Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Follicular dynamics and gene expression in granulosa cells, corpora lutea and oocytes from gilts of breeds with low and high ovulation rates

P. V. Silva A , S. E. F. Guimarães A E , J. D. Guimarães B , C. S. Nascimento A , P. S. Lopes A , J. B. Siqueira A , L. S. Amorim B , F. Fonseca e Silva C and G. R. Foxcroft D
+ Author Affiliations
- Author Affiliations

A Departamento de Zootecnia, Universidade Federal de Vicosa, Vicosa 36570-000, MG, Brasil.

B Departamento de Veterinária, Universidade Federal de Vicosa, Vicosa 36570-000, MG, Brasil.

C Departamento de Estatística, Universidade Federal de Vicosa, Vicosa 36570-000, MG, Brasil.

D Swine Reproduction-Development Program, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton T6G 2P5, AB, Canada.

E Corresponding author. Email: sfacioni@ufv.br

Reproduction, Fertility and Development 26(2) 316-327 https://doi.org/10.1071/RD12257
Submitted: 7 August 2012  Accepted: 12 January 2013   Published: 7 March 2013

Abstract

Follicular dynamics and the expression of candidate genes using real-time polymerase chain reaction (PCR) were compared during the oestrous cycle of pig breeds with high (commercial line; n = 24) and low (local Brazilian Piau; n = 21) ovulation rates and prolificacy. Gilts were killed on Days 0, 4, 10 and 18 of the oestrous cycle and visible ovarian follicles were classified by follicular diameter. Recovered cumulus–oocyte complexes were classified as normal or atretic and frozen in liquid nitrogen until RNA extraction. Low ovulation rates and/or prolificacy in Piau gilts was associated with a different pattern of follicle development, with lower numbers of small follicles on Day 18, fewer large follicles on Days 0 and 18 (P ≤ 0.05) and a higher proportion of atretic follicles on Days 0 and 18 (P ≤ 0.05). Compared with commercial line gilts, less-prolific Piau gilts exhibited higher expression of apoptotic genes during luteolysis (CASP3 and FASL; P ≤ 0.05), decreased expression of TGFBR2 and BAX mRNA in the corpus luteum (P ≤ 0.05), higher expression of apoptotic genes (FAS, BCL2 and CASP8; P ≤ 0.05) in granulosa cells and a greater abundance (P ≤ 0.05) of genes controlling oocyte-secreted factors (GDF9, BMP15 and BMP6), suggesting underlying mechanisms controlling differences in follicular development, ovulation rate and inherent prolificacy in this pig breed.

Additional keywords: growth factors, litter size, ovulation.


References

Bazer, F. W., Thatcher, W. W., Martinat-Botte, F., and Terqui, M. (1988a). Conceptus development in Large White and prolific Chinese Meishan pigs. J. Reprod. Fertil. 84, 37–42.
Conceptus development in Large White and prolific Chinese Meishan pigs.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1M%2Fjs12muw%3D%3D&md5=e7004bb367d66ddb1a385e3815b68cb5CAS | 3184056PubMed |

Bazer, F. W., Thatcher, W. W., Martinat-Botte, F., and Terqui, M. (1988b). Sexual maturation and morphological development of the reproductive tract in large white and prolific Chinese Meishan pigs. J. Reprod. Fertil. 83, 723–728.
Sexual maturation and morphological development of the reproductive tract in large white and prolific Chinese Meishan pigs.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1czhs1ynsw%3D%3D&md5=ece0e1c15f576a131305ddb6f86b1900CAS | 3411562PubMed |

Berardinelli, ., Russo, V., Martelli, A., Nardinocchi, D., Di Giacinto, O., Barboni, B., and Mattioli, M. (2004). Colocalization of DNA fragmentation and caspase-3 activation during atresia in pig antral follicles. Anat. Histol. Embryol. 33, 23–27.
Colocalization of DNA fragmentation and caspase-3 activation during atresia in pig antral follicles.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2c7jsFemsg%3D%3D&md5=11ebef4743a5b718ccf14cee9a3ee2b8CAS | 15027958PubMed |

