Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Reduced levels of intracellular reactive oxygen species and apoptotic status are not correlated with increases in cryotolerance of bovine embryos produced in vitro in the presence of antioxidants

Nathália A. S. Rocha-Frigoni A , Beatriz C. S. Leão A , Ériklis Nogueira B , Mônica F. Accorsi A and Gisele Z. Mingoti A C
+ Author Affiliations
- Author Affiliations

A Department of Animal Health School of Veterinary Medicine, UNESP–Universidade Estadual Paulista, Araçatuba, SP 16050-680, Brazil.

B Brazilian Agricultural Research Corporation, EMBRAPA Pantanal, Corumbá, MS 79320-900, Brazil.

C Corresponding author. Email: gmingoti@fmva.unesp.br

Reproduction, Fertility and Development 26(6) 797-805 https://doi.org/10.1071/RD12354
Submitted: 2 November 2012  Accepted: 14 May 2013   Published: 6 June 2013

Abstract

The effects of intracellular (cysteine and β-mercaptoethanol) and extracellular (catalase) antioxidant supplementation at different times during in vitro production (IVM and/or in vitro culture (IVC)) on bovine embryo development, intracellular reactive oxygen species (ROS) levels, apoptosis and re-expansion rates after a vitrification–thawing process were examined. Blastocyst frequencies were not affected by either antioxidant supplementation (40.5%–56.4%) or the timing of supplementation (41.7%–55.4%) compared with control (48.7%; P > 0.05). Similarly, antioxidants and the moment of supplementation did not affect (P > 0.05) the total number of blastomeres (86.2–90.5 and 84.4–90.5, respectively) compared with control (85.7). However, the percentage of apoptotic cells was reduced (P < 0.05) in groups supplemented during IVM (1.7%), IVC (2.0%) or both (1.8%) compared with control (4.3%). Intracellular ROS levels measured in Day 7 blastocysts were reduced (P < 0.05) in all groups (0.60–0.78), with the exception of the group supplemented with β-mercaptoethanol during IVC (0.88), which did not differ (P > 0.05) from that in the control group (1.00). Re-expansion rates were not affected (P > 0.05) by the treatments (50.0%–93.0%). In conclusion, antioxidant supplementation during IVM and/or IVC reduces intracellular ROS and the rate of apoptosis; however, supplementation does not increase embryonic development and survival after vitrification.

Additional keywords: oxidative stress, redox status.


References

Ali, A. A., Bilodeau, J. F., and Sirard, M. A. (2003). Antioxidant requirements for bovine oocytes varies during in vitro maturation, fertilization and development. Theriogenology 59, 939–949.
Antioxidant requirements for bovine oocytes varies during in vitro maturation, fertilization and development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXotVSh&md5=153632ccd4cdfa3deaa02cb88a414ff8CAS | 12517395PubMed |

Almodin, C. G., Mingueti-Camara, V. C., Paixao, C. L., and Pereira, P. C. (2010). Embryo development and gestation using fresh and vitrified oocytes. Hum. Reprod. 25, 1192–1198.
Embryo development and gestation using fresh and vitrified oocytes.Crossref | GoogleScholarGoogle Scholar | 20185514PubMed |

Bain, N. T., Madan, P., and Betts, D. H. (2011). The early embryo to intracellular reactive oxygen species is developmentally regulated. Reprod. Fertil. Dev. 23, 561–575.
The early embryo to intracellular reactive oxygen species is developmentally regulated.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlsFKnsLY%3D&md5=f94a599d224beb329b6f31825d35e186CAS | 21557923PubMed |

Behrman, H. R., Kodaman, P. H., Preston, S. L., and Gao, S. (2001). Oxidative stress and the ovary. J. Soc. Gynecol. Investig. 8, S40–S42.
Oxidative stress and the ovary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXht1OqsbY%3D&md5=70e9f0650a2cf164769d7eb79b557b7cCAS | 11223371PubMed |

