitro. Hum. Reprod. 15, 1140–1148.
Effect of recombinant human gonadotrophins on human, bovine and murine oocyte meiosis, fertilization and embryonic development in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjvVWit7Y%3D&md5=1c01eb013caa1b52bb4c1c0a66ffb496CAS | 10783367PubMed |

Apparicio, M., Alves, A. E., Pires-Butler, E. A., Ribeiro, A. P., Covizzi, G. J., and Vicente, W. R. (2011). Effects of hormonal supplementation on nuclear maturation and cortical granules distribution of canine oocytes during various reproductive stages. Reprod. Domest. Anim. 46, 896–903.
Effects of hormonal supplementation on nuclear maturation and cortical granules distribution of canine oocytes during various reproductive stages.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlemtrrE&md5=ad3912629da28ff56718f3719e958589CAS | 21352384PubMed |

Busso, C., Fernández-Sánchez, M., García-Velasco, J. A., Landeras, J., Ballesteros, A., Muñoz, E., González, S., Simón, C., Arce, J. C., and Pellicer, A. (2010). The non-ergot derived dopamine agonist quinagolide in prevention of early ovarian hyperstimulation syndrome in IVF patients: a randomized, double-blind, placebo-controlled trial. Hum. Reprod. 25, 995–1004.
The non-ergot derived dopamine agonist quinagolide in prevention of early ovarian hyperstimulation syndrome in IVF patients: a randomized, double-blind, placebo-controlled trial.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjslejtrk%3D&md5=a6967903b57be3c168bdd1905bd12ecaCAS | 20139430PubMed |

Chandrasekher, Y. A., Hutchison, J. S., Zelinski-Wooten, M. B., Hess, D. L., Wolf, D. P., and Stouffer, R. L. (1994). Initiation of periovulatory events in primate follicles using recombinant and native human luteinizing hormone to mimic the mid-cycle gonadotropin surge. J. Clin. Endocrinol. Metab. 79, 298–306.
Initiation of periovulatory events in primate follicles using recombinant and native human luteinizing hormone to mimic the mid-cycle gonadotropin surge.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXkslCisr0%3D&md5=c9bf71341aba4a62896fb950039da366CAS | 8027245PubMed |

Checa, M. A., Espinós, J. J., and Requena, A. (2012). Efficacy and safety of human chorionic gonadotropin for follicular phase stimulation in assisted reproduction: a systematic review and meta-analysis. Fertil. Steril. 97, 1343–1350.
Efficacy and safety of human chorionic gonadotropin for follicular phase stimulation in assisted reproduction: a systematic review and meta-analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XkvFyqsrg%3D&md5=4795bbd71730acf2fa5b56ae5d7a5a92CAS | 22464087PubMed |

Chen, Z. J., Shi, Y. H., Li, Y., Gao, Q., Sheng, Y., and Ma, Z. X. (2008). Clinical analysis of assistant treatment proposals for infertile women with polycystic ovary syndrome. Zhonghua Fu Chan Ke Za Zhi 43, 571–575..
| 19087489PubMed |

Croxtall, J. D., and McKeage, K. (2011). Corifollitropinalfa: a review of its use in controlled ovarian stimulation for assisted reproduction. BioDrugs 25, 243–254.
Corifollitropinalfa: a review of its use in controlled ovarian stimulation for assisted reproduction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlGisrnF&md5=6567f8b525f19fd1429747a8136457dcCAS | 21815699PubMed |

De Vos, M., Ortega-Hrepich, C., Albuz, F. K., Guzman, L., Polyzos, N. P., Smitz, J., and Devroey, P. (2011). Clinical outcome of non-hCG-primed oocyte in vitro maturation treatment in patients with polycystic ovaries and polycystic ovary syndrome. Fertil. Steril. 96, 860–864.
Clinical outcome of non-hCG-primed oocyte in vitro maturation treatment in patients with polycystic ovaries and polycystic ovary syndrome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1GntLjM&md5=4dc3749379a1c8b05baae35def3641a9CAS | 21868003PubMed |

