Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Regulation of anti-Müllerian hormone production in domestic animals

Danielle Monniaux A B C D F , Laurence Drouilhet A B C D , Charlène Rico A B C D , Anthony Estienne A B C D , Peggy Jarrier A B C D , Jean-Luc Touzé A B C D , Jean Sapa E , Florence Phocas E , Joëlle Dupont A B C D , Rozenn Dalbiès-Tran A B C D and Stéphane Fabre A B C D
+ Author Affiliations
- Author Affiliations

A INRA, UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France.

B CNRS, UMR7247, F-37380 Nouzilly, France.

C Université François Rabelais de Tours, F-37041 Tours, France.

D IFCE, F-37380 Nouzilly, France.

E INRA, UMR1313 Génétique Animale et Biologie Intégrative, F-78352 Jouy-en-Josas, France.

F Corresponding author. Email: dmonniaux@tours.inra.fr

Reproduction, Fertility and Development 25(1) 1-16 https://doi.org/10.1071/RD12270
Published: 4 December 2012

Abstract

In mammals, anti-Müllerian hormone (AMH) expression is detected in the granulosa cells of all growing follicles and is highest in healthy small antral follicles, which contribute most significantly to AMH endocrine levels. AMH is a reliable endocrine marker of this population of gonadotrophin-responsive follicles in ruminants and, over the longer term, plasma AMH concentrations are characteristic of individual animals. In the cow, plasma AMH concentrations follow specific dynamic profiles throughout the prepubertal period, the oestrous cycle and the change from gestation to the post partum period, with the alterations most likely reflecting numerical changes in the population of high AMH-producing follicles. In granulosa cells, bone morphogenetic proteins (BMP) enhance AMH gene expression and AMH synthesis, with these effects antagonised by FSH. BMP could both support follicular growth and contribute significantly to the induction and/or maintenance of AMH expression in small growing follicles. AMH expression decreases sharply in large follicles when they become oestrogenic, suggesting a role for FSH and/or oestradiol in these changes, but the underlying mechanisms remain hypothetical. A better understanding of the factors and mechanisms regulating AMH production is needed to propose new strategies for managing the reserve of primordial and small growing follicles, as well as for improving embryo production.

Additional keywords: AMH, BMP, follicle, FSH, granulosa, oocyte, ovary.


References

Almeida, J., Ball, B. A., Conley, A. J., Place, N. J., Liu, I. K., Scholtz, E. L., Mathewson, L., Stanley, S. D., and Moeller, B. C. (2011). Biological and clinical significance of anti-Mullerian hormone determination in blood serum of the mare. Theriogenology 76, 1393–1403.
Biological and clinical significance of anti-Mullerian hormone determination in blood serum of the mare.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht12isbvI&md5=5283a5f5caf8713ad1f4e74ffeba32d8CAS |

Anttonen, M., Ketola, I., Parviainen, H., Pusa, A. K., and Heikinheimo, M. (2003). FOG-2 and GATA-4 Are coexpressed in the mouse ovary and can modulate Mullerian-inhibiting substance expression. Biol. Reprod. 68, 1333–1340.
FOG-2 and GATA-4 Are coexpressed in the mouse ovary and can modulate Mullerian-inhibiting substance expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXisVertbg%3D&md5=8cf7ec7a3b5b0ff6a64f474e4b810fe1CAS |

Arango, N. A., Lovell-Badge, R., and Behringer, R. R. (1999). Targeted mutagenesis of the endogenous mouse Mis gene promoter: in vivo definition of genetic pathways of vertebrate sexual development. Cell 99, 409–419.
Targeted mutagenesis of the endogenous mouse Mis gene promoter: in vivo definition of genetic pathways of vertebrate sexual development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXns1egsLk%3D&md5=d297afaa93c3e2c48efac6dd4f74521dCAS |

Baarends, W. M., van Helmond, M. J., Post, M., van der Schoot, P. J., Hoogerbrugge, J. W., de Winter, J. P., Uilenbroek, J. T. J., Karels, B., Wilming, L. G., Meijers, J. H. C., Themmen, A. P. N., and Grootegoed, J. A. (1994). A novel member of the transmembrane serine/threonine kinase receptor family is specifically expressed in the gonads and in mesenchymal cells adjacent to the mullerian duct. Development 120, 189–197.
| 1:CAS:528:DyaK2MXntVCn&md5=81add3f97f02fb41d32d09d498da5dc0CAS |

Baarends, W. M., Uilenbroek, J. T., Kramer, P., Hoogerbrugge, J. W., van Leeuwen, E. C., Themmen, A. P., and Grootegoed, J. A. (1995). Anti-Mullerian hormone and anti-Mullerian hormone Type II receptor messenger ribonucleic acid expression in rat ovaries during postnatal development, the estrous cycle, and gonadotropin-induced follicle growth. Endocrinology 136, 4951–4962.
Anti-Mullerian hormone and anti-Mullerian hormone Type II receptor messenger ribonucleic acid expression in rat ovaries during postnatal development, the estrous cycle, and gonadotropin-induced follicle growth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXovFOltrs%3D&md5=6e80a5357199a8473a6aa8556d114310CAS |

Beam, S. W., and Butler, W. R. (1997). Energy balance and ovarian follicle development prior to the first ovulation postpartum in dairy cows receiving three levels of dietary fat. Biol. Reprod. 56, 133–142.
Energy balance and ovarian follicle development prior to the first ovulation postpartum in dairy cows receiving three levels of dietary fat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXis1Kguw%3D%3D&md5=039bc91aa4a25dbbc201358497ba9968CAS |

Bezard, J., Vigier, B., Tran, D., Mauleon, P., and Josso, N. (1987). Immunocytochemical study of anti-Mullerian hormone in sheep ovarian follicles during fetal and post-natal development. J. Reprod. Fertil. 80, 509–516.
Immunocytochemical study of anti-Mullerian hormone in sheep ovarian follicles during fetal and post-natal development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXkvFShtbw%3D&md5=e94eca1d91eb14fea1e90fc70b1a7138CAS |

Broekmans, F. J., Visser, J. A., Laven, J. S., Broer, S. L., Themmen, A. P., and Fauser, B. C. (2008). Anti-Mullerian hormone and ovarian dysfunction. Trends Endocrinol. Metab. 19, 340–347.
Anti-Mullerian hormone and ovarian dysfunction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1Klt77M&md5=6e120ef0bae8a21fa40173955b303c11CAS |

Broer, S. L., Dolleman, M., Opmeer, B. C., Fauser, B. C., Mol, B. W., and Broekmans, F. J. (2011). AMH and AFC as predictors of excessive response in controlled ovarian hyperstimulation: a meta-analysis. Hum. Reprod. Update 17, 46–54.
AMH and AFC as predictors of excessive response in controlled ovarian hyperstimulation: a meta-analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsF2rsb3L&md5=0a887c2cc533641dd787cfd81a57859dCAS |

Cate, R. L., Mattaliano, R. J., Hession, C., Tizard, R., Farber, N. M., Cheung, A., Ninfa, E. G., Frey, A. Z., Gash, D. J., Chow, E. P., et al. (1986). Isolation of the bovine and human genes for Mullerian inhibiting substance and expression of the human gene in animal cells. Cell 45, 685–698.
Isolation of the bovine and human genes for Mullerian inhibiting substance and expression of the human gene in animal cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28Xkslemuro%3D&md5=79392a3ab4f414c3b16666a9bcb20cd0CAS |