Bergelson, S., Pinkus, R., and Daniel, V. (1994). Intracellular glutathione levels regulate Fos/Jun induction and activation of gluthathione S-transferase gene expression. Cancer Res. 54, 36–40.
| 1:CAS:528:DyaK2cXht1Oisr0%3D&md5=a27d4a446734cdfb3216834ed5c4c4feCAS | 8261458PubMed |

Chiba, T., Takahashi, S., Sato, N., Ishii, S., and Kikushi, K. (1996). Fas-mediated apoptosis is modulated by intracellular glutathione in human T-cell. Eur. J. Immunol. 26, 1164–1169.
Fas-mediated apoptosis is modulated by intracellular glutathione in human T-cell.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xjt1Cqs70%3D&md5=44d8b1e11c9a5f7b5ec8d6c25b4db3deCAS | 8647182PubMed |

de Matos, D. G., and Furnus, C. C. (2000). The importance of having high glutathione (GSH) levels after bovine in vitro maturation on embryo development: effect of β-mercaptoethanol, cysteine and cystine. Theriogenology 53, 761–771.
The importance of having high glutathione (GSH) levels after bovine in vitro maturation on embryo development: effect of β-mercaptoethanol, cysteine and cystine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhvVyhs7g%3D&md5=94339d178ae2bae22cffa427ebcf3417CAS | 10735042PubMed |

de Matos, D. G., Furnus, C. C., Moses, D. F., and Baldassare, H. (1995). Effect of cysteamine on glutathione level and developmental capacity of bovine oocytes matured in vitro. Mol. Reprod. Dev. 42, 432–436.
Effect of cysteamine on glutathione level and developmental capacity of bovine oocytes matured in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXpvVGisLc%3D&md5=26a80a85cca48de7e542dc149849104eCAS | 8607972PubMed |

de Matos, D. G., Furnus, C. C., and Moses, D. F. (1997). Glutathione synthesis during in vitro maturation of bovine oocytes: role of cumulus cells. Biol. Reprod. 57, 1420–1425.
Glutathione synthesis during in vitro maturation of bovine oocytes: role of cumulus cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXnvVWktrY%3D&md5=22a6293b2ae5a322ecb5366e33bd5e2cCAS | 9408249PubMed |

de Matos, D. G., Herrera, C., Cortvrindt, R., Smitz, J., Van Soon, A., and Noguiera, D. (2002). Cysteamine supplementation during in vitro maturation and embryo culture: a useful tool for increasing the efficiency of bovine in vitro embryo production. Mol. Reprod. Dev. 62, 203–209.
Cysteamine supplementation during in vitro maturation and embryo culture: a useful tool for increasing the efficiency of bovine in vitro embryo production.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xjs1Wmsrc%3D&md5=da478db9aa30102fe55df4d058f0647eCAS | 11984830PubMed |

Deleuze, S., and Goudet, G. (2010). Cysteamine supplementation of in vitro maturation media: a review. Reprod. Domest. Anim. 45, e476–e482.
Cysteamine supplementation of in vitro maturation media: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1WrsLfF&md5=7649148d8d4c7a15c7796682e4150e5eCAS | 20210887PubMed |

Feugang, J. M., De Roover, R., Moens, A., Léonard, S., Dessy, F., and Donnay, I. (2004). Addition of β-mercaptoethanol or trolox at the morula/blastocyst stage improves the quality of bovine blastocysts and prevents induction of apoptosis and degeneration by prooxidants agents. Theriogenology 61, 71–90.
Addition of β-mercaptoethanol or trolox at the morula/blastocyst stage improves the quality of bovine blastocysts and prevents induction of apoptosis and degeneration by prooxidants agents.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpt1eqtLs%3D&md5=7a6e6f036b169d15714669bd57639a62CAS | 14643863PubMed |