Bonnet, A., Lê, C. K., Sancristobal, M., Benne, F., Robert-Granié, C., Law-So, G., Fabre, S., Besse, ., De Billy, E., Quesnel, H., Hatey, F., and Tosser-Klopp, G. (2008). In vivo gene expression in granulosa cells during pig terminal follicular development. Reproduction 136, 211–224.
In vivo gene expression in granulosa cells during pig terminal follicular development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVGqtbbL&md5=b2ab68bcb81380acd61b08ddf21c7bbdCAS | 18456903PubMed |

Boone, D. L., and Tsang, B. K. (1998). Caspase-3 in the rat ovary: localization and possible role in follicular atresia and luteal regression. Biol. Reprod. 58, 1533–1539.
Caspase-3 in the rat ovary: localization and possible role in follicular atresia and luteal regression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjsFShur8%3D&md5=cc98698edc5ff73722d7e82711eab9e6CAS | 9623616PubMed |

Choi, D., Hwang, S., Lee, E., Yoon, S., Yoon, B. K., and Bae, D. (2004). Expression of mitochondria-dependent apoptosis genes (p53, Bax, and Bcl-2) in rat granulosa cells during follicular development. J. Soc. Gynecol. Invest. 11, 311–317.
Expression of mitochondria-dependent apoptosis genes (p53, Bax, and Bcl-2) in rat granulosa cells during follicular development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlt1Wmsbk%3D&md5=64515a9f2764f9b8f81f033820634d73CAS |

Clark, J. R., Eday, T. N., First, N. L., Chapman, A. B., and Casida, L. E. (1973). The effects of four genetic groups and two feed levels of feeding on ovulation rate and follicular development in pubertal gilts. J. Anim. Sci. 36, 1164–1169.
| 1:STN:280:DyaE3s3gtlWlug%3D%3D&md5=05df9ff86f9e27f5cc425223a867e262CAS | 4736529PubMed |

Dharma, S. J., Kelkar, R. L., and Nandedkar, T. D. (2003). Fas and Fas ligand protein and mRNA in normal and atretic mouse ovarian follicles. Reproduction 126, 783–789.
Fas and Fas ligand protein and mRNA in normal and atretic mouse ovarian follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmvFWktQ%3D%3D&md5=ff74af478c7cf938f69cdd1deb234de7CAS | 14748697PubMed |

Erickson, G. F., and Shimasaki, S. (2003). The spatiotemporal expression pattern of the bone morphogenetic protein family in rat ovary cell types during the estrous cycle. Reprod. Biol. Endocrinol. 1, 1–20.

Faillace, L. S., and Hunter, M. G. (1994). Follicle development and oocyte maturation during the immediate preovulatory period in Meishan and White hybrid gilts. J. Reprod. Fertil. 101, 571–576.
Follicle development and oocyte maturation during the immediate preovulatory period in Meishan and White hybrid gilts.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2M%2FlsFCjtg%3D%3D&md5=a463d69627d69c60815e628d15ed1b60CAS | 7966010PubMed |

Feary, E. S., Juengel, J. L., Smith, ., French, M. C., O’connell, A. R., Lawrence, S. B., Galloway, S. M., Davis, G. H., and Mcnatty, K. . (2007). Patterns of expression of messenger RNAs encoding GDF9, BMP15, TGFBR1, BMPR1B, and BMPR2 during follicular development and characterization of ovarian follicular populations in ewes carrying the Woodlands FecX2W mutation. Biol. Reprod. 77, 990–998.
Patterns of expression of messenger RNAs encoding GDF9, BMP15, TGFBR1, BMPR1B, and BMPR2 during follicular development and characterization of ovarian follicular populations in ewes carrying the Woodlands FecX2W mutation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVSgtLbP&md5=64e0364f7d305bf29928ff760151324bCAS | 17715428PubMed |

Foxcroft, G. R., and Hunter, M. G. (1985). Basic physiology of follicular maturation in the pig. J. Reprod. Fertil. Suppl. 33, 1–19.
| 1:STN:280:DyaL287hsFWhtg%3D%3D&md5=e80ea50c6a78df3644ee50b30fbbf718CAS | 3003359PubMed |

Foxcroft, G. R., Cosgrove, J., Ding, J., Hofacker, S., and Wiesak, T. (1994). Reproductive function: current concepts. In ‘Principles of Pig Science’. (Eds D. J. A. Cole, J. Wiseman and M. Varley.) pp. 225–252. (Nottingham University Press: Nottingham, UK.)