Chagas, L. M., Bass, J. J., Blache, D., Burke, C. R., Kay, J. K., Lindsay, D. R., Lucy, M. C., Martin, G. B., Meier, S., Rhodes, F. M., Roche, J. R., Thatcher, W. W., and Webb, R. (2007). Invited review: new perspectives on the roles of nutrition and metabolic priorities in the subfertility of high-producing dairy cows. J. Dairy Sci. 90, 4022–4032.
Invited review: new perspectives on the roles of nutrition and metabolic priorities in the subfertility of high-producing dairy cows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpsleqtb0%3D&md5=6e21b31854c16fe098f8ade1e936a57cCAS |

Crisosto, N., Sir-Petermann, T., Greiner, M., Maliqueo, M., Moreno, M., Aedo, P., and Lara, H. E. (2009). Testosterone-induced downregulation of anti-Mullerian hormone expression in granulosa cells from small bovine follicles. Endocrine 36, 339–345.
Testosterone-induced downregulation of anti-Mullerian hormone expression in granulosa cells from small bovine follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht12qtbbJ&md5=158f436e5fe26d3aec33ef7b9618f06cCAS |

Crowe, M. A. (2008). Resumption of ovarian cyclicity in post-partum beef and dairy cows. Reprod. Domest. Anim. 43, 20–28.
Resumption of ovarian cyclicity in post-partum beef and dairy cows.Crossref | GoogleScholarGoogle Scholar |

Cushman, R. A., DeSouza, J. C., Hedgpeth, V. S., and Britt, J. H. (1999). Superovulatory response of one ovary is related to the micro- and macroscopic population of follicles in the contralateral ovary of the cow. Biol. Reprod. 60, 349–354.
Superovulatory response of one ovary is related to the micro- and macroscopic population of follicles in the contralateral ovary of the cow.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXotlyhuw%3D%3D&md5=cc213f5b63e8a049c1cb7f1f42ff6fc2CAS |

de Santa Barbara, P., Moniot, B., Poulat, F., Boizet, B., and Berta, P. (1998). Steroidogenic factor-1 regulates transcription of the human anti-Mullerian hormone receptor. J. Biol. Chem. 273, 29 654–29 660.
Steroidogenic factor-1 regulates transcription of the human anti-Mullerian hormone receptor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXntlKqtb4%3D&md5=699e0d8fb649d195d656370aaf86df5fCAS |

de Vet, A., Laven, J. S., de Jong, F. H., Themmen, A. P., and Fauser, B. C. (2002). Antimullerian hormone serum levels: a putative marker for ovarian aging. Fertil. Steril. 77, 357–362.
Antimullerian hormone serum levels: a putative marker for ovarian aging.Crossref | GoogleScholarGoogle Scholar |

Di Clemente, N., Goxe, B., Remy, J. J., Cate, R. L., Josso, N., Vigier, B., and Salesse, R. (1994a). Inhibitory effect of AMH upon the expression of aromatase and LH receptors by cultured granulosa cells of rat and porcine immature ovaries. Endocrine 2, 553–558.
| 1:CAS:528:DyaK2cXmt1artbg%3D&md5=b828cce4cc44a34b2e9aa7e1798b30caCAS |

Di Clemente, N., Wilson, C., Faure, E., Boussin, L., Carmillo, P., Tizard, R., Picard, J. Y., Vigier, B., Josso, N., and Cate, R. (1994b). Cloning, expression, and alternative splicing of the receptor for anti-Mullerian hormone. Mol. Endocrinol. 8, 1006–1020.
Cloning, expression, and alternative splicing of the receptor for anti-Mullerian hormone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmt1aiu7s%3D&md5=a19ec3564cd14a521cd1e2da3801d65eCAS |

Durlinger, A. L., Kramer, P., Karels, B., de Jong, F. H., Uilenbroek, J. T., Grootegoed, J. A., and Themmen, A. P. (1999). Control of primordial follicle recruitment by anti-Mullerian hormone in the mouse ovary. Endocrinology 140, 5789–5796.
Control of primordial follicle recruitment by anti-Mullerian hormone in the mouse ovary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXns12htLc%3D&md5=fad477025104e2fde0306bfd5645d6d9CAS |

Durlinger, A. L., Gruijters, M. J., Kramer, P., Karels, B., Kumar, T. R., Matzuk, M. M., Rose, U. M., de Jong, F. H., Uilenbroek, J. T. J., Grootegoed, J. A., and Themmen, A. P. N. (2001). Anti-Müllerian hormone attenuates the effects of FSH on follicle development in the mouse ovary. Endocrinology 142, 4891–4899.
Anti-Müllerian hormone attenuates the effects of FSH on follicle development in the mouse ovary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnslGqu78%3D&md5=3f7d22d5857084c480c7fc8fc0469ab2CAS |

Durlinger, A. L., Gruijters, M. J., Kramer, P., Karels, B., Ingraham, H. A., Nachtigal, M. W., Uilenbroek, J. T., Grootegoed, J. A., and Themmen, A. P. (2002). Anti-Mullerian hormone inhibits initiation of primordial follicle growth in the mouse ovary. Endocrinology 143, 1076–1084.
Anti-Mullerian hormone inhibits initiation of primordial follicle growth in the mouse ovary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhvVeisLs%3D&md5=519fb14f93b1446c5b0ae69f83173147CAS |

Durocher, J., Morin, N., and Blondin, P. (2006). Effect of hormonal stimulation on bovine follicular response and oocyte developmental competence in a commercial operation. Theriogenology 65, 102–115.
Effect of hormonal stimulation on bovine follicular response and oocyte developmental competence in a commercial operation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1GitrzK&md5=d70520282013094ecf556691bb3edb5bCAS |

Dutertre, M., Gouedard, L., Xavier, F., Long, W. Q., di Clemente, N., Picard, J. Y., and Rey, R. (2001). Ovarian granulosa cell tumors express a functional membrane receptor for anti-Mullerian hormone in transgenic mice. Endocrinology 142, 4040–4046.
Ovarian granulosa cell tumors express a functional membrane receptor for anti-Mullerian hormone in transgenic mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmsFSgsLc%3D&md5=dc452cd4f5a9ed7a75e0bf3055a1f244CAS |

Elvin, J. A., Yan, C., and Matzuk, M. M. (2000). Oocyte-expressed TGF-beta superfamily members in female fertility. Mol. Cell. Endocrinol. 159, 1–5.
Oocyte-expressed TGF-beta superfamily members in female fertility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXht1Grtbc%3D&md5=63cfb5462dc6a14f816ad3a33ea75023CAS |

Erickson, B. H. (1966). Development and senescence of the postnatal bovine ovary. J. Anim. Sci. 25, 800–805.
| 1:STN:280:DyaF2s7ntlWhsw%3D%3D&md5=229a6f9e5923be870713a4b3bbbe46bdCAS |

Evans, A. C., Currie, W. D., and Rawlings, N. C. (1992). Effects of naloxone on circulating gonadotrophin concentrations in prepubertal heifers. J. Reprod. Fertil. 96, 847–855.
Effects of naloxone on circulating gonadotrophin concentrations in prepubertal heifers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXhsVSiu74%3D&md5=af96afb1cdeb8e8cfbed53025912b525CAS |

Evans, A. C., Adams, G. P., and Rawlings, N. C. (1994). Follicular and hormonal development in prepubertal heifers from 2 to 36 weeks of age. J. Reprod. Fertil. 102, 463–470.
Follicular and hormonal development in prepubertal heifers from 2 to 36 weeks of age.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjtFynsLs%3D&md5=042e0704739f47367e1f37e7541e77d2CAS |