Fidelus, R. K., Ginouves, P., Lawrence, D., and Tsan, M. F. (1987). Modulation of intracellular glutathione concentrations alters lymphocyte activation and proliferation. Exp. Cell Res. 170, 269–275.
Modulation of intracellular glutathione concentrations alters lymphocyte activation and proliferation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXltFCisb8%3D&md5=a5cdde36faef290ea5282a5bd6502c2eCAS | 3595735PubMed |

Fuchinoue, K., Fukunaga, N., Chiba, S., Nakajo, Y., Yagi, A., and Kyono, K. (2004). Freezing of human immature oocytes using cryoloops with Taxol in the vitrification solution. J. Assist. Reprod. Genet. 21, 307–309.
Freezing of human immature oocytes using cryoloops with Taxol in the vitrification solution.Crossref | GoogleScholarGoogle Scholar | 15568332PubMed |

Furnus, C. C., De Matos, D. G., Picco, S., García, P. P., Inda, A. M., Mattiolo, G., and Errecalde, A. L. (2008). Metabolic requirements associated with GSH synthesis during in vitro maturation of cattle oocytes. Anim. Reprod. Sci. 109, 88–99.
Metabolic requirements associated with GSH synthesis during in vitro maturation of cattle oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht12gu73K&md5=c29f919faef8d762a1edb23ab14b0698CAS | 18242890PubMed |

Gomes, A., Fernandes, E., and Lima, J. L. F. C. (2006). Use of fluorescence probes for detection of reactive oxygen species: a review. J. Fluoresc. 16, 119–139.
Use of fluorescence probes for detection of reactive oxygen species: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjtlansLg%3D&md5=b4f1ed254d63e72bfaceb6514f397bacCAS | 16477509PubMed |

Gonçalves, F. S., Barreto, L. S. S., Arruda, R. P., Perri, S. H. V., and Mingoti, G. Z. (2010). Effect of antioxidants during bovine in vitro fertilization procedures on spermatozoa and embryo development. Reprod. Domest. Anim. 45, 129–135.
Effect of antioxidants during bovine in vitro fertilization procedures on spermatozoa and embryo development.Crossref | GoogleScholarGoogle Scholar | 18992086PubMed |

Goto, Y., Noda, Y., Mori, T., and Nakano, M. (1993). Increased generation of reactive oxygen species in embryo cultured in vitro. Free Radic. Biol. Med. 15, 69–75.
Increased generation of reactive oxygen species in embryo cultured in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXlvFOnsL8%3D&md5=671c502ef46b157604daad6eda39ac76CAS | 8359711PubMed |

Guérin, P., Mouatassim, S. E. L., and Ménézo, Y. (2001). Oxidative stress and protection against reative oxygen species in the pre-implantation embryo and its surroundings. Hum. Reprod. Update 7, 175–189.
Oxidative stress and protection against reative oxygen species in the pre-implantation embryo and its surroundings.Crossref | GoogleScholarGoogle Scholar | 11284661PubMed |

Harvey, A. J. (2007). The role of oxygen in ruminant preimplantation embryo development and metabolism. Anim. Reprod. Sci. 98, 113–128.
The role of oxygen in ruminant preimplantation embryo development and metabolism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhs1Slu7s%3D&md5=cbb1eef216bc11c8a584d98b7326517fCAS | 17158002PubMed |

Harvey, M. B., Arcellana-Panlilio, M. Y., Zhang, X., Schultz, G. A., and Watson, A. J. (1995). Expression of genes encoding antioxidants enzymes in preimplantation mouse and cow embryos and primary bovine oviduct cultures employed for embryo co-cultured. Biol. Reprod. 53, 532–540.
Expression of genes encoding antioxidants enzymes in preimplantation mouse and cow embryos and primary bovine oviduct cultures employed for embryo co-cultured.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXns1yls7o%3D&md5=c75002268fa7b8315682cd7df1b3702bCAS | 7578676PubMed |

