Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Effects of systemic progesterone during the early luteal phase on the availabilities of amino acids and glucose in the bovine uterine lumen

Michael P. Mullen A B F , Fuller W. Bazer C , Guoyao Wu C , Mervyn H. Parr A B , Alexander C. O. Evans D E , Mark A. Crowe B E and Michael G. Diskin A
+ Author Affiliations
- Author Affiliations

A Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Mellows Campus, Athenry, Co. Galway, Ireland.

B UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland.

C Department of Animal Science, Texas A&M University, College Station, TX 77843-2471, USA.

D UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.

E UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.

F Corresponding author. Email: michael.mullen@teagasc.ie

Reproduction, Fertility and Development 26(2) 282-292 https://doi.org/10.1071/RD12319
Submitted: 5 October 2012  Accepted: 18 December 2012   Published: 4 February 2013

Abstract

The uterine histotroph provides essential nutrition to the developing conceptus during the preimplantation period of pregnancy. The objective of the present study was to examine the effects of cycle stage and progesterone (P4) concentrations in the blood on the recoverable quantities of amino acids and glucose in the histotroph during the preimplantaion period of conceptus development. Following oestrus, dairy heifers were assigned to low, control or high P4 groups (n = 6 heifers per treatment and time point). The uterine horn ipsilateral to the corpus luteum was flushed on either Day 7 or Day 13. The present study quantified 24 amino acids and glucose in the uterine flushings using HPLC and fluorometry, respectively. Heifers in the low P4 group had lower plasma concentrations of P4 throughout the cycle, whereas heifers in the high group had higher plasma concentrations of P4 between Days 3 and 7 compared with the control group (P < 0.05). Total recoverable neutral (Ser, Gln, Gly, Thr, Cit, β-Ala, Tau, Ala, Tyr, Trp, Met, Val, Phe, Ile, Leu, Pro and Cys), acidic (Glu) and basic (His, Arg, Orn and Lys) amino acids were greater (P < 0.05) on Day 13 than on Day 7. There was no significant difference in the amount of Asp or Asn between Day 7 and Day 13. The amount of amino acids recovered on Day 7 was similar across treatment groups. On Day 13, the amount of Asn, His and Thr was lower (P < 0.05) in the low P4 heifers compared with the controls and/or high P4 heifers. Quantities of glucose were not altered by cycle stage or P4 treatment. In conclusion, the stage of oestrous cycle and P4 play important roles in modulating amino acids in the histotroph, a potentially critical factor for early embryonic and/or conceptus survival.

Additional keywords: embryo loss, fertility, histotroph.


References

Alexiou, M., and Leese, H. J. (1992). Purine utilisation, de novo synthesis and degradation in mouse preimplantation embryos. Development 114, 185–192.
| 1:CAS:528:DyaK38XhvFWls7c%3D&md5=44210d4b937cf9c0a9cc7657932ef354CAS | 1576959PubMed |

Baltz, JM (1993). Intracellular pH regulation in the early embryo. Bioessays 15, 523–530.
Intracellular pH regulation in the early embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXhtVaku78%3D&md5=d9d0e0be186d7187f38a7ca2e01397c1CAS | 8135765PubMed |

Bazer, F. W., Vallet, J. L., Ashworth, C. J., Anthony, R. V., and Roberts, R. M. (1987). The role of ovine conceptus secretory proteins in the establishment of pregnancy. Adv. Exp. Med. Biol. 230, 221–235.
The role of ovine conceptus secretory proteins in the establishment of pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXit12ju7o%3D&md5=565cc97a8f976760222221c3966c1fe8CAS | 3454121PubMed |

Bazer, F. W., Burghardt, R. C., Johnson, G. A., Spencer, T. E., and Wu, G. (2008). Interferons and progesterone for establishment and maintenance of pregnancy: interactions among novel cell signaling pathways. Reprod. Biol. 8, 179–211.
Interferons and progesterone for establishment and maintenance of pregnancy: interactions among novel cell signaling pathways.Crossref | GoogleScholarGoogle Scholar | 19092983PubMed |

Bazer, F. W., Kim, J., Ka, H., Johnson, G. A., Wu, G., and Song, G. (2012). Select nutrients in the uterine lumen of sheep and pigs affect conceptus development. J. Reprod. Dev. 58, 180–188.
Select nutrients in the uterine lumen of sheep and pigs affect conceptus development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XptVKju7k%3D&md5=4b2279d48a8540dbb5381ff94ae9d519CAS | 22738901PubMed |

Becker, R. M., Wu, G., Galanko, J. A., Chen, W., Maynor, A. R., Bose, C. L., and Rhoads, J. M. (2000). Reduced serum amino acid concentrations in infants with necrotizing enterocolitis. J. Pediatr. 137, 785–793.
Reduced serum amino acid concentrations in infants with necrotizing enterocolitis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhtlCisg%3D%3D&md5=7cd49827bf0734a7c63459b2e05afc78CAS | 11113834PubMed |

Beltman, M. E., Roche, J. F., Lonergan, P., Forde, N., and Crowe, M. A. (2009). Evaluation of models to induce low progesterone during the early luteal phase in cattle. Theriogenology 72, 986–992.
Evaluation of models to induce low progesterone during the early luteal phase in cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFGlsrrP&md5=df82d073fb359e6ca7dc763dfec2b657CAS | 19716596PubMed |

Betteridge, K. J., Eaglesome, M. D., Randall, G. C., and Mitchell, D. (1980). Collection, description and transfer of embryos from cattle 10–16 days after oestrus. J. Reprod. Fertil. 59, 205–216.
Collection, description and transfer of embryos from cattle 10–16 days after oestrus.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL3c3ltFGhsQ%3D%3D&md5=0c5a84da1a770fb19b86502e8466460cCAS | 7401037PubMed |