Gilchrist, R. B., and Ritter, L. J. (2011). Differences in the participation of TGFB superfamily signalling pathways mediating porcine and murine cumulus cell expansion. Reproduction 142, 647–657.
Differences in the participation of TGFB superfamily signalling pathways mediating porcine and murine cumulus cell expansion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFOhsbrM&md5=f29f971d5f33315248b71a659000f9d8CAS | 21896635PubMed |

Gilchrist, R. B., Ritter, L. J., and Armstrong, D. T. (2004). Oocyte–somatic cell interactions during follicle development in mammals. Anim. Reprod. Sci. 82–83, 431–446.
Oocyte–somatic cell interactions during follicle development in mammals.Crossref | GoogleScholarGoogle Scholar | 15271471PubMed |

Gilchrist, R. B., Lane, M., and Thompson, J. G. (2008). Oocyte-secreted factors: regulators of cumulus cell function and oocyte quality. Hum. Reprod. Update 14, 159–177.
Oocyte-secreted factors: regulators of cumulus cell function and oocyte quality.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXisVKmurY%3D&md5=97f7a19cad1bb4c5a191a9fe4e6ab0c5CAS | 18175787PubMed |

Glister, C., Kemp, C. F., and Knight, . G. (2004). Bone morphogenetic protein (BMP) ligands and receptors in bovine ovarian follicle cells: actions of BMP-4,-6 and -7 on granulosa cells and differential modulation of Smad-1 phosphorylation by follistatin. Reproduction 127, 239–254.
Bone morphogenetic protein (BMP) ligands and receptors in bovine ovarian follicle cells: actions of BMP-4,-6 and -7 on granulosa cells and differential modulation of Smad-1 phosphorylation by follistatin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXitVWrtL8%3D&md5=6ac97304298d9dccd17780b70c091d74CAS | 15056790PubMed |

Goodman, S. B., Kugu, K., Chen, S. H., Preutthipan, S., Tilly, K. I., Tilly, J. L., and Dharmarajan, A. M. (1998). Estradiol-mediated suppression of apoptosis in the rabbit corpus luteum is associated with a shift in expression of bcl-2 family members favoring cellular survival. Biol. Reprod. 59, 820–827.
Estradiol-mediated suppression of apoptosis in the rabbit corpus luteum is associated with a shift in expression of bcl-2 family members favoring cellular survival.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmsVGrsb4%3D&md5=c39c1f8a086e0b573be7017781c6f281CAS | 9746731PubMed |

Grant, S. A., Hunter, M. G., and Foxcroft, G. R. (1989). Morphological and biochemical characteristics during ovarian follicular development in the pig. J. Reprod. Fertil. 86, 171–183.
Morphological and biochemical characteristics during ovarian follicular development in the pig.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXktFOqs7g%3D&md5=f99fbaeb091fde93e0a11ef7232b6093CAS | 2754637PubMed |

Griffin, T. J., Gygi, S. ., Ideker, T., Rist, B., Eng, J., Hood, L., and Aebersold, R. (2002). Complementary profiling of gene expression at the transcriptome and proteome levels in Saccharomyces cerevisiae. Mol. Cell. Proteomics 1, 323–333.
Complementary profiling of gene expression at the transcriptome and proteome levels in Saccharomyces cerevisiae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XktFSmtLo%3D&md5=72d36e3c77d94ccd47acd06c8dc5977fCAS | 12096114PubMed |

Guthrie, H. D. (2005). The follicular phase in pigs: follicle populations, circulating hormones, follicle factors and oocytes. J. Anim. Sci. 83, 79–89.