Evans, A. C., Ireland, J. L., Winn, M. E., Lonergan, P., Smith, G. W., Coussens, P. M., and Ireland, J. J. (2004). Identification of genes involved in apoptosis and dominant follicle development during follicular waves in cattle. Biol. Reprod. 70, 1475–1484.
Identification of genes involved in apoptosis and dominant follicle development during follicular waves in cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjsFelurw%3D&md5=64ba9294ed106b1ffd73a0423e0fa89cCAS |

Fanchin, R., Schonauer, L. M., Righini, C., Guibourdenche, J., Frydman, R., and Taieb, J. (2003). Serum anti-Mullerian hormone is more strongly related to ovarian follicular status than serum inhibin B, estradiol, FSH and LH on day 3. Hum. Reprod. 18, 323–327.
Serum anti-Mullerian hormone is more strongly related to ovarian follicular status than serum inhibin B, estradiol, FSH and LH on day 3.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXit1yrtr0%3D&md5=65b9eaec42e96cd8d04a2a8506b273ecCAS |

Fanchin, R., Taieb, J., Lozano, D. H., Ducot, B., Frydman, R., and Bouyer, J. (2005). High reproducibility of serum anti-Müllerian hormone measurements suggests a multi-staged follicular secretion and strengthens its role in the assessment of ovarian follicular status. Hum. Reprod. 20, 923–927.
High reproducibility of serum anti-Müllerian hormone measurements suggests a multi-staged follicular secretion and strengthens its role in the assessment of ovarian follicular status.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXis1yjtLo%3D&md5=274cbb89fa5bf8707d2beac1b492811aCAS |

Gigli, I., Cushman, R. A., Wahl, C. M., and Fortune, J. E. (2005). Evidence for a role for anti-Mullerian hormone in the suppression of follicle activation in mouse ovaries and bovine ovarian cortex grafted beneath the chick chorioallantoic membrane. Mol. Reprod. Dev. 71, 480–488.
Evidence for a role for anti-Mullerian hormone in the suppression of follicle activation in mouse ovaries and bovine ovarian cortex grafted beneath the chick chorioallantoic membrane.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlvFSltbg%3D&md5=d85d8d4dae1b8aabc896a72924491abdCAS |

Ginther, O. J., Kot, K., Kulick, L. J., Martin, S., and Wiltbank, M. C. (1996). Relationships between FSH and ovarian follicular waves during the last six months of pregnancy in cattle. J. Reprod. Fertil. 108, 271–279.
Relationships between FSH and ovarian follicular waves during the last six months of pregnancy in cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXntFSqtQ%3D%3D&md5=da14ee25889593b19e785659a34dedbdCAS |

Giuili, G., Shen, W. H., and Ingraham, H. A. (1997). The nuclear receptor SF-1 mediates sexually dimorphic expression of Mullerian inhibiting substance, in vivo. Development 124, 1799–1807.
| 1:CAS:528:DyaK2sXjs1Kksbk%3D&md5=877339378a6940bcd3ff1d040f08c348CAS |

Glister, C., Kemp, C. F., and Knight, P. G. (2004). Bone morphogenetic protein (BMP) ligands and receptors in bovine ovarian follicle cells: actions of BMP-4, -6 and -7 on granulosa cells and differential modulation of Smad-1 phosphorylation by follistatin. Reproduction 127, 239–254.
Bone morphogenetic protein (BMP) ligands and receptors in bovine ovarian follicle cells: actions of BMP-4, -6 and -7 on granulosa cells and differential modulation of Smad-1 phosphorylation by follistatin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXitVWrtL8%3D&md5=191c3c091ed2e91b310f56b9c7370c0eCAS |

Grummer, R. R. (2008). Nutritional and management strategies for the prevention of fatty liver in dairy cattle. Vet. J. 176, 10–20.
Nutritional and management strategies for the prevention of fatty liver in dairy cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjs1Srsbg%3D&md5=100f7b723d1c31bd8cac7ee01144c0e8CAS |

Grynberg, M., Pierre, A., Rey, R., Leclerc, A., Arouche, N., Hesters, L., Catteau-Jonard, S., Frydman, R., Picard, J.-Y., Fanchin, R., Veitia, R., di Clemente, N., and Taieb, J. (2012). Differential regulation of ovarian anti-Mullerian hormone (AMH) by estradiol through α- and β-estrogen receptors. J. Clin. Endocrinol. Metab. , .
Differential regulation of ovarian anti-Mullerian hormone (AMH) by estradiol through α- and β-estrogen receptors.Crossref | GoogleScholarGoogle Scholar |

Guerrier, D., Boussin, L., Mader, S., Josso, N., Kahn, A., and Picard, J. Y. (1990). Expression of the gene for anti-Mullerian hormone. J. Reprod. Fertil. 88, 695–706.
Expression of the gene for anti-Mullerian hormone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXhvFejs74%3D&md5=d33eac2a243e07cf9b0d3f143df2fcd4CAS |

Gumienny, T. L., and Padgett, R. W. (2002). The other side of TGF-beta superfamily signal regulation: thinking outside the cell. Trends Endocrinol. Metab. 13, 295–299.
The other side of TGF-beta superfamily signal regulation: thinking outside the cell.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmtVWntro%3D&md5=1c35ca5d64e29a2e2e7d4db3bd57afffCAS |

Hehenkamp, W. J., Looman, C. W., Themmen, A. P., de Jong, F. H., Te Velde, E. R., and Broekmans, F. J. (2006). Anti-Mullerian hormone levels in the spontaneous menstrual cycle do not show substantial fluctuation. J. Clin. Endocrinol. Metab. 91, 4057–4063.
Anti-Mullerian hormone levels in the spontaneous menstrual cycle do not show substantial fluctuation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFSjtb3F&md5=edbd99c99c94522605c38ba1c218fa6fCAS |

Hirobe, S., He, W. W., Lee, M. M., and Donahoe, P. K. (1992). Mullerian inhibiting substance messenger ribonucleic acid expression in granulosa and Sertoli cells coincides with their mitotic activity. Endocrinology 131, 854–862.
Mullerian inhibiting substance messenger ribonucleic acid expression in granulosa and Sertoli cells coincides with their mitotic activity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XlsVertbc%3D&md5=c74c158a424dea394c5f8b2a33ae25b3CAS |

Hirobe, S., He, W. W., Gustafson, M. L., MacLaughlin, D. T., and Donahoe, P. K. (1994). Mullerian inhibiting substance gene expression in the cycling rat ovary correlates with recruited or graafian follicle selection. Biol. Reprod. 50, 1238–1243.
Mullerian inhibiting substance gene expression in the cycling rat ovary correlates with recruited or graafian follicle selection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXkt1OitLk%3D&md5=d75e2932ed80f32f18eafa68d7bcab62CAS |

Hong, C. Y., Park, J. H., Seo, K. H., Kim, J. M., Im, S. Y., Lee, J. W., Choi, H. S., and Lee, K. (2003). Expression of MIS in the testis is downregulated by tumor necrosis factor alpha through the negative regulation of SF-1 transactivation by NF-kappa B. Mol. Cell. Biol. 23, 6000–6012.
Expression of MIS in the testis is downregulated by tumor necrosis factor alpha through the negative regulation of SF-1 transactivation by NF-kappa B.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXms1Ohsbc%3D&md5=641cde351ef6443a66e5b6bb1d7bc11cCAS |

Hossain, A., and Saunders, G. F. (2003). Role of Wilms tumor 1 (WT1) in the transcriptional regulation of the Mullerian-inhibiting substance promoter. Biol. Reprod. 69, 1808–1814.
Role of Wilms tumor 1 (WT1) in the transcriptional regulation of the Mullerian-inhibiting substance promoter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpsVCnsrg%3D&md5=7fc8555c33ebf95b4e0d28504c1ecc52CAS |