Demeestere, I., Streiff, A. K., Suzuki, J., Al-Khabouri, S., Mahrous, E., Tan, S. L., and Clarke, H. J. (2012). Follicle-stimulating hormone accelerates mouse oocyte development in vivo. Biol. Reprod. 87, 1–11.
Follicle-stimulating hormone accelerates mouse oocyte development in vivo.Crossref | GoogleScholarGoogle Scholar |

Downs, S. M. (2011). Mouse versus rat: profound differences in meiotic regulation at the level of the isolated oocyte. Mol. Reprod. Dev. 78, 778–794.
Mouse versus rat: profound differences in meiotic regulation at the level of the isolated oocyte.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlagu7vN&md5=4a9f30f766efd3380714e62f083c0bf9CAS | 21953615PubMed |

Durnerin, C. I., Erb, K., Fleming, R., Hillier, H., Hillier, S. G., Howles, C. M., Hugues, J. N., Lass, A., Lyall, H., Rasmussen, P., Thong, J., Traynor, I., Westergaard, L., and Yates, R. (2008). Luveris Pretreatment Group. Effects of recombinant LH treatment on folliculogenesis and responsiveness to FSH stimulation. Hum. Reprod. 23, 421–426.
Luveris Pretreatment Group. Effects of recombinant LH treatment on folliculogenesis and responsiveness to FSH stimulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXptlCksg%3D%3D&md5=34b846583b97f8bfa5ebe1e32b317c7bCAS | 18084048PubMed |

Evecen, M., Cirit, U., Demir, K., Hamzaoğlua, A. İ., Bakırera, G., Pabuccuoğlua, S., and Birlera, S. (2011). Adding hormones sequentially could be an effective approach for IVM of dog oocytes. Theriogenology 75, 1647–1651.
Adding hormones sequentially could be an effective approach for IVM of dog oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotFWgt7o%3D&md5=39c4589e2ecdac7cf9294319799b43c3CAS | 21396692PubMed |

Gómez, R., Ferrero, H., Delgado-Rosas, F., Gaytan, M., Morales, C., Zimmermann, R. C., Simón, C., Gaytan, F., and Pellicer, A. (2011). Evidences for the existence of a low dopaminergic tone in polycystic ovarian syndrome: implications for OHSS development and treatment. J. Clin. Endocrinol. Metab. 96, 2484–2492.
Evidences for the existence of a low dopaminergic tone in polycystic ovarian syndrome: implications for OHSS development and treatment.Crossref | GoogleScholarGoogle Scholar | 21646367PubMed |

Lee, H. S., Seo, Y. I., Yin, X. J., Cho, S. G., Lee, S. S., Kim, N. H., Cho, S. K., and Kong, I. K. (2007). Effect of follicle stimulation hormone and luteinizing hormone on cumulus cell expansion and in vitro nuclear maturation of canine oocytes. Reprod. Domest. Anim. 42, 561–565.
Effect of follicle stimulation hormone and luteinizing hormone on cumulus cell expansion and in vitro nuclear maturation of canine oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVGqu7vP&md5=d656d52f4b4c9a44dc1386171dddabfbCAS | 17976060PubMed |

Lehert, P., Schertz, J. C., and Ezcurra, D. (2010). Recombinant human follicle-stimulating hormone produces more oocytes with a lower total dose per cycle in assisted reproductive technologies compared with highly purified human menopausal gonadotrophin: a meta-analysis. Reprod. Biol. Endocrinol. 8, 112.
Recombinant human follicle-stimulating hormone produces more oocytes with a lower total dose per cycle in assisted reproductive technologies compared with highly purified human menopausal gonadotrophin: a meta-analysis.Crossref | GoogleScholarGoogle Scholar | 20846363PubMed |

Li, Y., Chen, Z., Zhao, L., Li, M., Ma, S., Wang, L., and Hu, J. (2004). Influence of epidermal growth factor and gonadotrophin on the in vitro maturation of human oocytes. Zhonghua Nan Ke Xue 10, 257–259, 262.
| 1:CAS:528:DC%2BD2cXptVyls7k%3D&md5=bd382b1d4b614523afbbfd510449a411CAS | 15148918PubMed |