Guthrie, H. D., Grimes, R. W., Cooper, B. S., and Hammond, J. M. (1995). Follicular atresia in pigs: measurement and physiology. J. Anim. Sci. 73, 2834–2844.
| 1:CAS:528:DyaK2MXotFajsro%3D&md5=e65d44c2706317968fad50dcacea5f0dCAS | 8582874PubMed |

Haley, C. S., and Lee, G. J. (1993). Genetic basis of prolificacy in Meishan pigs. J. Reprod. Fertil. Suppl. 48, 247–259.
| 1:STN:280:DyaK2c7psVCksg%3D%3D&md5=9fd9eac66cbcb82490d94579fd8ff937CAS | 8145208PubMed |

Hsu, S. Y., Lai, R. J., Finegold, M., and Hsueh, A. J. (1996). Targeted overexpression of Bcl-2 in ovaries of transgenic mice leads to decreased follicle apoptosis, enhanced folliculogenesis, and increased germ cell tumorigenesis. Endocrinology 137, 4837–4843.
Targeted overexpression of Bcl-2 in ovaries of transgenic mice leads to decreased follicle apoptosis, enhanced folliculogenesis, and increased germ cell tumorigenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xms1GjtLY%3D&md5=b9526135be2006515571e13a00afed23CAS | 8895354PubMed |

Hunter, M. G., and Paradis, F. (2009). Intra-follicular regulatory mechanisms in the porcine ovary. Soc. Reprod. Fertil. Suppl. 66, 149–164.
| 1:CAS:528:DC%2BC3cXjslKjtLg%3D&md5=6031526c68b037434a482eb1a6471c42CAS | 19848278PubMed |

Hunter, M. G., and Picton, H. M. (1995). Effect of hCG administration at the onset of oestrus on early embryo survival and development in Meishan gilts. Anim. Reprod. Sci. 38, 231–238.
Effect of hCG administration at the onset of oestrus on early embryo survival and development in Meishan gilts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXlslCnt7k%3D&md5=a8abae26cd2ce809993e1c0e869a5f75CAS |

Hunter, M. G., and Wiesak, T. (1990). Evidence for and implications of follicular heterogeneity in pigs. J. Reprod. Fertil. Suppl. 40, 163–177.
| 1:STN:280:DyaK3c3osF2gsw%3D%3D&md5=3d5fba7f75b070005ebfa00694b6f978CAS | 2192035PubMed |

Hunter, M. G., Biggs, C., Foxcroft, G. R., McNeilly, A. S., and Tilton, J. E. (1993). Comparisons of endocrinology and behavioural events during the periovulatory period in Meishan and Large–White hybrid gilts. J. Reprod. Fertil. 97, 475–480.
Comparisons of endocrinology and behavioural events during the periovulatory period in Meishan and Large–White hybrid gilts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXkt1SrsLg%3D&md5=f4144abd1044179812d4340e76fd2b54CAS | 8501718PubMed |

Hunter, M. G., Robinson, R. S., Mann, G. E., and Webb, R. (2004). Endocrine and paracrine control of follicular development and ovulation rate in farm species. Anim. Reprod. Sci. 82–83, 461–477.
Endocrine and paracrine control of follicular development and ovulation rate in farm species.Crossref | GoogleScholarGoogle Scholar | 15271473PubMed |

Hussein, M. R. (2005). Apoptosis in the ovary: molecular mechanisms. Hum. Reprod. Update 11, 162–178.
| 15705959PubMed |

Inoue, N., Maeda, A., Matsuda-Minehata, F., Fukuta, K., and Manabe, N. (2006). Expression and localization of Fas ligand and Fas during atresia in porcine ovarian follicles. J. Reprod. Dev. 52, 723–730.
Expression and localization of Fas ligand and Fas during atresia in porcine ovarian follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtF2ltbo%3D&md5=d59ee4c1c73e488920988d67b9d30729CAS | 16926525PubMed |

Inoue, N., Matsuda, F., Goto, Y., and Manabe, N. (2011). Role of cell-death ligand–receptor system of granulosa cells in selective follicular atresia in porcine ovary. J. Reprod. Dev. 57, 169–175.
Role of cell-death ligand–receptor system of granulosa cells in selective follicular atresia in porcine ovary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnsFKmtb4%3D&md5=7026704746e2ff7791a7fa3c69440f32CAS | 21551974PubMed |

Juengel, J. L., and McNatty, K. . (2005). The role of proteins of the transforming growth factor-β superfamily in the intraovarian regulation of follicular development. Hum. Reprod. 11, 144–161.