Hussein, T. S., Froiland, D. A., Amato, F., Thompson, J. G., and Gilchrist, R. B. (2005). Oocytes prevent cumulus cell apoptosis by maintaining a morphogenic paracrine gradient of bone morphogenetic proteins. J. Cell Sci. 118, 5257–5268.
Oocytes prevent cumulus cell apoptosis by maintaining a morphogenic paracrine gradient of bone morphogenetic proteins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlWru7rK&md5=6914b264c48e5b19522b919f17ee06f4CAS |

Ikeda, Y., Nagai, A., Ikeda, M. A., and Hayashi, S. (2002). Increased expression of Mullerian-inhibiting substance correlates with inhibition of follicular growth in the developing ovary of rats treated with E2 benzoate. Endocrinology 143, 304–312.
Increased expression of Mullerian-inhibiting substance correlates with inhibition of follicular growth in the developing ovary of rats treated with E2 benzoate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjtVyjug%3D%3D&md5=71a5e74dada33633ed91e63781cf5219CAS |

Ireland, J. J., Ward, F., Jimenez-Krassel, F., Ireland, J. L., Smith, G. W., Lonergan, P., and Evans, A. C. (2007). Follicle numbers are highly repeatable within individual animals but are inversely correlated with FSH concentrations and the proportion of good-quality embryos after ovarian stimulation in cattle. Hum. Reprod. 22, 1687–1695.
Follicle numbers are highly repeatable within individual animals but are inversely correlated with FSH concentrations and the proportion of good-quality embryos after ovarian stimulation in cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXot1ejtLo%3D&md5=bb7499416ac30736cd50a88684f99b35CAS |

Ireland, J. L., Scheetz, D., Jimenez-Krassel, F., Themmen, A. P., Ward, F., Lonergan, P., Smith, G. W., Perez, G. I., Evans, A. C. O., and Ireland, J. J. (2008). Antral follicle count reliably predicts number of morphologically healthy oocytes and follicles in ovaries of young adult cattle. Biol. Reprod. 79, 1219–1225.
Antral follicle count reliably predicts number of morphologically healthy oocytes and follicles in ovaries of young adult cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVCltL3M&md5=6a1fc32f02dfc46af213239f3cbfdb1bCAS |

Ireland, J. J., Smith, G. W., Scheetz, D., Jimenez-Krassel, F., Folger, J. K., Ireland, J. L., Mossa, F., Lonergan, P., and Evans, A. C. (2011). Does size matter in females? An overview of the impact of the high variation in the ovarian reserve on ovarian function and fertility, utility of anti-Mullerian hormone as a diagnostic marker for fertility and causes of variation in the ovarian reserve in cattle. Reprod. Fertil. Dev. 23, 1–14.
Does size matter in females? An overview of the impact of the high variation in the ovarian reserve on ovarian function and fertility, utility of anti-Mullerian hormone as a diagnostic marker for fertility and causes of variation in the ovarian reserve in cattle.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3M3ktFajtw%3D%3D&md5=3b366c459c75bd495398062154f03b90CAS |

Jansen, H. T., West, C., Lehman, M. N., and Padmanabhan, V. (2001). Ovarian estrogen receptor-beta (ERbeta) regulation: I. Changes in ERbeta messenger RNA expression prior to ovulation in the ewe. Biol. Reprod. 65, 866–872.
Ovarian estrogen receptor-beta (ERbeta) regulation: I. Changes in ERbeta messenger RNA expression prior to ovulation in the ewe.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmtFemsLw%3D&md5=b2383411baf0956d8fabcdbe1fe5ca14CAS |

Johnson, P. A., Kent, T. R., Urick, M. E., and Giles, J. R. (2008). Expression and regulation of anti-Mullerian hormone in an oviparous species, the hen. Biol. Reprod. 78, 13–19.
Expression and regulation of anti-Mullerian hormone in an oviparous species, the hen.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXls1M%3D&md5=36e296acb55c58478c4e14fe2b682b43CAS |

Jorritsma, R., Cesar, M. L., Hermans, J. T., Kruitwagen, C. L., Vos, P. L., and Kruip, T. A. (2004). Effects of non-esterified fatty acids on bovine granulosa cells and developmental potential of oocytes in vitro. Anim. Reprod. Sci. 81, 225–235.
Effects of non-esterified fatty acids on bovine granulosa cells and developmental potential of oocytes in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhsleltr0%3D&md5=73098f6f5c3bbcda750fc539efd5d00eCAS |

Josso, N., and Clemente, N. (2003). Transduction pathway of anti-Mullerian hormone, a sex-specific member of the TGF-beta family. Trends Endocrinol. Metab. 14, 91–97.
Transduction pathway of anti-Mullerian hormone, a sex-specific member of the TGF-beta family.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtVCksrw%3D&md5=90f3666dc226c0694c694ab20e85377aCAS |

Jost, A. (1947). Recherches sur la différenciation sexuelle de l’embryon de lapin. Arch. Anat. Microsc. Morphol. Exp. 36, 271–315.

Jost, A., Vigier, B., Prepin, J., and Perchellet, J. P. (1973). Studies on sex differentiation in mammals. Recent Prog. Horm. Res. 29, 1–41.
| 1:STN:280:DyaE2c%2FisF2mug%3D%3D&md5=3893980c6c8bab5b30ef139a4065b867CAS |

Juengel, J. L., Whale, L. J., Wylde, K. A., Greenwood, P., McNatty, K. P., and Eckery, D. C. (2002). Expression of anti-Mullerian hormone mRNA during gonadal and follicular development in the brushtail possum (Trichosurus vulpecula). Reprod. Fertil. Dev. 14, 345–353.
Expression of anti-Mullerian hormone mRNA during gonadal and follicular development in the brushtail possum (Trichosurus vulpecula).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XovFKnt7o%3D&md5=42434910024c04c99d171853ad050c72CAS |

Juengel, J. L., Reader, K. L., Bibby, A. H., Lun, S., Ross, I., Haydon, L. J., and McNatty, K. P. (2006). The role of bone morphogenetic proteins 2, 4, 6 and 7 during ovarian follicular development in sheep: contrast to rat. Reproduction 131, 501–513.
The role of bone morphogenetic proteins 2, 4, 6 and 7 during ovarian follicular development in sheep: contrast to rat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xjs12jsLw%3D&md5=c4b95641aa6590ebbc4ded8229cdabc0CAS |

Kawamata, M. (1994). Relationships between the number of small follicles prior to superovulatory treatment and superovulatory response in Holstein cows. J. Vet. Med. Sci. 56, 965–967.
Relationships between the number of small follicles prior to superovulatory treatment and superovulatory response in Holstein cows.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2M7mvFOqtQ%3D%3D&md5=23604607384d5d272c23bc527656b3b5CAS |

Kevenaar, M. E., Meerasahib, M. F., Kramer, P., van de Lang-Born, B. M., de Jong, F. H., Groome, N. P., Themmen, A. P., and Visser, J. A. (2006). Serum anti-mullerian hormone levels reflect the size of the primordial follicle pool in mice. Endocrinology 147, 3228–3234.
Serum anti-mullerian hormone levels reflect the size of the primordial follicle pool in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmtlOrsr8%3D&md5=f006bb540f23b14f1e2bf7d9820bd6f4CAS |

Klüver, N., Pfennig, F., Pala, I., Storch, K., Schlieder, M., Froschauer, A., Gutzeit, H. O., and Schartl, M. (2007). Differential expression of anti-Müllerian hormone (amh) and anti-Müllerian hormone receptor type II (amhrII) in the teleost medaka. Dev. Dyn. 236, 271–281.
Differential expression of anti-Müllerian hormone (amh) and anti-Müllerian hormone receptor type II (amhrII) in the teleost medaka.Crossref | GoogleScholarGoogle Scholar |