Hosseini, S. M., Forouzanfar, M., Hajian, M., Asgari, V., Abedi, P., Hosseini, L., Ostadhosseini, S., Moulavi, F., Safahani Langrroodi, M., Sadeghi, H., Bahramian, H., Eghbalsaied, Sh., and Nasr-Esfahani, M. H. (2009). Antioxidant supplementation of culture medium during embryo development and/or after vitrification–warming: which is the most important? J. Assist. Reprod. Genet. 26, 355–364.
Antioxidant supplementation of culture medium during embryo development and/or after vitrification–warming: which is the most important?Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1MrmslCgtw%3D%3D&md5=7ad5128ebb6b5175c2e41789ddf3abd2CAS | 19543824PubMed |

Imai, K., Matoba, S., Dochi, O., and Shimohira, I. (2002). Different factors affect developmental ampetence and cryotolerance in in vitro produced bovine embryo. J. Vet. Med. Sci. 64, 887–891.
Different factors affect developmental ampetence and cryotolerance in in vitro produced bovine embryo.Crossref | GoogleScholarGoogle Scholar | 12419864PubMed |

Iwata, H., Akamatsu, S., Minami, N., and Yamada, M. (1998). Effects of antioxidants on the development of bovine IVM/IVF embryos in various concentrations of glucose. Theriogenology 50, 365–375.
Effects of antioxidants on the development of bovine IVM/IVF embryos in various concentrations of glucose.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmtVWmsb4%3D&md5=d39daf436fa416ebc795b857190547e0CAS | 10732132PubMed |

Johnson, M. H., and Nars-Esfahani, M. H. (1994). Radical solutions and cultural problems: could free oxygen radicals be responsible for the impaired development of preimplantation mammalian embryos in vitro? Bioessays 16, 31–38.
Radical solutions and cultural problems: could free oxygen radicals be responsible for the impaired development of preimplantation mammalian embryos in vitro?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXivFGhu7c%3D&md5=fdc85f626f2c895cbf9542b199e1c54fCAS | 8141805PubMed |

Korhonen, K., Julkunen, H., Kananen, K., Bredbacka, P., Tiirikka, T., Räty, M., Vartia, K., Kaimio, I., Kontinen, A., Halmekytö, M., Vikki, J., Peippo, J., and Lindeberg, H. (2012). Effect of ascorbic acid during biopy and cryopreservation on viability of bovine embryos produced in vivo. Theriogenology 77, 201–205.
Effect of ascorbic acid during biopy and cryopreservation on viability of bovine embryos produced in vivo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsF2rt7vN&md5=ba6bab98e1c91502df8ef60c588daf7aCAS | 21924472PubMed |

Kuwayama, M., Vajta, G., Ieda, S., and Kato, O. (2005). Comparison of open and closed methods for vitrification of human embryos and the elimination of potential contamination. Reprod. Biomed. Online 11, 608–614.
Comparison of open and closed methods for vitrification of human embryos and the elimination of potential contamination.Crossref | GoogleScholarGoogle Scholar | 16409712PubMed |

Liang, C. M., Lee, N., Cattell, D., and Liang, S. M. (1989). Glutahione regulates interleukin-2 activity on cytotoxic T-cell. J. Biol. Chem. 264, 13 519–13 523.
| 1:CAS:528:DyaL1MXkvFGhurg%3D&md5=3e20899df860e5262276d3a0eb8f0b91CAS |

Lopes, A. S., Lane, M., and Thompson, J. G. (2010). Oxygen consumption and ROS production are increased at the time of fertilization and cell cleavage in bovine zygotes. Hum. Reprod. 25, 2762–2773.
Oxygen consumption and ROS production are increased at the time of fertilization and cell cleavage in bovine zygotes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlShtb7O&md5=9f015ebf33fbd4047d06f0dd23c96db8CAS | 20823113PubMed |