Juengel, J. L., Garverick, H. A., Johnson, A. L., Youngquist, R. S., and Smith, M. F. (1993). Apoptosis during luteal regression in cattle. Endocrinology 132, 249–254.
Apoptosis during luteal regression in cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXhsVSmsbs%3D&md5=c24eb4934502e33ebdb3e5c831875acbCAS | 8419126PubMed |

Knox, R. V. (2005). Recruitment and selection of ovarian follicles for determination of ovulation rate in the pig. Domest. Anim. Endocrinol. 29, 385–397.
Recruitment and selection of ovarian follicles for determination of ovulation rate in the pig.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlvFKnsLw%3D&md5=cde420e8245e6cc45e5bbd5f088091e8CAS | 15998504PubMed |

Kondo, H., Maruo, T., Peng, X., and Mochizuki, M. (1996). Immunological evidence for the expression of the Fas antigen in the infant and adult human ovary during follicular regression and atresia. J. Clin. Endocrinol. Metab. 81, 2702–2710.
Immunological evidence for the expression of the Fas antigen in the infant and adult human ovary during follicular regression and atresia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XktFaku7c%3D&md5=a2b106dfda8cb0e27e12318c12a4adbcCAS | 8675599PubMed |

Krajewska, M., Wang, H. G., Krajewski, S., Zapata, J. M., Shabaik, A., Gascoyne, R., and Reed, J. C. (1997). Immunohistochemical analysis of in vivo patterns of expression of CPP32 (caspase-3), a cell death protease. Cancer Res. 57, 1605–1613.
| 1:CAS:528:DyaK2sXis12lsb8%3D&md5=999b8565080a2749b836d73e22f3b121CAS | 9108467PubMed |

Li, H. K., Kuo, T. Y., Yang, H. S., Chen, L. R., Li, S. S.-L., and Huang, H. W. (2008). Differential gene expression of bone morphogenetic protein 15 and growth differentiation factor 9 during in vitro maturation of porcine oocytes and early embryos. Anim. Reprod. Sci. 103, 312–322.
Differential gene expression of bone morphogenetic protein 15 and growth differentiation factor 9 during in vitro maturation of porcine oocytes and early embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVSmtb7O&md5=40e930914a58b7ee3aba33cbde3acc8eCAS | 17222994PubMed |

Livak, K. J., and Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2ΔΔCt method. Methods 25, 402–408.
Analysis of relative gene expression data using real-time quantitative PCR and the 2ΔΔCt method.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtFelt7s%3D&md5=9cad4ff7133d540452bb50aaaa4ededfCAS | 11846609PubMed |

Manabe, N., Goto, Y., Matsuda-Minehata, F., Inoue, N., Maeda, A., Sakamaki, K., and Miyano, T. (2004). Regulation mechanism of selective atresia in porcine follicles: regulation of granulosa cell apoptosis during atresia. J. Reprod. Dev. 50, 493–514.
Regulation mechanism of selective atresia in porcine follicles: regulation of granulosa cell apoptosis during atresia.Crossref | GoogleScholarGoogle Scholar | 15514456PubMed |

Matsuda-Minehata, F., Maeda, A., Cheng, Y., Sai, T., Gonda, H., Goto, Y., and Manabe, N. (2008). Regulation of granulosa cell apoptosis by death ligand–receptor signaling. Anim. Sci. 79, 1–10.
| 1:CAS:528:DC%2BD1cXjt1Wlt70%3D&md5=be4605a49ddb8ba1bd182eb47d9833deCAS |