Boland, M. P., Lonergan, P., and O’Callaghan, D. (2001). Effect of nutrition on endocrine parameters, ovarian physiology, and oocyte and embryo development. Theriogenology 55, 1323–1340.
Effect of nutrition on endocrine parameters, ovarian physiology, and oocyte and embryo development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjsFSis70%3D&md5=d54ab782fb7aab78204f273ef2c1b158CAS | 11327687PubMed |

Carter, F., Forde, N., Duffy, P., Wade, M., Fair, T., Crowe, M. A., Evans, A. C. O., Kenny, D. A., Roche, J. F., and Lonergan, P. (2008). Effect of increasing progesterone concentration from Day 3 of pregnancy on subsequent embryo survival and development in beef heifers. Reprod. Fertil. Dev. 20, 368–375.
Effect of increasing progesterone concentration from Day 3 of pregnancy on subsequent embryo survival and development in beef heifers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjtVKksLg%3D&md5=64ca51d0d9b619dd0572e72474aeae4aCAS | 18402756PubMed |

Carter, F., Rings, F., Mamo, S., Holker, M., Kuzmany, A., Besenfelder, U., Havlicek, V., Mehta, J. P., Tesfaye, D., Schellander, K., and Lonergan, P. (2010). Effect of elevated circulating progesterone concentration on bovine blastocyst development and global transcriptome following endoscopic transfer of in vitro produced embryos to the bovine oviduct. Biol. Reprod. 83, 707–719.
Effect of elevated circulating progesterone concentration on bovine blastocyst development and global transcriptome following endoscopic transfer of in vitro produced embryos to the bovine oviduct.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlGlsrfF&md5=ebe7ce372fc067fe585e777f0f15cc0bCAS | 20631399PubMed |

Chatot, C. L., Ziomek, C. A., Bavister, B. D., Lewis, J. L., and Torres, I. (1989). An improved culture medium supports development of random-bred 1-cell mouse embryos in vitro. J. Reprod. Fertil. 86, 679–688.
An improved culture medium supports development of random-bred 1-cell mouse embryos in vitro.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1Mzkt1emtA%3D%3D&md5=9ac09b097fe004a33cabb71e8cd7924fCAS | 2760894PubMed |

Clemente, M., de La Fuente, J., Fair, T., Al Naib, A., Gutierrez-Adan, A., Roche, J. F., Rizos, D., and Lonergan, P. (2009). Progesterone and conceptus elongation in cattle: a direct effect on the embryo or an indirect effect via the endometrium? Reproduction 138, 507–517.
Progesterone and conceptus elongation in cattle: a direct effect on the embryo or an indirect effect via the endometrium?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFOgtrvL&md5=6038faeaab282ac53cbf3ad10c7005d7CAS | 19556439PubMed |

Choe, C., Shin, Y. W., Kim, E. J., Cho, S. R., Kim, H. J., Choi, S. H., Han, M. H., Han, J., Son, D. S., and Kang, D. (2010). Synergistic effects of glutathione and β-mercaptoethanol treatment during in vitro maturation of porcine oocytes on early embryonic development in a culture system supplemented with L-cysteine. J. Reprod. Dev. 56, 575–582.
Synergistic effects of glutathione and β-mercaptoethanol treatment during in vitro maturation of porcine oocytes on early embryonic development in a culture system supplemented with L-cysteine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhslOhsro%3D&md5=c6b18b1caba4f34f589dafe82e53b0deCAS | 20657156PubMed |

Conaghan, J., Handyside, A. H., Winston, R. M., and Leese, H. J. (1993). Effects of pyruvate and glucose on the development of human preimplantation embryos in vitro. J. Reprod. Fertil. 99, 87–95.
Effects of pyruvate and glucose on the development of human preimplantation embryos in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXlsFCg&md5=437e9566fb8ea4a8bf3d0d99cf52519cCAS | 8283458PubMed |

Dawson, K. M., Collins, J. L., and Baltz, J. M. (1998). Osmolarity-dependent glycine accumulation indicates a role for glycine as an organic osmolyte in early preimplantation mouse embryos. Biol. Reprod. 59, 225–232.
Osmolarity-dependent glycine accumulation indicates a role for glycine as an organic osmolyte in early preimplantation mouse embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXltFGnsb0%3D&md5=2d90ac2d98ee9445fc848cbcdbf92e1cCAS | 9687289PubMed |

Dey, S. K., and Johnson, D. C. (1980). Histamine formation by mouse preimplantation embryos. J. Reprod. Fertil. 60, 457–460.
Histamine formation by mouse preimplantation embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXisVyr&md5=541b4ce3b390fa332357b87b73822007CAS | 7431350PubMed |

Diskin, M. G., and Morris, D. G. (2008). Embryonic and early foetal losses in cattle and other ruminants. Reprod. Domest. Anim. 43, 260–267.
Embryonic and early foetal losses in cattle and other ruminants.Crossref | GoogleScholarGoogle Scholar | 18638133PubMed |

Diskin, M. G., and Sreenan, J. M. (2005). Repeatability of embryo survival in beef heifers. J. Anim. Sci. 83, 38.