La Marca, A., Stabile, G., Artenisio, A. C., and Volpe, A. (2006). Serum anti-Mullerian hormone throughout the human menstrual cycle. Hum. Reprod. 21, 3103–3107.
Serum anti-Mullerian hormone throughout the human menstrual cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlChtb7J&md5=152157945a29b8fdcb62abb3068db567CAS |

La Marca, A., Sighinolfi, G., Radi, D., Argento, C., Baraldi, E., Artenisio, A. C., Stabile, G., and Volpe, A. (2010). Anti-Mullerian hormone (AMH) as a predictive marker in assisted reproductive technology (ART). Hum. Reprod. Update 16, 113–130.
Anti-Mullerian hormone (AMH) as a predictive marker in assisted reproductive technology (ART).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhslKntb4%3D&md5=a13515681cb7870c6a53ca17a2a8ab6aCAS |

Lasala, C., Carre-Eusebe, D., Picard, J. Y., and Rey, R. (2004). Subcellular and molecular mechanisms regulating anti-Mullerian hormone gene expression in mammalian and nonmammalian species. DNA Cell Biol. 23, 572–585.
| 1:CAS:528:DC%2BD2cXns1ersrY%3D&md5=f450fe914262156ea9b50df59d805d19CAS |

Lasala, C., Schteingart, H. F., Arouche, N., Bedecarras, P., Grinspon, R. P., Picard, J. Y., Josso, N., di Clemente, N., and Rey, R. A. (2011). SOX9 and SF1 are involved in cyclic AMP-mediated upregulation of anti-Mullerian gene expression in the testicular prepubertal Sertoli cell line SMAT1. Am. J. Physiol. Endocrinol. Metab. 301, E539–E547.
SOX9 and SF1 are involved in cyclic AMP-mediated upregulation of anti-Mullerian gene expression in the testicular prepubertal Sertoli cell line SMAT1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1Cgtr7L&md5=e133a5e5838e797ff5a964345d7aab95CAS |

Laven, J. S., Mulders, A. G., Visser, J. A., Themmen, A. P., De Jong, F. H., and Fauser, B. C. (2004). Anti-Mullerian hormone serum concentrations in normoovulatory and anovulatory women of reproductive age. J. Clin. Endocrinol. Metab. 89, 318–323.
Anti-Mullerian hormone serum concentrations in normoovulatory and anovulatory women of reproductive age.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmvFCitw%3D%3D&md5=e65b33b142b47352c4bf89228fb4904bCAS |

Legeai, L., Vigier, B., Tran, D., Picard, J. Y., and Josso, N. (1986). Monoclonal antibodies raised against bovine anti-Mullerian hormone: bovine, ovine, and caprine hormones share a set of identical epitopes. Biol. Reprod. 35, 1217–1225.
Monoclonal antibodies raised against bovine anti-Mullerian hormone: bovine, ovine, and caprine hormones share a set of identical epitopes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXhtFeluro%3D&md5=8d9dbcece2408b66948392b6bc028aeeCAS |

Lucy, M. C. (2003). Mechanisms linking nutrition and reproduction in postpartum cows. Reprod. Suppl. 61, 415–427.
| 1:CAS:528:DC%2BD3sXptFKhtrY%3D&md5=972052eea650cfd4633fe9ebed8f03f3CAS |

Lucy, M. C. (2007). Fertility in high-producing dairy cows: reasons for decline and corrective strategies for sustainable improvement. Soc. Reprod. Fertil. Suppl. 64, 237–254.
| 1:STN:280:DC%2BD2s3otlKitg%3D%3D&md5=ea432b0868ed47a627d9b5151bbfd696CAS |

Lukas-Croisier, C., Lasala, C., Nicaud, J., Bedecarras, P., Kumar, T. R., Dutertre, M., Matzuk, M. M., Picard, J.-Y., Josso, N., and Rey, R. (2003). Follicle-stimulating hormone increases testicular anti-Mullerian hormone (AMH) production through Sertoli cell proliferation and a nonclassical cyclic adenosine 5′-monophosphate-mediated activation of the AMH gene. Mol. Endocrinol. 17, 550–561.
Follicle-stimulating hormone increases testicular anti-Mullerian hormone (AMH) production through Sertoli cell proliferation and a nonclassical cyclic adenosine 5′-monophosphate-mediated activation of the AMH gene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXivFClu7w%3D&md5=754a6e5daa3c81a6f04754a62525e04eCAS |

Malloy, P. J., Peng, L., Wang, J., and Feldman, D. (2009). Interaction of the vitamin D receptor with a vitamin D response element in the Mullerian-inhibiting substance (MIS) promoter: regulation of MIS expression by calcitriol in prostate cancer cells. Endocrinology 150, 1580–1587.
Interaction of the vitamin D receptor with a vitamin D response element in the Mullerian-inhibiting substance (MIS) promoter: regulation of MIS expression by calcitriol in prostate cancer cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktVWmurc%3D&md5=045550c1d4797860a1f42589e406abb4CAS |

Mazerbourg, S., Klein, C., Roh, J., Kaivo-Oja, N., Mottershead, D. G., Korchynskyi, O., Ritvos, O., and Hsueh, A. J. (2004). Growth differentiation factor-9 signaling is mediated by the type I receptor, activin receptor-like kinase 5. Mol. Endocrinol. 18, 653–665.
Growth differentiation factor-9 signaling is mediated by the type I receptor, activin receptor-like kinase 5.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXivFCqtrs%3D&md5=a6bf9340177ca8c018ab2978276fff3eCAS |

Monniaux, D. (1987). Short-term effects of FSH in vitro on granulosa cells of individual sheep follicles. J. Reprod. Fertil. 79, 505–515.
Short-term effects of FSH in vitro on granulosa cells of individual sheep follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXhs12nsr8%3D&md5=175b0130b030475f5efad20b3ff63772CAS |

Monniaux, D., Chupin, D., and Saumande, J. (1983). Superovulatory responses of cattle. Theriogenology 19, 55–81.
Superovulatory responses of cattle.Crossref | GoogleScholarGoogle Scholar |

Monniaux, D., Mariana, J. C., and Gibson, W. R. (1984). Action of PMSG on follicular populations in the heifer. J. Reprod. Fertil. 70, 243–253.
Action of PMSG on follicular populations in the heifer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXotVSktg%3D%3D&md5=2a41c4a4b6a454cfefc43033f0c2856cCAS |

Monniaux, D., di Clemente, N., Touzé, J. L., Belville, C., Rico, C., Bontoux, M., Picard, J. Y., and Fabre, S. (2008). Intrafollicular steroids and anti-Mullerian hormone during normal and cystic ovarian follicular development in the cow. Biol. Reprod. 79, 387–396.
Intrafollicular steroids and anti-Mullerian hormone during normal and cystic ovarian follicular development in the cow.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXovFWmsb0%3D&md5=0edd0214eff7f93a9313f7718ee99d10CAS |

Monniaux, D., Barbey, S., Rico, C., Fabre, S., Gallard, Y., and Larroque, H. (2010). Anti-Müllerian hormone: a predictive marker of embryo production in cattle? Reprod. Fertil. Dev. 22, 1083–1091.
Anti-Müllerian hormone: a predictive marker of embryo production in cattle?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVOgu7vE&md5=9eef3fb4fb5762e27c89c43decf1ddb2CAS |