McNatty, K. ., Moore, L. G., Hudson, N. L., Quirke, L. D., Lawrence, S. B., Reader, K., Hanrahan, J. ., Smith, ., Groome, N. ., Laitinen, M., Ritvos, O., and Luengel, J. L. (2004). The oocyte and its role in regulating ovulation rate: a new paradigm in reproductive biology. Reproduction 128, 379–386.
The oocyte and its role in regulating ovulation rate: a new paradigm in reproductive biology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXptlGjs7Y%3D&md5=74488dcb6179ea22f9ffe440dc1b1b3aCAS | 15454632PubMed |

Miller, A. T., Picton, H. M., Craigon, J., and Hunter, M. G. (1998). Follicle dynamics and aromatase activity in high-ovulating Meishan sows and in Large–White hybrid contemporaries. Biol. Reprod. 58, 1372–1378.
Follicle dynamics and aromatase activity in high-ovulating Meishan sows and in Large–White hybrid contemporaries.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjsFShtL4%3D&md5=4044138738b590cef5b229839882a07dCAS | 9623595PubMed |

Miyashita, T., Krajewski, S., Krajewska, M., Wang, H. G., Lin, H. K., Liebermann, D., Hoffman, A. B., and Reed, J. C. (1994). Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene 9, 1799–1805.
| 1:CAS:528:DyaK2cXkslCqurc%3D&md5=3d1fd197ee197503c9088b80c45fc132CAS | 8183579PubMed |

Oltval, Z. N., Milliman, C. L., and Korsmeyer, S. J. (1993). Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74, 609–619.
Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death.Crossref | GoogleScholarGoogle Scholar |

Otsuka, F., Moore, R. K., and Shimasaki, S. (2001). Biological function and cellular mechanism of bone morphogenetic protein-6 in the ovary. J. Biol. Chem. 276, 32 889–32 895.
Biological function and cellular mechanism of bone morphogenetic protein-6 in the ovary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmvFCmtLw%3D&md5=fa5acb1bfc9e3fe0da380dc252e3274eCAS |

Paradis, F., Novak, S., Murdoch, G. K., Dyck, M. K., Dixon, W. T., and Foxcroft, G. R. (2009). Temporal regulation of BMP2, BMP6, BMP15, GDF9, BMPR1A, BMPR1B, BMPR2 and TGFBR1 mRNA expression in the oocyte, granulosa and theca cells of developing preovulatory follicles in the pig. Reproduction 138, 115–129.
Temporal regulation of BMP2, BMP6, BMP15, GDF9, BMPR1A, BMPR1B, BMPR2 and TGFBR1 mRNA expression in the oocyte, granulosa and theca cells of developing preovulatory follicles in the pig.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXovFemsbk%3D&md5=03ff34c38d398c14e3c3a9f947c9b6e2CAS | 19359354PubMed |

Porter, D. A., Harman, R. M., Cowan, R. G., and Quirk, S. M. (2001). Relationship of Fas ligand expression and atresia during bovine follicle development. Reproduction 121, 561–566.
Relationship of Fas ligand expression and atresia during bovine follicle development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXivFKgsLo%3D&md5=0f7201f89f4caa644c182b5058be4ce0CAS | 11277875PubMed |

Pretheeban, T., Balendran, A., Gordon, M. B., and Rajamahendran, R. (2010). mRNA of luteal genes associated with progesterone synthesis, maintenance, and apoptosis in dairy heifers and lactating dairy cows. Anim. Reprod. Sci. 121, 218–224.
mRNA of luteal genes associated with progesterone synthesis, maintenance, and apoptosis in dairy heifers and lactating dairy cows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtV2hsrrF&md5=a7850a1e7eb4efd3b2ba7a4e122272e2CAS | 20599333PubMed |

Quinn, R. L., Shuttleworth, G., and Hunter, M. G. (2004). Immunohistochemical localization of the bone morphogenetic protein receptors in the porcine ovary. J. Anat. 205, 15–23.
Immunohistochemical localization of the bone morphogenetic protein receptors in the porcine ovary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntlOqsrs%3D&md5=23ce7664c69b02c12938f6483bb9c746CAS | 15255958PubMed |

R Development Core Team (2008). ‘R: A Language and Environment for Statistical Computing’. (R Foundation for Statistical Computing: Vienna.) Available from http://www.R-project.org [Verified 8 August 2012].