Diskin, M. G., Murphy, J. J., and Sreenan, J. M. (2006). Embryo survival in dairy cows managed under pastoral conditions. Anim. Reprod. Sci. 96, 297–311.
Embryo survival in dairy cows managed under pastoral conditions.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28nitFGgsg%3D%3D&md5=e067a53a9bf58dd81f82258a108eac2bCAS | 16963203PubMed |

Dzodzœ, Y. C., and Rosengren, E. (1971). Decarboxylases of histidine and ornithine in chick embryo. Br. J. Pharmacol. 41, 294–301.
Decarboxylases of histidine and ornithine in chick embryo.Crossref | GoogleScholarGoogle Scholar | 5572279PubMed |

Edwards, L. J., Williams, D. A., and Gardner, D. K. (1998). Intracellular pH of the mouse preimplantation embryo: amino acids act as buffers of intracellular pH. Hum. Reprod. 13, 3441–3448.
Intracellular pH of the mouse preimplantation embryo: amino acids act as buffers of intracellular pH.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXltFOksA%3D%3D&md5=4aa9eb03ff8657ab9c3165fe4e7c4ec1CAS | 9886531PubMed |

Elhassan, Y. M., Wu, G., Leanez, A. C., Tasca, R. J., Watson, A. J., and Westhusin, M. E. (2001). Amino acid concentrations in fluids from the bovine oviduct and uterus and in ksom-based culture media. Theriogenology 55, 1907–1918.
Amino acid concentrations in fluids from the bovine oviduct and uterus and in ksom-based culture media.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkvFarsbY%3D&md5=5e1e03e241469cfa43f1f814f03c51aeCAS | 11414495PubMed |

Engle, C. C., Foley, C. W., Plotka, E. D., and Witherspoon, D. M. (1984). Free amino-acids and protein concentrations in reproductive-tract fluids of the mare. Theriogenology 21, 919–930.
Free amino-acids and protein concentrations in reproductive-tract fluids of the mare.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXltVyisrY%3D&md5=8014701aa4c68e7a3ac1dfb060025258CAS |

Fahning, M. L., Schultz, R. H., and Graham, E. F. (1967). The free amino acid content of uterine fluids and blood serum in the cow. J. Reprod. Fertil. 13, 229–236.
The free amino acid content of uterine fluids and blood serum in the cow.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2sXktlSgurc%3D&md5=b08442bbbdcc44d4afd0bcf7d32d78d0CAS | 6067172PubMed |

FitzHarris, G., and Baltz, J. M. (2009). Regulation of intracellular pH during oocyte growth and maturation in mammals. Reproduction 138, 619–627.
Regulation of intracellular pH during oocyte growth and maturation in mammals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlShur3K&md5=0e968358b2f29426f18675468d7e3063CAS | 19520797PubMed |

Flood, M. R., and Wiebold, J. L. (1988). Glucose metabolism by preimplantation pig embryos. J. Reprod. Fertil. 84, 7–12.
Glucose metabolism by preimplantation pig embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXlvVOqsrk%3D&md5=7eacace71a244693eff973d14802496dCAS | 3184061PubMed |

Forde, N., Carter, F., Fair, T., Crowe, M. A., Evans, A. C. O., Spencer, T. E., Bazer, F. W., McBride, R., Boland, M. P., O’Gaora, P., Lonergan, P., and Roche, J. F. (2009). Progesterone-regulated changes in endometrial gene expression contribute to advanced conceptus development in cattle. Biol. Reprod. 81, 784–794.
Progesterone-regulated changes in endometrial gene expression contribute to advanced conceptus development in cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFyhsLbM&md5=b886d18b83f7eafebec7bdb868eac690CAS | 19553605PubMed |

Forde, N., Beltman, M. E., Duffy, G. B., Duffy, P., Mehta, J. P., O’Gaora, P., Roche, J. F., Lonergan, P., and Crowe, M. A. (2011a). Changes in the endometrial transcriptome during the bovine estrous cycle: effect of low circulating progesterone and consequences for conceptus elongation. Biol. Reprod. 84, 266–278.
Changes in the endometrial transcriptome during the bovine estrous cycle: effect of low circulating progesterone and consequences for conceptus elongation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVeltr4%3D&md5=61a2e2dc9f6a05ff10d8194c1307c89aCAS | 20881316PubMed |

Forde, N., Carter, F., Spencer, T. E., Bazer, F. W., Sandra, O., Mansouri-Attia, N., Okumu, L. A., McGettigan, P. A., Mehta, J. P., McBride, R., O’Gaora, P., Roche, J. F., and Lonergan, P. (2011b). Conceptus-induced changes in the endometrial transcriptome: how soon does the cow know she is pregnant? Biol. Reprod. 85, 144–156.
Conceptus-induced changes in the endometrial transcriptome: how soon does the cow know she is pregnant?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotFOlsL4%3D&md5=11f719f39ba17575fcafd885e45e10b9CAS | 21349821PubMed |

Forde, N., Duffy, G. B., McGettigan, P. A., Browne, J. A., Mehta, J. P., Kelly, A. K., Mansouri-Attia, N., Sandra, O., Loftus, B. J., Crowe, M. A., Fair, T., Roche, J. F., Lonergan, P., and Evans, A. C. O. (2012). Evidence for an early endometrial response to pregnancy in cattle: both dependent upon and independent of interferon tau. Physiol. Genomics 44, 799–810.
Evidence for an early endometrial response to pregnancy in cattle: both dependent upon and independent of interferon tau.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslamuw%3D%3D&md5=87cfdd385238dad92ffcbe059db49248CAS | 22759920PubMed |

Fozard, J. R., Part, M. L., Prakash, N. J., Grove, J., Schechter, P. J., Sjoerdsma, A., and Koch-Weser, J. (1980). l-Ornithine decarboxylase:an essential role in early mammalian embryogenesis. Science 208, 505–508.
l-Ornithine decarboxylase:an essential role in early mammalian embryogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXktVCks7w%3D&md5=700ea8ffca9c59142cfb55c5f08ebe79CAS | 6768132PubMed |

Gao, H., Wu, G., Spencer, T. E., Johnson, G. A., and Bazer, F. W. (2009a). Select nutrients in the ovine uterine lumen. V. Nitric oxide synthase, GTP cyclohydrolase, and ornithine decarboxylase in ovine uteri and peri-implantation conceptuses. Biol. Reprod. 81, 67–76.
Select nutrients in the ovine uterine lumen. V. Nitric oxide synthase, GTP cyclohydrolase, and ornithine decarboxylase in ovine uteri and peri-implantation conceptuses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnslaru7Y%3D&md5=40e93d2ae1ce3c46210c90cc683ce9a1CAS | 19246319PubMed |

