Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

A superovulation protocol for the spiny mouse (Acomys cahirinus)

Rachael Pasco A , David K. Gardner B , David W. Walker A and Hayley Dickinson A C
+ Author Affiliations
- Author Affiliations

A The Ritchie Centre, Monash Institute of Medical Research, Monash University,Clayton, Vic. 3168, Australia.

B Department of Zoology, The University of Melbourne, Melbourne, Vic. 3010, Australia.

C Corresponding author. Email: hayley.dickinson@monash.edu

Reproduction, Fertility and Development 24(8) 1117-1122 https://doi.org/10.1071/RD12044
Submitted: 16 February 2012  Accepted: 9 March 2012   Published: 24 April 2012

Abstract

This study aimed to develop a superovulation protocol for the spiny mouse (Acomys cahirinus). The spiny mouse is a desert-adapted rodent species, with a long oestrus cycle (11 days) compared with rat and mouse, and gives birth to few (mean litter size is 3) precocial offspring after a relatively long gestation (39 days). We successfully optimised a superovulation protocol that elicited a 5-fold increase in the normal ovulation rate of this species. To induce superovulation in the spiny mouse 2 injections of equine chorionic gonadotrophin (eCG, 10 IU each), 9 h apart, were required, followed by 20 IU of human chorionic gonadotrophin (hCG). This protocol was successful in 100% of females trialed and at 33 h post-hCG an average of 14.7 ± 1.5, 1–2 cell embryos were recovered. Histological analysis of ovaries following superovulation revealed large corpus lutea and post-ovulatory follicles occupying a large part of the ovary. Ovulation commenced 6–12 h after the hCG injection and continued until 24–33 h post-hCG as indicated by both histological analysis of ovaries and the presence of oocytes/embryos in the oviduct. This superovulation protocol will facilitate the development of an in vitro culture system for spiny mouse embryos.

Additional keywords: eCG, embryo, hCG, ovary, ovulation.


References

Arslan, M., Bocca, S., Mirkin, S., Barroso, G., Stadtmauer, L., and Oehninger, S. (2005). Controlled ovarian hyperstimulation protocols for in vitro fertilization: two decades of experience after the birth of Elizabeth Carr. Fertil. Steril. 84, 555–569.
Controlled ovarian hyperstimulation protocols for in vitro fertilization: two decades of experience after the birth of Elizabeth Carr.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFeisL7J&md5=d9a077f1d923b9c45d089438510101d4CAS | 16169382PubMed |

Ayres, S. L., Gavin, W., Memili, E., and Behboodi, E. (2011). Superovulation in goats during the second follicular wave, with or without exogenous progesterone Small Ruminant Res , .
Superovulation in goats during the second follicular wave, with or without exogenous progesteroneCrossref | GoogleScholarGoogle Scholar |

Bakos, O. (1994). Ultrasonographical and hormonal description of the normal ovulatory menstrual cycle. Acta Obstet. Gynecol. Scand. 73, 790–796.
Ultrasonographical and hormonal description of the normal ovulatory menstrual cycle.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2M7hslCrtQ%3D%3D&md5=13841ad1b2410655eda94254f95c76f9CAS | 7817731PubMed |

Bathaei, S. (1996). Breeding season and oestrous activity of iranian fat-tailed Mehraban ewes and ewe lambs. Small Rumin. Res. 22, 13–23.
Breeding season and oestrous activity of iranian fat-tailed Mehraban ewes and ewe lambs.Crossref | GoogleScholarGoogle Scholar |

Boland, M. P., Crosby, T. F., and Gordon, I. (1978). Morphological normality of cattle embryos following superovulation using PMSG. Theriogenology 10, 175–180.
Morphological normality of cattle embryos following superovulation using PMSG.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXptVw%3D&md5=d092b3051e5eb38918a483f3829601b0CAS |