Martín-Romero, F. J., Miguel-Lasobras, E. M., Domínguez-Arroyo, J. A., González-Carrera, E., and Álvarez, I. S. (2008). Contribution of culture media to oxidative stress and its effects on human oocytes. Reprod. Biomed. Online 17, 652–661.
Contribution of culture media to oxidative stress and its effects on human oocytes.Crossref | GoogleScholarGoogle Scholar | 18983749PubMed |

Matwee, C., Betts, D. H., and King, W. A. (2000). Apoptosis in the early bovine embryos. Zygote 8, 57–68.
Apoptosis in the early bovine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjvVemtLw%3D&md5=a3fa975d749b738c581732e2388bc2c1CAS | 10840875PubMed |

Messina, J. P., and Lawrence, D. A. (1989). Cell cycle progression of glutathione-depleted human peripheral blood mononuclear cells is inhibited at S phase. J. Immunol. 143, 1974–1981.
| 1:CAS:528:DyaL1MXlvFaqsbc%3D&md5=a6e25978be19df8b9eb1942f61a1412bCAS | 2789253PubMed |

Morató, R., Izquierdo, D., Paramio, M. T., and Mogas, T. (2010). Survival and apoptosis rates after vitrification in cryotop devices of in vitro-produced calf and cow blastocysts at different developmental stages. Reprod. Fertil. Dev. 22, 1141–1147.
Survival and apoptosis rates after vitrification in cryotop devices of in vitro-produced calf and cow blastocysts at different developmental stages.Crossref | GoogleScholarGoogle Scholar | 20797352PubMed |

Nedambale, T. L., Du, F., Yang, X., and Tian, X. C. (2006). Higher survival rate of vitrified and thawed in vitro produced bovine blastocysts following culture in defined medium supplemented with beta-mercaptoethanol. Anim. Reprod. Sci. 93, 61–75.
Higher survival rate of vitrified and thawed in vitro produced bovine blastocysts following culture in defined medium supplemented with beta-mercaptoethanol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XktFSrsrk%3D&md5=ea2b4da7df479cb67ec3af8c60476178CAS | 16099115PubMed |

Orsi, N. M., and Leese, H. J. (2001). Protection against reactive oxygen species during mouse preimplantation embryo development: role of EDTA, oxygen tension, catalase, superoxide dismutase and pyruvate. Mol. Reprod. Dev. 59, 44–53.
Protection against reactive oxygen species during mouse preimplantation embryo development: role of EDTA, oxygen tension, catalase, superoxide dismutase and pyruvate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXis1amu7c%3D&md5=3ff4ab332265eba985e494a3c59ff7f5CAS | 11335946PubMed |

Parrish, J. J., Susko-Parrish, J., Winer, M. A., and First, N. L. (1988). Capacitation of bovine sperm by heparin. Biol. Reprod. 38, 1171–1180.
Capacitation of bovine sperm by heparin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXkslWit7g%3D&md5=b29a8be059be8768df05d3950d54d736CAS | 3408784PubMed |

Paula-Lopes, F. F., and Hansen, P. J. (2002). Heat shock-induced apoptosis in preimplantation bovine embryos is a developmental regulated phenomenon. Biol. Reprod. 66, 1169–1177.
| 1:CAS:528:DC%2BD38XitlClu7g%3D&md5=750af63f6f8dda1f50ab9204176171a6CAS | 11906938PubMed |

Rathbun, W. B., and Murray, D. L. (1991). Age-related cysteine uptake as rate-limiting in glutathione synthesis and glutathione half-life in the cultured human lens. Exp. Eye Res. 53, 205–212.
Age-related cysteine uptake as rate-limiting in glutathione synthesis and glutathione half-life in the cultured human lens.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXlvVSitb4%3D&md5=49cc5bac7dc5f58c537abf9a947cea60CAS | 1915676PubMed |