Gao, H., Wu, G., Spencer, T. E., Johnson, G. A., Li, X., and Bazer, F. W. (2009b). Select nutrients in the ovine uterine lumen. I. Amino acids, glucose, and ions in uterine lumenal flushings of cyclic and pregnant ewes. Biol. Reprod. 80, 86–93.
Select nutrients in the ovine uterine lumen. I. Amino acids, glucose, and ions in uterine lumenal flushings of cyclic and pregnant ewes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXosFOg&md5=8337c6de3d512c8f25516a7ede66e455CAS | 18753605PubMed |

Gray, C. A., Taylor, K. M., Ramsey, W. S., Hill, J. R., Bazer, F. W., Bartol, F. F., and Spencer, T. E. (2001). Endometrial glands are required for preimplantation conceptus elongation and survival. Biol. Reprod. 64, 1608–1613.
Endometrial glands are required for preimplantation conceptus elongation and survival.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjvFGgsbs%3D&md5=afcd4b3289a59b337bce8d8b23ce07e3CAS | 11369585PubMed |

Gray, C. A., Burghardt, R. C., Johnson, G. A., Bazer, F. W., and Spencer, T. E. (2002). Evidence that absence of endometrial gland secretions in uterine gland knockout ewes compromises conceptus survival and elongation. Reproduction 124, 289–300.
Evidence that absence of endometrial gland secretions in uterine gland knockout ewes compromises conceptus survival and elongation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmvVCitL8%3D&md5=191a453784160e002d35839abf6c8418CAS | 12141942PubMed |

Gray, C. A., Abbey, C. A., Beremand, P. D., Choi, Y., Farmer, J. L., Adelson, D. L., Thomas, T. L., Bazer, F. W., and Spencer, T. E. (2006). Identification of endometrial genes regulated by early pregnancy, progesterone, and interferon tau in the ovine uterus. Biol. Reprod. 74, 383–394.
Identification of endometrial genes regulated by early pregnancy, progesterone, and interferon tau in the ovine uterus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xot1Kktg%3D%3D&md5=af768bc8ba1521028375de408424c550CAS | 16251498PubMed |

Grealy, M., Diskin, M. G., and Sreenan, J. M. (1996). Protein content of cattle oocytes and embryos from the two-cell to the elongated blastocyst stage at Day 16. J. Reprod. Fertil. 107, 229–233.
Protein content of cattle oocytes and embryos from the two-cell to the elongated blastocyst stage at Day 16.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmsFGgtr0%3D&md5=23d42298e9a8117292eaeeb963b78140CAS | 8882289PubMed |

Hammer, M. A., and Baltz, J. M. (2003). Beta-alanine but not taurine can function as an organic osmolyte in preimplantation mouse embryos cultured from fertilized eggs. Mol. Reprod. Dev. 66, 153–161.
Beta-alanine but not taurine can function as an organic osmolyte in preimplantation mouse embryos cultured from fertilized eggs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnt1Wntr8%3D&md5=7f9cb43e4291b3bd4ceedab61129b6fdCAS | 12950102PubMed |

Hill, J. L., Wade, M. G., Nancarrow, C. D., Kelleher, D. L., and Boland, M. P. (1997). Influence of ovine oviducal amino acid concentrations and an ovine oestrus-associated glycoprotein on development and viability of bovine embryos. Mol. Reprod. Dev. 47, 164–169.
Influence of ovine oviducal amino acid concentrations and an ovine oestrus-associated glycoprotein on development and viability of bovine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXivFWmtb8%3D&md5=29981c4633101a01876ee4333f78720aCAS | 9136117PubMed |

Hudgins, L., Mukerjee, S., and Dey, S. K. (1982). Preimplantation embryo development in the mouse: role of histidine decarboxylase. Gamete Res. 6, 121–125.
Preimplantation embryo development in the mouse: role of histidine decarboxylase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38Xlsl2gur8%3D&md5=78ef34ab5b786345e1730bc967e54364CAS |

Hugentobler, S. A., Diskin, M. G., Leese, H. J., Humpherson, P. G., Watson, T., Sreenan, J. M., and Morris, D. G. (2007). Amino acids in oviduct and uterine fluid and blood plasma during the estrous cycle in the bovine. Mol. Reprod. Dev. 74, 445–454.
Amino acids in oviduct and uterine fluid and blood plasma during the estrous cycle in the bovine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhvFCqtLg%3D&md5=1ff68bfd8ae5ea025824bd86e49376f0CAS | 16998855PubMed |

Hugentobler, S. A., Humpherson, P. G., Leese, H. J., Sreenan, J. M., and Morris, D. G. (2008). Energy substrates in bovine oviduct and uterine fluid and blood plasma during the oestrous cycle. Mol. Reprod. Dev. 75, 496–503.
Energy substrates in bovine oviduct and uterine fluid and blood plasma during the oestrous cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhs1Crsrw%3D&md5=816a2c32d42da64c218660038e88c21fCAS | 17926343PubMed |

Hugentobler, S. A., Sreenan, J. M., Humpherson, P. G., Leese, H. J., Diskin, M. G., and Morris, D. G. (2010). Effects of changes in the concentration of systemic progesterone on ions, amino acids and energy substrates in cattle oviduct and uterine fluid and blood. Reprod. Fertil. Dev. 22, 684–694.
Effects of changes in the concentration of systemic progesterone on ions, amino acids and energy substrates in cattle oviduct and uterine fluid and blood.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjvF2isLY%3D&md5=3b613adb9726d0a177f46ff72b904e8aCAS | 20353728PubMed |