Lin, H., Wang, W., Li, Y., Chen, X., Yang, D., and Zhang, Q. (2011). Triggering final oocyte maturation with reduced doses of hCG in IVF/ICSI: a prospective, randomized and controlled study. Eur. J. Obstet. Gynecol. Reprod. Biol. 159, 143–147.
Triggering final oocyte maturation with reduced doses of hCG in IVF/ICSI: a prospective, randomized and controlled study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsV2iurbM&md5=20b5e82f22ba639605a6e900071b988dCAS | 21824709PubMed |

Liu, S., Feng, H. L., Marchesi, D., Chen, Z. J., and Hershlag, A. (2011). Effect of gonadotropins on dynamic events and global deoxyribonucleic acid methylation during in vitro maturation of oocytes: an animal model. Fertil. Steril. 95, 1503–1506.
Effect of gonadotropins on dynamic events and global deoxyribonucleic acid methylation during in vitro maturation of oocytes: an animal model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjs1CktLo%3D&md5=befa29fd35ede0560d7a7cadf867b15eCAS | 21071022PubMed |

Motohashi, H. H., Sankai, T., and Kada, H. (2011). Live offspring from cryopreserved embryos following in vitro growth, maturation and fertilization of oocytes derived from preantral follicles in mice. J. Reprod. Dev. 57, 715–722.
Live offspring from cryopreserved embryos following in vitro growth, maturation and fertilization of oocytes derived from preantral follicles in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjtVGrsbg%3D&md5=ea9e599ae0d6ae979b6d9e05ebf22b89CAS | 21921433PubMed |

Munne, S., Magli, C., Adler, A., Wright, G., de Boer, K., Mortimer, D., Tucker, M., Cohen, J., and Gianaroli, L. (1997). Treatment-related chromosome abnormalities in human embryos. Hum. Reprod. 12, 780–784.
Treatment-related chromosome abnormalities in human embryos.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2szgtlSisw%3D%3D&md5=b7c7102b4b2079dd19a3000f54330e62CAS | 9159442PubMed |

Oliveira, J. B. A., Baruffi, R., Petersen, C. G., Mauri, A. L., Cavagna, M., and Franco, J. G. (2010). Administration of single-dose GnRH agonist in the luteal phase in ICSI cycles: a meta-analysis. Reprod. Biol. Endocrinol. 8, 107.
Administration of single-dose GnRH agonist in the luteal phase in ICSI cycles: a meta-analysis.Crossref | GoogleScholarGoogle Scholar |

Papanikolaou, E. G., Polyzos, N. P., Humaidan, P., Pados, G., Bosch, E., Tournaye, H., and Tarlatzis, B. (2011). Aromatase inhibitors in stimulated IVF cycles. Reprod. Biol. Endocrinol. 9, 85.
Aromatase inhibitors in stimulated IVF cycles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotVKktb0%3D&md5=f4b37d9b42e987f971bb9832af261f77CAS | 21693033PubMed |

Sha, W., Xu, B.-Z., Li, M., Liu, D., Feng, H. L., and Sun, Q.-Y. (2010). Effect of gonadotropins on oocyte maturation in vitro: an animal model. Fertil. Steril. 93, 1650–1661.
Effect of gonadotropins on oocyte maturation in vitro: an animal model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkslyjurg%3D&md5=f3629746a7a4c123c8840f5ce6110539CAS | 19361797PubMed |

Shalom-Paz, E., Almog, B., Wiser, A., Levin, I., Reinblatt, S., Das, M., Son, W.-Y., and Hananel, H. (2011). Priming in vitro maturation cycles with gonadotropins: salvage treatment for nonresponding patients. Fertil. Steril. 96, 340–343.
Priming in vitro maturation cycles with gonadotropins: salvage treatment for nonresponding patients.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptlyhu7s%3D&md5=9acebd8f0bfdfff938d2d59cc220d439CAS | 21718997PubMed |