Rocha, N. A. S., Leão, B. C. S., Nogueira, E., and Mingoti, G. Z. (2012a). Intracellular reactive oxygen species in bovine embryos cultured in vitro with catalase under various oxygen tensions. Reprod. Fertil. Dev. 24, 157–158.
Intracellular reactive oxygen species in bovine embryos cultured in vitro with catalase under various oxygen tensions.Crossref | GoogleScholarGoogle Scholar |

Rocha, N. A. S., Leão, B. C. S., Nogueira, E., and Mingoti, G. Z. (2012b). Supplementation with antioxidants during maturation increases resistance to oxidative stress in bovine embryos produced in vitro but not improves cryotolerance. Anim. Reprod. 9, 681.

Sagara, J., Miura, K., and Bannai, S. (1993). Cystine uptake and glutathione level in fetal brain cells in primary culture and suspension. J. Neurochem. 61, 1667–11671.
Cystine uptake and glutathione level in fetal brain cells in primary culture and suspension.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXlsFaj&md5=8d065386857a84fe8f4ac67166c2755bCAS | 7901327PubMed |

Takahashi, M., Nagai, T., Hamano, S., Kuwayama, M., Okamura, N., and Okano, A. (1993). Effect of thiol compounds on in vitro development and intracellular glutathione content of bovine embryos. Biol. Reprod. 49, 228–232.
Effect of thiol compounds on in vitro development and intracellular glutathione content of bovine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXms1Ogurk%3D&md5=f9b6cde9370f3531c5e861fae114e0efCAS | 8373946PubMed |

Thompson, J. G. E., Simpon, A. C., Pugh, P. A., Donnely, P. E., and Tervit, H. R. (1990). Effect of oxygen concentration on in vitro development of preimplantation sheep and catte embryos. J. Reprod. Fertil. 89, 573–578.
Effect of oxygen concentration on in vitro development of preimplantation sheep and catte embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXlsV2nsLk%3D&md5=5cdd79893866ba39a8c0c682eda89ad7CAS |

Ufer, C., Wang, C. C., Borchert, B., Heydeck, D., and Kuhn, H. (2010). Redox control in mammalian embryo development. Antioxid. Redox Signal. 13, 833–875.
Redox control in mammalian embryo development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptVeis78%3D&md5=710c8a80cac6b24b538281612fc90756CAS | 20367257PubMed |

Vajta, G., Rindom, N., Peura, T. T., Holm, P., Greve, T., and Callesen, H. (1999). The effect of media, serum and temperature on in vitro survival of bovine blastocysts after open pulled straw (OPS) vitrification. Theriogenology 52, 939–948.
The effect of media, serum and temperature on in vitro survival of bovine blastocysts after open pulled straw (OPS) vitrification.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3c7pvFejtQ%3D%3D&md5=0e64dc025d5e8dc65df3103087d6f254CAS | 10735132PubMed |

Van Soom, A., Yuan, Y. Q., Peelman, L. J., De Matos, D. G., Dewulf, J., Laevens, H., and De Kruif, A. (2002). Prevalence of apoptosis and inner cell allocation in bovine embryos cultured under different oxygen tensions with or without cysteine addition. Theriogenology 57, 1453–1465.
Prevalence of apoptosis and inner cell allocation in bovine embryos cultured under different oxygen tensions with or without cysteine addition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XkvVCntL4%3D&md5=eec50efb9dd8ca03bf35863b1e5151b2CAS | 12054204PubMed |

Viet Linh, N., Dang-Nguyen, T. Q., Nguyen, B. X., Manabe, N., and Nagai, T. (2009). Effects of cysteine during in vitro maturation of porcine oocytes under low oxygen tension on their subsequent in vitro fertilization and development. J. Reprod. Dev. 55, 594–598.
Effects of cysteine during in vitro maturation of porcine oocytes under low oxygen tension on their subsequent in vitro fertilization and development.Crossref | GoogleScholarGoogle Scholar | 19672042PubMed |