Kim, J. H., Funahashi, H., Niwa, K., and Okuda, K. (1993). Glucose requirement at different developmental stages of in vitro fertilized bovine embryos cultured in semi-defined medium. Theriogenology 39, 875–886.
Glucose requirement at different developmental stages of in vitro fertilized bovine embryos cultured in semi-defined medium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXktVGlsbw%3D&md5=5dca31cab68bba760646f266501a6782CAS | 16727260PubMed |

Kim, J., Burghardt, R. C., Wu, G., Johnson, G. A., Spencer, T. E., and Bazer, F. W. (2011a). Select nutrients in the ovine uterine lumen. IX. Differential effects of arginine, leucine, glutamine, and glucose on interferon tau, ornithine decarboxylase, and nitric oxide synthase in the ovine conceptus. Biol. Reprod. 84, 1139–1147.
Select nutrients in the ovine uterine lumen. IX. Differential effects of arginine, leucine, glutamine, and glucose on interferon tau, ornithine decarboxylase, and nitric oxide synthase in the ovine conceptus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmvFemurw%3D&md5=c493acb0280b3ff2a79852856214f577CAS | 21293034PubMed |

Kim, J. Y., Burghardt, R. C., Wu, G., Johnson, G. A., Spencer, T. E., and Bazer, F. W. (2011b). Select nutrients in the ovine uterine lumen. VII. Effects of arginine, leucine, glutamine, and glucose on trophectoderm cell signaling, proliferation, and migration. Biol. Reprod. 84, 62–69.
Select nutrients in the ovine uterine lumen. VII. Effects of arginine, leucine, glutamine, and glucose on trophectoderm cell signaling, proliferation, and migration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlvVegtbY%3D&md5=19e5c986da9f26e036a472e3dea653c3CAS | 20844282PubMed |

Kimball, S. R., and Jefferson, L. S. (2004). Molecular mechanisms through which amino acids mediate signaling through the mammalian target of rapamycin. Curr. Opin. Clin. Nutr. Metab. Care 7, 39–44.
Molecular mechanisms through which amino acids mediate signaling through the mammalian target of rapamycin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjs12qsbw%3D&md5=6667699775ad230f659aa3410153a834CAS | 15090902PubMed |

Kindahl, H., Edqvist, L. E., Granstrom, E., and Bane, A. (1976). The release of prostaglandin F2alpha as reflected by 15-keto-13,14-dihydroprostaglandin F2alpha in the peripheral circulation during normal luteolysis in heifers. Prostaglandins 11, 871–878.
The release of prostaglandin F2alpha as reflected by 15-keto-13,14-dihydroprostaglandin F2alpha in the peripheral circulation during normal luteolysis in heifers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28Xks1Snsb0%3D&md5=e0689652fee4a0e83fd8693874496e07CAS | 945590PubMed |

Lane, M., and Gardner, D. K. (1997). Differential regulation of mouse embryo development and viability by amino acids. J. Reprod. Fertil. 109, 153–164.
Differential regulation of mouse embryo development and viability by amino acids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhs1Gls78%3D&md5=73157417dce478ba8f92bb7b17cbdfbaCAS | 9068427PubMed |

Lassala, A., Bazer, F. W., Cudd, T. A., Li, P., Li, X., Satterfield, M. C., Spencer, T. E., and Wu, G. (2009). Intravenous administration of l-citrulline to pregnant ewes is more effective than l-arginine for increasing arginine availability in the fetus. J. Nutr. 139, 660–665.
Intravenous administration of l-citrulline to pregnant ewes is more effective than l-arginine for increasing arginine availability in the fetus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjslSkt7w%3D&md5=f3c1bc40f19ab6800023f6683a86b34eCAS | 19225132PubMed |

Lassala, A., Bazer, F. W., Cudd, T. A., Datta, S., Keisler, D. H., Satterfield, M. C., Spencer, T. E., and Wu, G. (2010). Parenteral administration of l-arginine prevents fetal growth restriction in undernourished ewes. J. Nutr. 140, 1242–1248.
Parenteral administration of l-arginine prevents fetal growth restriction in undernourished ewes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXot1Cruro%3D&md5=3090a14fea7182d6e0f17afdda41c7e3CAS | 20505020PubMed |

Lassala, A., Bazer, F. W., Cudd, T. A., Datta, S., Keisler, D. H., Satterfield, M. C., Spencer, T. E., and Wu, G. (2011). Parenteral administration of l-arginine enhances fetal survival and growth in sheep carrying multiple fetuses. J. Nutr. 141, 849–855.
Parenteral administration of l-arginine enhances fetal survival and growth in sheep carrying multiple fetuses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltlCqtbo%3D&md5=4839207268cc9f982bbaa89df7f39510CAS | 21430253PubMed |

Lee, E. S., and Fukui, Y. (1996). Synergistic effect of alanine and glycine on bovine embryos cultured in a chemically defined medium and amino acid uptake by in vitro-produced bovine morulae and blastocysts. Biol. Reprod. 55, 1383–1389.
Synergistic effect of alanine and glycine on bovine embryos cultured in a chemically defined medium and amino acid uptake by in vitro-produced bovine morulae and blastocysts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXkvFWntQ%3D%3D&md5=21fa10b382a7d4e1bbec953a8eea503cCAS | 8949897PubMed |

Lee, E. S., Fukui, Y., Lee, B. C., Lim, J. M., and Hwang, W. S. (2004). Promoting effect of amino acids added to a chemically defined medium on blastocyst formation and blastomere proliferation of bovine embryos cultured in vitro. Anim. Reprod. Sci. 84, 257–267.
Promoting effect of amino acids added to a chemically defined medium on blastocyst formation and blastomere proliferation of bovine embryos cultured in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmsVCqu70%3D&md5=f391f4e163d8c8efc7fdbffc097926d0CAS | 15302369PubMed |