Monniaux, D., Baril, G., Laine, A. L., Jarrier, P., Poulin, N., Cognie, J., and Fabre, S. (2011). Anti-Mullerian hormone as a predictive endocrine marker for embryo production in the goat. Reproduction 142, 845–854.
Anti-Mullerian hormone as a predictive endocrine marker for embryo production in the goat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1GqtLbO&md5=1a4c44add802715dfa6f37e8c5dfe821CAS |

Mulders, A. G., Laven, J. S., Eijkemans, M. J., de Jong, F. H., Themmen, A. P., and Fauser, B. C. (2004). Changes in anti-Mullerian hormone serum concentrations over time suggest delayed ovarian ageing in normogonadotrophic anovulatory infertility. Hum. Reprod. 19, 2036–2042.
Changes in anti-Mullerian hormone serum concentrations over time suggest delayed ovarian ageing in normogonadotrophic anovulatory infertility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnsVyisLw%3D&md5=4bf6752d90a37c8009a9489be750c379CAS |

Nachtigal, M. W., Hirokawa, Y., Enyeart-VanHouten, D. L., Flanagan, J. N., Hammer, G. D., and Ingraham, H. A. (1998). Wilms’ tumor 1 and Dax-1 modulate the orphan nuclear receptor SF-1 in sex-specific gene expression. Cell 93, 445–454.
Wilms’ tumor 1 and Dax-1 modulate the orphan nuclear receptor SF-1 in sex-specific gene expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjtFCjtb8%3D&md5=58659652a3046990bef187acdeb0a761CAS |

Nielsen, M. E., Rasmussen, I. A., Fukuda, M., Westergaard, L. G., and Andersen, C. Y. (2010). Concentrations of anti-Mullerian hormone in fluid from small human antral follicles show a negative correlation with CYP19 mRNA expression in the corresponding granulosa cells. Mol. Hum. Reprod. 16, 637–643.
Concentrations of anti-Mullerian hormone in fluid from small human antral follicles show a negative correlation with CYP19 mRNA expression in the corresponding granulosa cells.Crossref | GoogleScholarGoogle Scholar |

Pask, A. J., Whitworth, D. J., Mao, C. A., Wei, K. J., Sankovic, N., Graves, J. A., Shaw, G., Renfree, M. B., and Behringer, R. R. (2004). Marsupial anti-Mullerian hormone gene structure, regulatory elements, and expression. Biol. Reprod. 70, 160–167.
Marsupial anti-Mullerian hormone gene structure, regulatory elements, and expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhvV2l&md5=175c86c18053871426eb58d3d88c7625CAS |

Pellatt, L., Hanna, L., Brincat, M., Galea, R., Brain, H., Whitehead, S., and Mason, H. (2007). Granulosa cell production of anti-Mullerian hormone is increased in polycystic ovaries. J. Clin. Endocrinol. Metab. 92, 240–245.
Granulosa cell production of anti-Mullerian hormone is increased in polycystic ovaries.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpsVKhsQ%3D%3D&md5=416815a172daad6f773387b495d6721dCAS |

Pellatt, L., Rice, S., and Mason, H. D. (2010). Anti-Mullerian hormone and polycystic ovary syndrome: a mountain too high? Reproduction 139, 825–833.
Anti-Mullerian hormone and polycystic ovary syndrome: a mountain too high?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmvVCgsL0%3D&md5=886cccfa1d9dfe3dcf3d62c44ab13be6CAS |

Picard, J. Y., Benarous, R., Guerrier, D., Josso, N., and Kahn, A. (1986). Cloning and expression of cDNA for anti-Mullerian hormone. Proc. Natl Acad. Sci. USA 83, 5464–5468.
Cloning and expression of cDNA for anti-Mullerian hormone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28Xlt1yltbo%3D&md5=20ac20da3c76b30f89c9a51bbee2896aCAS |

Pierre, A., Pisselet, C., Dupont, J., Mandon-Pepin, B., Monniaux, D., Monget, P., and Fabre, S. (2004). Molecular basis of bone morphogenetic protein-4 inhibitory action on progesterone secretion by ovine granulosa cells. J. Mol. Endocrinol. 33, 805–817.
Molecular basis of bone morphogenetic protein-4 inhibitory action on progesterone secretion by ovine granulosa cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXis1aruw%3D%3D&md5=82c6ddcd122045127466dcabcd5514b2CAS |

Pigny, P., Merlen, E., Robert, Y., Cortet-Rudelli, C., Decanter, C., Jonard, S., and Dewailly, D. (2003). Elevated serum level of anti-Mullerian hormone in patients with polycystic ovary syndrome: relationship to the ovarian follicle excess and to the follicular arrest. J. Clin. Endocrinol. Metab. 88, 5957–5962.
Elevated serum level of anti-Mullerian hormone in patients with polycystic ovary syndrome: relationship to the ovarian follicle excess and to the follicular arrest.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtVSgsrvL&md5=b2c83c3cfe6c60e3696e88fd26520e8fCAS |

Rajakoski, E. (1960). The ovarian follicular system in sexually mature heifers with special reference to seasonal, cyclical, and left–right variations. Acta Endocrinol. 34, 1–68.

Rajpert-De Meyts, E., Jorgensen, N., Graem, N., Muller, J., Cate, R. L., and Skakkebaek, N. E. (1999). Expression of anti-Mullerian hormone during normal and pathological gonadal development: association with differentiation of Sertoli and granulosa cells. J. Clin. Endocrinol. Metab. 84, 3836–3844.
Expression of anti-Mullerian hormone during normal and pathological gonadal development: association with differentiation of Sertoli and granulosa cells.Crossref | GoogleScholarGoogle Scholar |

Rawlings, N. C., Evans, A. C., Honaramooz, A., and Bartlewski, P. M. (2003). Antral follicle growth and endocrine changes in prepubertal cattle, sheep and goats. Anim. Reprod. Sci. 78, 259–270.
Antral follicle growth and endocrine changes in prepubertal cattle, sheep and goats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXksF2gtrs%3D&md5=99026fd6745519af78296d4925f3d742CAS |

Rey, R., Lukas-Croisier, C., Lasala, C., and Bedecarras, P. (2003). AMH/MIS: what we know already about the gene, the protein and its regulation. Mol. Cell. Endocrinol. 211, 21–31.
AMH/MIS: what we know already about the gene, the protein and its regulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXptlOrsL0%3D&md5=121ee268b430403fc0ba4c711e5f69b3CAS |

Rico, C., Fabre, S., Médigue, C., di Clemente, N., Clément, F., Bontoux, M., Touzé, J.-L., Dupont, M., Briant, E., Rémy, B., Beckers, J.-F., and Monniaux, D. (2009). Anti-Müllerian hormone is an endocrine marker of ovarian gonadotropin-responsive follicles and can help to predict superovulatory responses in the cow. Biol. Reprod. 80, 50–59.
Anti-Müllerian hormone is an endocrine marker of ovarian gonadotropin-responsive follicles and can help to predict superovulatory responses in the cow.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXosFKq&md5=f87fc07dce24a0f92b44bf9d4c1a121aCAS |

Rico, C., Medigue, C., Fabre, S., Jarrier, P., Bontoux, M., Clement, F., and Monniaux, D. (2011). Regulation of anti-Mullerian hormone production in the cow: a multiscale study at endocrine, ovarian, follicular, and granulosa cell levels. Biol. Reprod. 84, 560–571.
Regulation of anti-Mullerian hormone production in the cow: a multiscale study at endocrine, ovarian, follicular, and granulosa cell levels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXis1Omt7c%3D&md5=c7357848b4d257ede866a3375fd3cf36CAS |