Shi, Y., Long, X. L., Du, H. Z., Huang, Y. L., Huang, Q., Yang, J. H., Zhang, W. L., Liu, J. Q., and Xu, H. Y. (2009). In vitro maturation of human oocytes from pregnant late term: a new source of oocytes. Nan Fang Yi Ke Da Xue Xue Bao 29, 1367–1371..
| 1:CAS:528:DC%2BD1MXhtVWhtrbL&md5=02cfe322960535a057cc6b8340f7efa0CAS | 19620055PubMed |

Smitz, J., Andersen, A. N., Devroey, P., and Arce, J. C. (2007). MERIT Group. Endocrine profile in serum and follicular fluid differs after ovarian stimulation with HP-hMG or recombinant FSH in IVF patients. Hum. Reprod. 22, 676–687.
MERIT Group. Endocrine profile in serum and follicular fluid differs after ovarian stimulation with HP-hMG or recombinant FSH in IVF patients.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXksVCqsbo%3D&md5=5a742d9491118c19001317c69f78a87cCAS | 17110397PubMed |

Vogel, R., and Spielmann, H. (1992). Genotoxic and embryotoxic effects of gonadotropin-hyperstimulated ovulation of murine oocytes, preimplantation embryos, and term fetuses. Reprod. Toxicol. 6, 329–333.
Genotoxic and embryotoxic effects of gonadotropin-hyperstimulated ovulation of murine oocytes, preimplantation embryos, and term fetuses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XlvVGjt7g%3D&md5=511f6a7280e83adf1dd2aea0ba76ac25CAS | 1521006PubMed |

Wang, B., Sun, H. X., and Liu, J. Y. (2011). Appropriate prolongation of GnRH-a down-regulation improves the synchronism of follicular development. Zhonghua Nan Ke Xue 17, 1087–1091..
| 1:CAS:528:DC%2BC38XisVClt74%3D&md5=a88e5552dad8adb327dea685d8a957cbCAS | 22235676PubMed |

Ye, J., Campbell, K. H., Craigon, J., and Luck, M. R. (2005). Dynamic changes in meiotic progression and improvement of developmental competence of pig oocytes in vitro by follicle-stimulating hormone and cycloheximide. Biol. Reprod. 72, 399–406.
Dynamic changes in meiotic progression and improvement of developmental competence of pig oocytes in vitro by follicle-stimulating hormone and cycloheximide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXptFGltw%3D%3D&md5=c9bf269fce88df881a8c0502b8d2f973CAS | 15456703PubMed |

Yen, S. S. C., Llenera, G., Little, B., and Casper, R. F. (1968). Disappearance rate of endogenous luteinizing hormone and chorionic gonadotropin in man. J. Clin. Endocrinol. Metab. 28, 1763–1767.
Disappearance rate of endogenous luteinizing hormone and chorionic gonadotropin in man.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1MXlsVClsQ%3D%3D&md5=ba9772057420751ce37737ab67459abcCAS |

Zhuang, G. L., Wong, S. X., and Zhou, C. Q. (1994). The effect of co-administration of low dosage growth hormone and gonadotropin for ovarian hyperstimulation in vitro fertilization and embryo transfer. Zhonghua Fu Chan Ke Za Zhi 29, 471–474..
| 1:STN:280:DyaK2M7js1OntQ%3D%3D&md5=981eeeb81fe11b353fa79a0dfe946158CAS | 7835118PubMed |

Ziebe, S., Lundin, K., Janssens, R., Helmgaard, L., and Arce, J. C. (2007). MERIT (Menotrophin vs Recombinant FSH in vitro Fertilisation Trial) Group. Influence of ovarian stimulation with HP-hMG or recombinant FSH on embryo quality parameters in patients undergoing IVF. Hum. Reprod. 22, 2404–2413.
MERIT (Menotrophin vs Recombinant FSH in vitro Fertilisation Trial) Group. Influence of ovarian stimulation with HP-hMG or recombinant FSH on embryo quality parameters in patients undergoing IVF.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpt1Cnur4%3D&md5=3da48045355c9694f32ba6b06e34467cCAS | 17640944PubMed |