Rátky, J., Torner, H., Egerszegi, I., Schneider, F., Sarlos, ., Manabe, N., and Brüssow, K. . (2005). Ovarian activity and oocyte development during follicular development in pigs at different reproductive phases estimated by the repeated endoscopic method. J. Reprod. Dev. 51, 109–115.
Ovarian activity and oocyte development during follicular development in pigs at different reproductive phases estimated by the repeated endoscopic method.Crossref | GoogleScholarGoogle Scholar | 15750302PubMed |

Rodger, F. E., Fraser, H. M., Duncan, W. C., and Illingworth, . J. (1995). Immunolocalization of Bcl-2 in the human corpus luteum. Hum. Reprod. 10, 1566–1570.
Immunolocalization of Bcl-2 in the human corpus luteum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXnt12hsr0%3D&md5=1d9e968f725c6ed41e3c04d860a3f0bcCAS | 7593540PubMed |

Rueda, B. R., Hamernik, D. L., Hoyer, P. B., and Tilly, J. L. (1997). Potential regulators of physiological cell death in the corpus luteum. In ‘Cell Death in Reproductive Physiology. Serono Symposia’. (Eds J. L. Tilly, J. Strauss and M. Tenniswood.) pp. 161–181. (Springer Verlag: New York.)

Rueda, B. R., Hendry, I. R., Tilly, J. L., and Hamernik, D. L. (1999). Accumulation of caspase-3 messenger ribonucleic acid and induction of caspase activity in the ovine corpus luteum following prostaglandin F2alpha treatment in vivo. Biol. Reprod. 60, 1087–1092.
Accumulation of caspase-3 messenger ribonucleic acid and induction of caspase activity in the ovine corpus luteum following prostaglandin F2alpha treatment in vivo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXislegt7g%3D&md5=b673f83c40a7b82475fbf7df18a39f73CAS | 10208968PubMed |

Sakamaki, K., Yoshida, H., Nishimura, Y., Nishikawa, S., Manabe, N., and Yonehara, S. (1997). Involvement of Fas antigen in ovarian follicular atresia and luteolysis. Mol. Reprod. Dev. 47, 11–18.
Involvement of Fas antigen in ovarian follicular atresia and luteolysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXislGntbY%3D&md5=cda42e93e9d31457fde33feefc50f155CAS | 9110309PubMed |

Shimasaki, S., Moore, R. K., Otsuka, F., and Erickson, G. F. (2004). The bone morphogenetic protein system in mammalian reproduction. Endocr. Rev. 25, 72–101.
The bone morphogenetic protein system in mammalian reproduction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhvFOmt78%3D&md5=b7c87fb3816c2964af1184f02b21c27eCAS | 14769828PubMed |

Silva, P. V., Guimarães, S. E. F., Oliver, G., Patterson, J., Smit, M., Dixon, W. T., and Foxcroft, G. R. (2011). Comparison of gene expression between High and Low birth weight phenotype in pigs using EmbryoGENE microarray. PowerPoint presented at EmbryoGENE Annual General Meeting, 2011. Quebec City, Quebec, Canada. Available from http://embryogene.ca/kms/files/Priscila%20Silva[1].pdf [Verified 3 February 2013].