Leese, H. J. (1991). Metabolism of the preimplantation mammalian embryo. Oxf. Rev. Reprod. Biol. 13, 35–72.
| 1:STN:280:DyaK3szgvFyqsA%3D%3D&md5=2f69612ea82265d1b583f6468400a3c9CAS | 1845337PubMed |

McNeill, R. E., Sreenan, J. M., Diskin, M. G., Cairns, M. T., Fitzpatrick, R., Smith, T. J., and Morris, D. G. (2006). Effect of systemic progesterone concentration on the expression of progesterone-responsive genes in the bovine endometrium during the early luteal phase. Reprod. Fertil. Dev. 18, 573–583.
Effect of systemic progesterone concentration on the expression of progesterone-responsive genes in the bovine endometrium during the early luteal phase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XltVWnt7o%3D&md5=8d0ee5cd8dd3237f0acd36b85730eccaCAS | 16836964PubMed |

Menezo, Y., and Guerin, P. (1997). The mammalian oviduct: biochemistry and physiology. Eur. J. Obstet. Gynecol. Reprod. Biol. 73, 99–104.
The mammalian oviduct: biochemistry and physiology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjslemtLg%3D&md5=9c604c0ed7f94eee95d5246b043bf06eCAS | 9175697PubMed |

Metcoff, J., Cole, T. J., and Luff, R. (1981). Fetal growth retardation induced by dietary imbalance of threonine and dispensable amino acids, with adequate energy and protein-equivalent intakes, in pregnant rats. J. Nutr. 111, 1411–1424.
| 1:CAS:528:DyaL3MXls1Onu7w%3D&md5=82b79fcef1fdb61276038ecdf08b33c9CAS | 6790682PubMed |

Miller, J. G., and Schultz, G. A. (1987). Amino acid content of preimplantation rabbit embryos and fluids of the reproductive tract. Biol. Reprod. 36, 125–129.
Amino acid content of preimplantation rabbit embryos and fluids of the reproductive tract.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXitFWmtLo%3D&md5=8b5a234ba555932279dcc76fb50be6bcCAS | 3567272PubMed |

Mito, T., Yoshioka, K., Yamashita, S., Suzuki, C., Noguchi, M., and Hoshi, H. (2012). Glucose and glycine synergistically enhance the in vitro development of porcine blastocysts in a chemically defined medium. Reprod. Fertil. Dev. 24, 443–450.
Glucose and glycine synergistically enhance the in vitro development of porcine blastocysts in a chemically defined medium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjs1Wqsb8%3D&md5=c7fec57ec297dccbe96f5ef714db19e8CAS | 22401276PubMed |

Moore, K., and Bondioli, K. R. (1993). Glycine and alanine supplementation of culture medium enhances development of in vitro matured and fertilized cattle embryos. Biol. Reprod. 48, 833–840.
Glycine and alanine supplementation of culture medium enhances development of in vitro matured and fertilized cattle embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXks1Oisb8%3D&md5=7ddc9b0d8946f1c3ced96dd2d2900564CAS | 8485249PubMed |

Moravek, M., Fisseha, S., and Swain, J. (2012). Dipeptide forms of glycine support mouse preimplantation embryo development in vitro and provide protection against high media osmolality. J. Assist. Reprod. Genet. 29, 283–290.
Dipeptide forms of glycine support mouse preimplantation embryo development in vitro and provide protection against high media osmolality.Crossref | GoogleScholarGoogle Scholar | 22246224PubMed |

Moses, D. F., Matkovic, M., Fisher, E. C., and Martinez, A. G. (1997). Amino acid contents on sheep oviductal and uterine fluids. Theriogenology 47, 336.
Amino acid contents on sheep oviductal and uterine fluids.Crossref | GoogleScholarGoogle Scholar |

Mullen, M. P., Elia, G., Hilliard, M., Parr, M. H., Diskin, M. G., Evans, A. C., and Crowe, M. A. (2012a). Proteomic characterization of histotroph during the preimplantation phase of the estrous cycle in cattle. J. Proteome Res. 11, 3004–3018.
Proteomic characterization of histotroph during the preimplantation phase of the estrous cycle in cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XkslWju7c%3D&md5=83e015d5a124076f48e3ee2d0d4950adCAS | 22463384PubMed |

Mullen, M. P., Forde, N., Parr, M. H., Diskin, M. G., Morris, D. G., Nally, J. E., Evans, A. C., and Crowe, M. A. (2012b). Alterations in systemic concentrations of progesterone during the early luteal phase affect RBP4 expression in the bovine uterus. Reprod. Fertil. Dev. 24, 715–722.
Alterations in systemic concentrations of progesterone during the early luteal phase affect RBP4 expression in the bovine uterus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XnvFehurc%3D&md5=350631dc3b0fa4f2c03980f1e9c7703aCAS | 22697121PubMed |

Murakami, S., Miyamoto, Y., Skarzynski, D. J., and Okuda, K. (2001). Effects of tumor necrosis factor-alpha on secretion of prostaglandins E2 and F2alpha in bovine endometrium throughout the estrous cycle. Theriogenology 55, 1667–1678.
Effects of tumor necrosis factor-alpha on secretion of prostaglandins E2 and F2alpha in bovine endometrium throughout the estrous cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXktlClsbY%3D&md5=16322a9d9d98ddb8bebf546e35215744CAS | 11393218PubMed |