Rico, C., Drouilhet, L., Salvetti, P., Dalbiès-Tran, R., Jarrier, P., Touzé, J.-L., Pillet, E., Ponsart, C., Fabre, S., and Monniaux, D. (2012). Determination of anti-Müllerian hormone concentrations in blood as a tool to select Holstein donor cows for embryo production: from the laboratory to the farm. Reprod. Fertil. Dev. 24, 932–944.
Determination of anti-Müllerian hormone concentrations in blood as a tool to select Holstein donor cows for embryo production: from the laboratory to the farm.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1Grs7vI&md5=d995419de1331768b44c16116617e9cdCAS |

Roche, J. F. (2006). The effect of nutritional management of the dairy cow on reproductive efficiency. Anim. Reprod. Sci. 96, 282–296.
The effect of nutritional management of the dairy cow on reproductive efficiency.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFSrurbN&md5=1cba700a4947432f1e877a325121bb1dCAS |

Rodríguez-Marí, A., Yan, Y. L., Bremiller, R. A., Wilson, C., Cañestro, C., and Postlethwait, J. H. (2005). Characterization and expression pattern of zebrafish anti-Mullerian hormone (amh) relative to sox9a, sox9b, and cyp19a1a, during gonad development. Gene Expr. Patterns 5, 655–667.
Characterization and expression pattern of zebrafish anti-Mullerian hormone (amh) relative to sox9a, sox9b, and cyp19a1a, during gonad development.Crossref | GoogleScholarGoogle Scholar |

Sadeu, J. C., Adriaenssens, T., and Smitz, J. (2008). Expression of growth differentiation factor 9, bone morphogenetic protein 15, and anti-Mullerian hormone in cultured mouse primary follicles. Reproduction 136, 195–203.
Expression of growth differentiation factor 9, bone morphogenetic protein 15, and anti-Mullerian hormone in cultured mouse primary follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVGqtbbI&md5=1ae4e5de1999aa7d9320ed16b904292aCAS |

Salmon, N. A., Handyside, A. H., and Joyce, I. M. (2004). Oocyte regulation of anti-Mullerian hormone expression in granulosa cells during ovarian follicle development in mice. Dev. Biol. 266, 201–208.
Oocyte regulation of anti-Mullerian hormone expression in granulosa cells during ovarian follicle development in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltF2muw%3D%3D&md5=38aba3e97376c546e2d780546aa42290CAS |

Scaramuzzi, R. J., Turnbull, K. E., and Nancarrow, C. D. (1980). Growth of Graafian follicles in cows following luteolysis induced by the prostaglandin F2 alpha analogue, cloprostenol. Aust. J. Biol. Sci. 33, 63–69.
| 1:CAS:528:DyaL3cXktlyjsb8%3D&md5=72a842f3131ded06dead11241766c867CAS |

Scaramuzzi, R. J., Baird, D. T., Campbell, B. K., Driancourt, M. A., Dupont, J., Fortune, J. E., Gilchrist, R. B., Martin, G. B., McNatty, K. P., McNeilly, A. S., Monget, P., Monniaux, D., Viñoles, C., and Webb, R. (2011). Regulation of folliculogenesis and the determination of ovulation rate in ruminants. Reprod. Fertil. Dev. 23, 444–467.
Regulation of folliculogenesis and the determination of ovulation rate in ruminants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjt12ntLg%3D&md5=4d36cc6e25236e00408ec426a4e5aac9CAS |

Scheetz, D., Folger, J. K., Smith, G. W., and Ireland, J. J. (2012). Granulosa cells are refractory to FSH action in individuals with a low antral follicle count. Reprod. Fertil. Dev. 24, 327–336.
Granulosa cells are refractory to FSH action in individuals with a low antral follicle count.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1Oitbs%3D&md5=7fa19d1ae62214bd8bbece3f6c82235fCAS |

Seifer, D. B., MacLaughlin, D. T., Christian, B. P., Feng, B., and Shelden, R. M. (2002). Early follicular serum Mullerian-inhibiting substance levels are associated with ovarian response during assisted reproductive technology cycles. Fertil. Steril. 77, 468–471.
Early follicular serum Mullerian-inhibiting substance levels are associated with ovarian response during assisted reproductive technology cycles.Crossref | GoogleScholarGoogle Scholar |

Shen, W. H., Moore, C. C., Ikeda, Y., Parker, K. L., and Ingraham, H. A. (1994). Nuclear receptor steroidogenic factor 1 regulates the mullerian inhibiting substance gene: a link to the sex determination cascade. Cell 77, 651–661.
Nuclear receptor steroidogenic factor 1 regulates the mullerian inhibiting substance gene: a link to the sex determination cascade.Crossref | GoogleScholarGoogle Scholar |

Singh, J., Dominguez, M., Jaiswal, R., and Adams, G. P. (2004). A simple ultrasound test to predict the superstimulatory response in cattle. Theriogenology 62, 227–243.
A simple ultrasound test to predict the superstimulatory response in cattle.Crossref | GoogleScholarGoogle Scholar |

Sowers, M., McConnell, D., Gast, K., Zheng, H., Nan, B., McCarthy, J. D., and Randolph, J. F. (2010). Anti-Müllerian hormone and inhibin B variability during normal menstrual cycles. Fertil. Steril. 94, 1482–1486.
Anti-Müllerian hormone and inhibin B variability during normal menstrual cycles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVyrtLbP&md5=f25b672b8e93961c7f48b8d7365b65acCAS |

Streuli, I., Fraisse, T., Pillet, C., Ibecheole, V., Bischof, P., and de Ziegler, D. (2008). Serum antimullerian hormone levels remain stable throughout the menstrual cycle and after oral or vaginal administration of synthetic sex steroids. Fertil. Steril. 90, 395–400.
Serum antimullerian hormone levels remain stable throughout the menstrual cycle and after oral or vaginal administration of synthetic sex steroids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVGlsLvL&md5=70569b62f78592d9428707e2e057f919CAS |

Taieb, J., Grynberg, M., Pierre, A., Arouche, N., Massart, P., Belville, C., Hesters, L., Frydman, R., Catteau-Jonard, S., Fanchin, R., Picard, J.-Y., Josso, N., Rey, R. A., and di Clemente, N. (2011). FSH and its second messenger cAMP stimulate the transcription of human anti-Müllerian hormone in cultured granulosa cells. Mol. Endocrinol. 25, 645–655.
FSH and its second messenger cAMP stimulate the transcription of human anti-Müllerian hormone in cultured granulosa cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsVKrur8%3D&md5=628311d40bd15b110910ab1b826bff3fCAS |

Takahashi, M., Hayashi, M., Manganaro, T. F., and Donahoe, P. K. (1986). The ontogeny of Mullerian inhibiting substance in granulosa cells of the bovine ovarian follicle. Biol. Reprod. 35, 447–453.
The ontogeny of Mullerian inhibiting substance in granulosa cells of the bovine ovarian follicle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XlvVChsb0%3D&md5=1b0ce2a7f60bf21084bbe465ee0423aaCAS |

Taneja, M., Bols, P. E., Van de Velde, A., Ju, J. C., Schreiber, D., Tripp, M. W., Levine, H., Echelard, Y., Riesen, J., and Yang, X. (2000). Developmental competence of juvenile calf oocytes in vitro and in vivo: influence of donor animal variation and repeated gonadotropin stimulation. Biol. Reprod. 62, 206–213.
Developmental competence of juvenile calf oocytes in vitro and in vivo: influence of donor animal variation and repeated gonadotropin stimulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhslKrsw%3D%3D&md5=2e43b1a4cf2708489307b4a1efe2cb7fCAS |