Singh, B., Barbe, G. J., and Armstrong, D. T. (1993). Factors influencing resumption of meiotic maturation and cumulus expansion of porcine oocyte-cumulus cell complexes in vitro. Mol. Reprod. Dev. 36, 113–119.
Factors influencing resumption of meiotic maturation and cumulus expansion of porcine oocyte-cumulus cell complexes in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXht1Ggurs%3D&md5=b7a80090f212eef7f43250a59b752d7fCAS | 8398125PubMed |

Sirois, J., and Fortune, J. E. (1988). Ovarian follicular dynamics during the estrous cycle in heifers monitored by real-time ultrasonography. Biol. Reprod. 39, 308–317.
Ovarian follicular dynamics during the estrous cycle in heifers monitored by real-time ultrasonography.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXls1eksbc%3D&md5=266d40df70fde3bb282f12b0c886dd2cCAS | 3052602PubMed |

Sriperumbudur, R., Zorrilla, L., and Gadsby, J. E. (2010). Transforming growth factor-β (TGF-β) and its signaling components in peri-ovulatory pig follicles. Anim. Reprod. Sci. 120, 84–94.
Transforming growth factor-β (TGF-β) and its signaling components in peri-ovulatory pig follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmtFWrt7w%3D&md5=d9f56e6c80fe39e9f813ed7c429346ecCAS | 20378284PubMed |

Sugino, N., Suzuki, T., Kashida, S., Karube, A., Takiguchi, S., and Kato, H. (2000). Expression of Bcl-2 and Bax in the human corpus luteum during the menstrual cycle and in early pregnancy: regulation by human chorionic gonadotropin. J. Clin. Endocrinol. Metab. 85, 4379–4386.
Expression of Bcl-2 and Bax in the human corpus luteum during the menstrual cycle and in early pregnancy: regulation by human chorionic gonadotropin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotlWmsLs%3D&md5=ee98833027dc4665876c01f5e444c803CAS | 11095483PubMed |

Sun, R. Z., Lei, L., Cheng, L., Jin, Z. F., Zu, S. J., Shan, Z. Y., Wang, Z. D., Zhang, J. X., and Liu, Z. H. (2010). Expression of GDF-9, BMP-15 and their receptors in mammalian ovary follicles. J. Mol. Histol. 41, 325–332.
Expression of GDF-9, BMP-15 and their receptors in mammalian ovary follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlyksb3P&md5=6e35fdd57e16ddcfe5ec2007c46b5282CAS | 20857181PubMed |

Tilly, J. L. (1996). Apoptosis and ovarian function. Rev. Reprod. 1, 162–172.
Apoptosis and ovarian function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmtFWqurw%3D&md5=0edbf5b9ef872ca26d7cd8696f93ff39CAS | 9414454PubMed |

Webb, R., Garnsworthy, . C., Campbell, B. K., and Hunter, M. G. (2007). Intra-ovarian regulation of follicular development and oocyte competence in farm animals. Theriogenology 68, S22–S29.
Intra-ovarian regulation of follicular development and oocyte competence in farm animals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotlaitbs%3D&md5=c91c9cdd27476533966d2ca2d18110c1CAS | 17540442PubMed |

Xu, X., Faillace, L. S., Harding, R. T., Foxcroft, G. R., and Hunter, M. G. (1998). Evidence that Meishan and Large–White hybrid preovulatory follicles may differentially affect oocyte in vitro maturation and fertilization. Anim. Reprod. Sci. 51, 307–319.
Evidence that Meishan and Large–White hybrid preovulatory follicles may differentially affect oocyte in vitro maturation and fertilization.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1czltV2gsg%3D%3D&md5=c19ef4325d073b233f312e0fd3a7b3d9CAS | 9686313PubMed |

Zeng, F., Baldwin, D., and Schultz, R. M. (2004). Transcript profiling during preimplantation mouse development. Dev. Biol. 272, 483–496.
Transcript profiling during preimplantation mouse development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmt1CjtrY%3D&md5=ae0d9273fc157863417369e7a827e367CAS | 15282163PubMed |

Zhu, G., Guo, B., Pan, D., Mu, Y., and Feng, S. (2008). Expression of bone morphogenetic proteins and receptors in porcine cumulus–oocyte complexes during in vitro maturation. Anim. Reprod. Sci. 104, 275–283.
Expression of bone morphogenetic proteins and receptors in porcine cumulus–oocyte complexes during in vitro maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVOmsb8%3D&md5=896606bd0fc445d99ca87e9fe2269932CAS | 17368971PubMed |