Nasr-Esfahani, M. H., Winston, N. J., and Johnson, M. H. (1992). Effects of glucose, glutamine, ethylenediaminetetraacetic acid and oxygen tension on the concentration of reactive oxygen species and on development of the mouse preimplantation embryo in vitro. J. Reprod. Fertil. 96, 219–231.
Effects of glucose, glutamine, ethylenediaminetetraacetic acid and oxygen tension on the concentration of reactive oxygen species and on development of the mouse preimplantation embryo in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXksVCk&md5=f3a44c2bfb2e96a6ffa1d1e464f0c157CAS | 1432953PubMed |

Northey, D. L., and French, L. R. (1980). Effect of embryo removal and intrauterine infusion of embryonic homogenates on the lifespan of the bovine corpus luteum. J. Anim. Sci. 50, 298–302.
| 1:STN:280:DyaL3c7jslansQ%3D%3D&md5=35d5d8219c3d89a40709d914309040e5CAS | 7358600PubMed |

Parr, M. H., Mullen, M. P., Crowe, M. A., Roche, J. F., Lonergan, P., Evans, A. C., and Diskin, M. G. (2012). Relationship between pregnancy per artificial insemination and early luteal concentrations of progesterone and establishment of repeatability estimates for these traits in Holstein–Friesian heifers. J. Dairy Sci. 95, 2390–2396.
Relationship between pregnancy per artificial insemination and early luteal concentrations of progesterone and establishment of repeatability estimates for these traits in Holstein–Friesian heifers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlvFyksr0%3D&md5=145c1e9d0b7b0f0635d850940dd52063CAS | 22541467PubMed |

Partridge, R. J., and Leese, H. J. (1996). Consumption of amino acids by bovine preimplantation embryos. Reprod. Fertil. Dev. 8, 945–950.
Consumption of amino acids by bovine preimplantation embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmtlGgtL4%3D&md5=6b5ae63a527d1e358cce966106d11b38CAS | 8896028PubMed |

Petters, R. M., Johnson, B. H., Reed, M. L., and Archibong, A. E. (1990). Glucose, glutamine and inorganic phosphate in early development of the pig embryo in vitro. J. Reprod. Fertil. 89, 269–275.
Glucose, glutamine and inorganic phosphate in early development of the pig embryo in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXksFGgsbs%3D&md5=707aab224693acf39aafe66037c5a58eCAS | 2374120PubMed |

Rieger, D., Loskutoff, N. M., and Betteridge, K. J. (1992). Developmentally related changes in the uptake and metabolism of glucose, glutamine and pyruvate by cattle embryos produced in vitro. Reprod. Fertil. Dev. 4, 547–557.
Developmentally related changes in the uptake and metabolism of glucose, glutamine and pyruvate by cattle embryos produced in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXhsVCitrc%3D&md5=2c5bcc3e6d02d5eba1eb1eb59ae544f8CAS | 1299829PubMed |

Russell, D., and Snyder, S. H. (1968). Amine synthesis in rapidly growing tissues: ornithine decarboxylase activity in regenerating rat liver, chick embryo, and various tumors. Proc. Natl Acad. Sci. USA 60, 1420–1427.
Amine synthesis in rapidly growing tissues: ornithine decarboxylase activity in regenerating rat liver, chick embryo, and various tumors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1cXltVCltL8%3D&md5=0f692cc32c4f8ecf8ce3d4c4ebde6f7dCAS | 4299947PubMed |

Satterfield, M. C., Gao, H., Li, X., Wu, G., Johnson, G. A., Spencer, T. E., and Bazer, F. W. (2010). Select nutrients and their associated transporters are increased in the ovine uterus following early progesterone administration. Biol. Reprod. 82, 224–231.
Select nutrients and their associated transporters are increased in the ovine uterus following early progesterone administration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1WgsrjM&md5=cae4d88a408f41260a42cbb9541ad188CAS | 19696016PubMed |

Schini, S. A., and Bavister, B. D. (1988). Two-cell block to development of cultured hamster embryos is caused by phosphate and glucose. Biol. Reprod. 39, 1183–1192.
Two-cell block to development of cultured hamster embryos is caused by phosphate and glucose.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXhtFahurw%3D&md5=aa146ecfc05e6c347cd3766d2362a18eCAS | 3219389PubMed |

Simmons, R. M., Erikson, D. W., Kim, J., Burghardt, R. C., Bazer, F. W., Johnson, G. A., and Spencer, T. E. (2009). Insulin-like growth factor binding protein-1 in the ruminant uterus: potential endometrial marker and regulator of conceptus elongation. Endocrinology 150, 4295–4305.
Insulin-like growth factor binding protein-1 in the ruminant uterus: potential endometrial marker and regulator of conceptus elongation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFyrtLfP&md5=df70f8f43f8c249fc2c535a35a248e20CAS | 19497977PubMed |

Spencer, T. E., Johnson, G. A., Bazer, F. W., Burghardt, R. C., and Palmarini, M. (2007). Pregnancy recognition and conceptus implantation in domestic ruminants: roles of progesterone, interferons and endogenous retroviruses. Reprod. Fertil. Dev. 19, 65–78.
Pregnancy recognition and conceptus implantation in domestic ruminants: roles of progesterone, interferons and endogenous retroviruses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xhtleitr%2FN&md5=fb6f7e2ba4fab5d2de3fb7ca30496dafCAS | 17389136PubMed |

Starbuck, G. R., Darwash, A. O., Mann, G. E., and Lamming, G. E. (2001). The detection and treatment of post insemination progesterone insufficiency in dairy cows. In ‘Fertility in the High Producing Dairy Cow. BSAS Occasional Publication No. 2’. (Ed. M. G. Diskin.) pp. 447–450. (BSAS: Edinburgh, UK.)