Teixeira, J., Maheswaran, S., and Donahoe, P. K. (2001). Mullerian inhibiting substance: an instructive developmental hormone with diagnostic and possible therapeutic applications. Endocr. Rev. 22, 657–674.
Mullerian inhibiting substance: an instructive developmental hormone with diagnostic and possible therapeutic applications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXotVWmu7k%3D&md5=be2f6eda621cdd97afb1d6b6f217c532CAS |

Thatcher, W., Santos, J. E., and Staples, C. R. (2011). Dietary manipulations to improve embryonic survival in cattle. Theriogenology 76, 1619–1631.
Dietary manipulations to improve embryonic survival in cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVanur3N&md5=2616dbae75129813303a1937e1fddce4CAS |

Tremblay, J. J., and Viger, R. S. (1999). Transcription factor GATA-4 enhances Mullerian inhibiting substance gene transcription through a direct interaction with the nuclear receptor SF-1. Mol. Endocrinol. 13, 1388–1401.
Transcription factor GATA-4 enhances Mullerian inhibiting substance gene transcription through a direct interaction with the nuclear receptor SF-1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXltVChs74%3D&md5=f362a742dbb6435e11e92067507cb128CAS |

Tremblay, J. J., and Viger, R. S. (2001). Nuclear receptor Dax-1 represses the transcriptional cooperation between GATA-4 and SF-1 in Sertoli cells. Biol. Reprod. 64, 1191–1199.
Nuclear receptor Dax-1 represses the transcriptional cooperation between GATA-4 and SF-1 in Sertoli cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXit1aru7k%3D&md5=9966de13cff307407159d7ed3ac4258eCAS |

Tsepelidis, S., Devreker, F., Demeestere, I., Flahaut, A., Gervy, C., and Englert, Y. (2007). Stable serum levels of anti-Mullerian hormone during the menstrual cycle: a prospective study in normo-ovulatory women. Hum. Reprod. 22, 1837–1840.
Stable serum levels of anti-Mullerian hormone during the menstrual cycle: a prospective study in normo-ovulatory women.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXptFOrsLo%3D&md5=e4d64cb8c39113a8fcf884191cfe50f4CAS |

Ueno, S., Takahashi, M., Manganaro, T. F., Ragin, R. C., and Donahoe, P. K. (1989). Cellular localization of mullerian inhibiting substance in the developing rat ovary. Endocrinology 124, 1000–1006.
Cellular localization of mullerian inhibiting substance in the developing rat ovary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXhtV2jsLo%3D&md5=ccf5ad01c926cb0047032c1e23d26052CAS |

van Knegsel, A. T., van den Brand, H., Dijkstra, J., and Kemp, B. (2007). Effects of dietary energy source on energy balance, metabolites and reproduction variables in dairy cows in early lactation. Theriogenology 68, S274–S280.
Effects of dietary energy source on energy balance, metabolites and reproduction variables in dairy cows in early lactation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotlaitbc%3D&md5=f66a88117f19e5c04efb02065806489bCAS |

van Rooij, I. A., Broekmans, F. J., te Velde, E. R., Fauser, B. C., Bancsi, L. F., de Jong, F. H., and Themmen, A. P. (2002). Serum anti-Mullerian hormone levels: a novel measure of ovarian reserve. Hum. Reprod. 17, 3065–3071.
Serum anti-Mullerian hormone levels: a novel measure of ovarian reserve.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXltFahtQ%3D%3D&md5=5cd5250d183ec92dca1edc3cb203a7d9CAS |

van Rooij, I. A., Broekmans, F. J., Scheffer, G. J., Looman, C. W., Habbema, J. D., de Jong, F. H., Fauser, B. J., Themmen, A. P., and te Velde, E. R. (2005). Serum antimullerian hormone levels best reflect the reproductive decline with age in normal women with proven fertility: a longitudinal study. Fertil. Steril. 83, 979–987.
Serum antimullerian hormone levels best reflect the reproductive decline with age in normal women with proven fertility: a longitudinal study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktFGms7c%3D&md5=a610fcf66bc169b897df95856064112aCAS |

Vanholder, T., Leroy, J. L., Soom, A. V., Opsomer, G., Maes, D., Coryn, M., and de Kruif, A. (2005). Effect of non-esterified fatty acids on bovine granulosa cell steroidogenesis and proliferation in vitro. Anim. Reprod. Sci. 87, 33–44.
Effect of non-esterified fatty acids on bovine granulosa cell steroidogenesis and proliferation in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktVOju74%3D&md5=8cf0fe83a7c45c6d142ab3fe1735ee88CAS |

Viger, R. S., Mertineit, C., Trasler, J. M., and Nemer, M. (1998). Transcription factor GATA-4 is expressed in a sexually dimorphic pattern during mouse gonadal development and is a potent activator of the Mullerian inhibiting substance promoter. Development 125, 2665–2675.
| 1:CAS:528:DyaK1cXlsV2nurw%3D&md5=108ee23dc41de4f9f9b42f9ece80ec75CAS |

Vigier, B., Picard, J. Y., Tran, D., Legeai, L., and Josso, N. (1984). Production of anti-Mullerian hormone: another homology between Sertoli and granulosa cells. Endocrinology 114, 1315–1320.
Production of anti-Mullerian hormone: another homology between Sertoli and granulosa cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXhs1ymsL8%3D&md5=0f801c79c5f0d6a860d1b310d2743b1cCAS |

Voutilainen, R., and Miller, W. L. (1987). Human mullerian inhibitory factor messenger ribonucleic acid is hormonally regulated in the fetal testis and in adult granulosa cells. Mol. Endocrinol. 1, 604–608.
Human mullerian inhibitory factor messenger ribonucleic acid is hormonally regulated in the fetal testis and in adult granulosa cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXjt1Wnsw%3D%3D&md5=837690ce4d4ff0272f00f77a72b72a33CAS |

Watanabe, K., Clarke, T. R., Lane, A. H., Wang, X., and Donahoe, P. K. (2000). Endogenous expression of Mullerian inhibiting substance in early postnatal rat sertoli cells requires multiple steroidogenic factor-1 and GATA-4-binding sites. Proc. Natl Acad. Sci. USA 97, 1624–1629.
Endogenous expression of Mullerian inhibiting substance in early postnatal rat sertoli cells requires multiple steroidogenic factor-1 and GATA-4-binding sites.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhsFCrsb4%3D&md5=7a3f79d4919103694b1cb7cfa60b4f4eCAS |

Weenen, C., Laven, J. S., Von Bergh, A. R., Cranfield, M., Groome, N. P., Visser, J. A., Kramer, P., Fauser, B. C., and Themmen, A. P. (2004). Anti-Mullerian hormone expression pattern in the human ovary: potential implications for initial and cyclic follicle recruitment. Mol. Hum. Reprod. 10, 77–83.
Anti-Mullerian hormone expression pattern in the human ovary: potential implications for initial and cyclic follicle recruitment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXms1amtw%3D%3D&md5=dd827b6bb0d9329dc5c7ff56744beafaCAS |

Wojtusik, J., and Johnson, P. A. (2012). Vitamin D regulates anti-Mullerian hormone expression in granulosa cells of the hen. Biol. Reprod. 86, 91.
Vitamin D regulates anti-Mullerian hormone expression in granulosa cells of the hen.Crossref | GoogleScholarGoogle Scholar |

Wunder, D. M., Bersinger, N. A., Yared, M., Kretschmer, R., and Birkhauser, M. H. (2008). Statistically significant changes of antimullerian hormone and inhibin levels during the physiologic menstrual cycle in reproductive age women. Fertil. Steril. 89, 927–933.
Statistically significant changes of antimullerian hormone and inhibin levels during the physiologic menstrual cycle in reproductive age women.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtFylt7w%3D&md5=558c7218ecd4b1b29165a09ed84ff27aCAS |