Steeves, T. E., and Gardner, D. K. (1999). Temporal and differential effects of amino acids on bovine embryo development in culture. Biol. Reprod. 61, 731–740.
Temporal and differential effects of amino acids on bovine embryo development in culture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlsFCqtr4%3D&md5=0af1434e20026952cfaa0941eb090407CAS | 10456851PubMed |

Steeves, C. L., Hammer, M. A., Walker, G. B., Rae, D., Stewart, N. A., and Baltz, J. M. (2003). The glycine neurotransmitter transporter GLYT1 is an organic osmolyte transporter regulating cell volume in cleavage-stage embryos. Proc. Natl Acad. Sci. USA 100, 13 982–13 987.
The glycine neurotransmitter transporter GLYT1 is an organic osmolyte transporter regulating cell volume in cleavage-stage embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpsFGitr8%3D&md5=13f61dbc513f301d8fe007d151e6f596CAS |

Stronge, A. J. H., Sreenan, J. M., Diskin, M. G., Mee, J. F., Kenny, D. A., and Morris, D. G. (2005). Post-insemination milk progesterone concentration and embryo survival in dairy cows. Theriogenology 64, 1212–1224.
Post-insemination milk progesterone concentration and embryo survival in dairy cows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpsVCgt7o%3D&md5=050fa34e24ad7530890f3a05957e6561CAS |

Takahashi, Y., and First, N. L. (1992). In vitro development of bovine one-cell embryos: influence of glucose, lactate, pyruvate, amino acids and vitamins. Theriogenology 37, 963–978.
In vitro development of bovine one-cell embryos: influence of glucose, lactate, pyruvate, amino acids and vitamins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXpvVOmtg%3D%3D&md5=2e75cafe1e37db9a99ff32d405842fc7CAS | 16727096PubMed |

Takahashi, Y., and Kanagawa, H. (1998). Effects of glutamine, glycine and taurine on the development of in vitro fertilized bovine zygotes in a chemically defined medium. J. Vet. Med. Sci. 60, 433–437.
Effects of glutamine, glycine and taurine on the development of in vitro fertilized bovine zygotes in a chemically defined medium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjtFWjtr8%3D&md5=bb164b59748eee6f23a2ff171ce7a5b7CAS | 9592714PubMed |

Tartia, A. P., Rudraraju, N., Richards, T., Hammer, M. A., Talbot, P., and Baltz, J. M. (2009). Cell volume regulation is initiated in mouse oocytes after ovulation. Development 136, 2247–2254.
Cell volume regulation is initiated in mouse oocytes after ovulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXps1ehsL0%3D&md5=a85ca680e966dead96fe86c10c6b48b9CAS | 19502485PubMed |

Tiffin, G. J., Rieger, D., Betteridge, K. J., Yadav, B. R., and King, W. A. (1991). Glucose and glutamine metabolism in pre-attachment cattle embryos in relation to sex and stage of development. J. Reprod. Fertil. 93, 125–132.
Glucose and glutamine metabolism in pre-attachment cattle embryos in relation to sex and stage of development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXmt12is7c%3D&md5=3d06e87eeef7850c9f753d0895261fa4CAS | 1920281PubMed |

Van Winkle, L. J., Haghighat, N., and Campione, A. L. (1990). Glycine protects preimplantation mouse conceptuses from a detrimental effect on development of the inorganic ions in oviductal fluid. J. Exp. Zool. 253, 215–219.
Glycine protects preimplantation mouse conceptuses from a detrimental effect on development of the inorganic ions in oviductal fluid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXhsFGkurs%3D&md5=93a35e2fe6d3bbc193c9e50dc77a431dCAS | 2313249PubMed |

Wu, G. (1995). Nitric oxide synthesis and the effect of aminoguanidine and NG-monomethyl-l-arginine on the onset of diabetes in the spontaneously diabetic BB rat. Diabetes 44, 360–364.
Nitric oxide synthesis and the effect of aminoguanidine and NG-monomethyl-l-arginine on the onset of diabetes in the spontaneously diabetic BB rat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXkt1yhs7w%3D&md5=81c01453482861189edb498be60af9f2CAS | 7533735PubMed |

Wu, G. (2009). Amino acids: metabolism, functions, and nutrition. Amino Acids 37, 1–17.
Amino acids: metabolism, functions, and nutrition.Crossref | GoogleScholarGoogle Scholar | 19301095PubMed |

Wu, G., Davis, P. K., Flynn, N. E., Knabe, D. A., and Davidson, J. T. (1997). Endogenous synthesis of arginine plays an important role in maintaining arginine homeostasis in postweaning growing pigs. J. Nutr. 127, 2342–2349.
| 1:CAS:528:DyaK1cXisleitA%3D%3D&md5=f6fca842190c32cc9b5bdf9c18225e5fCAS | 9405584PubMed |

Wu, G., Ott, T. L., Knabe, D. A., and Bazer, F. W. (1999). Amino acid composition of the fetal pig. J. Nutr. 129, 1031–1038.
| 1:CAS:528:DyaK1MXivVynsr8%3D&md5=288124efcbeb391b89afab4e61475f2bCAS | 10222396PubMed |

Wu, G., Jaeger, L. A., Bazer, F. W., and Rhoads, J. M. (2004). Arginine deficiency in preterm infants: biochemical mechanisms and nutritional implications. J. Nutr. Biochem. 15, 442–451.
Arginine deficiency in preterm infants: biochemical mechanisms and nutritional implications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmsVGgsr4%3D&md5=696addafaa0ee2e4557a2488b51a88a6CAS | 15302078PubMed |

Wu, G., Bazer, F. W., Davis, T. A., Kim, S. W., Li, P., Rhoads, J. M., Satterfield, M. C., Smith, S. B., Spencer, T. E., and Yin, Y. (2009). Arginine metabolism and nutrition in growth, health and disease. Amino Acids 37, 153–168.
Arginine metabolism and nutrition in growth, health and disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltlemtL0%3D&md5=dda8074dc67c6b1d57ada85653cf336cCAS | 19030957PubMed |