Camp, J. C., Wildt, D. E., Howard, P. K., Stuart, L. D., and Chakraborty, P. K. (1983). Ovarian activity during normal and abnormal length estrous cycles in the goat. Biol. Reprod. 28, 673–681.
Ovarian activity during normal and abnormal length estrous cycles in the goat.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL3s3gsFWgsA%3D%3D&md5=86ad89732c76cc3081f86c59a24d8dc6CAS | 6221766PubMed |

Cannata, D. J., Ireland, Z., Dickinson, H., Snow, R. J., Russell, A. P., West, J. M., and Walker, D. W. (2010). Maternal creatine supplementation from mid-pregnancy protects the diaphragm of the newborn spiny mouse from intrapartum hypoxia-induced damage. Pediatr. Res. 68, 393–398.
| 1:CAS:528:DC%2BC3cXht1yqtrzK&md5=a4fe6ba033d0b3abfba407da19282f26CAS | 20639795PubMed |

Chahoud, I. (2009). Influence of litter size on the postnatal growth of rat pups: is there a rationale for litter-size standardization in toxicity studies? Environ. Res. 109, 1021–1027.
Influence of litter size on the postnatal growth of rat pups: is there a rationale for litter-size standardization in toxicity studies?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1GmsbjO&md5=99c79b2a30d5ba76c626930a20f2ffe3CAS | 19762015PubMed |

Cornejo-Cortés, M. A., Sanchez-Torres, C., Vázquez-Chagoyán, J. C., Suárez-Gómez, H. M., Garrido-Fariña, G., and Meraz-Rios, M. A. (2006). Rat embryo quality and production efficiency are dependent on gonadotrophin dose in superovulatory treatments. Lab. Anim. 40, 87–95.
Rat embryo quality and production efficiency are dependent on gonadotrophin dose in superovulatory treatments.Crossref | GoogleScholarGoogle Scholar | 16460593PubMed |

Dickinson, H., and Walker, D. W. (2007). Managing a colony of spiny mice (Acomys cahirinus) for perinatal research. Australian and New Zealand Council for the Care of Animals in Research and Training (ANZCCART) News 20, 4–11.

Dickinson, H., Walker, D. W., Cullen-McEwen, L., Wintour, E. M., and Moritz, K. (2005). The spiny mouse (Acomys cahirinus) completes nephrogenesis before birth. Am. J. Physiol.-Renal 289, F273–F279.
The spiny mouse (Acomys cahirinus) completes nephrogenesis before birth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXotFejtbs%3D&md5=a024746b1f8d1c57102f9c956122ba2dCAS |

Gad, A., Besenfelder, U., Rings, F., Ghanem, N., Salilew-Wondim, D., Hossain, M. M., Tesfaye, D., Lonergan, P., Becker, A., and Cinar, U. (2011). Effect of reproductive tract environment following controlled ovarian hyperstimulation treatment on embryo development and global transcriptome profile of blastocysts: implications for animal breeding and human assisted reproduction. Hum. Reprod. 26, 1693–1707.
Effect of reproductive tract environment following controlled ovarian hyperstimulation treatment on embryo development and global transcriptome profile of blastocysts: implications for animal breeding and human assisted reproduction.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3MngtVehtg%3D%3D&md5=3b436d53932348c9f7ce1b553e483368CAS | 21531990PubMed |

Gardner, D. K., and Lane, M. (2002). Development of Viable Mammalian Embryos In Vitro: Evolution of Sequential Media. In ‘Principles of Cloning.’ (Eds J Cibelli, RP Lanza, KHS Campbell and MD West) pp. 187–213. (Academic Press: San Diego)

Hartung, T. G., and Dewsbury, D. A. (1978). A comparative analysis of copulatory plugs in muroid rodents and their relationship to copulatory behavior. J. Mammal. 59, 717–723.
A comparative analysis of copulatory plugs in muroid rodents and their relationship to copulatory behavior.Crossref | GoogleScholarGoogle Scholar |

Ireland, Z., Dickinson, H., Snow, R., and Walker, D. W. (2008). Maternal creatine: does it reach the fetus and improve survival after an acute hypoxic episode in the spiny mouse (Acomys cahirinus)? Am. J. Obstet. Gynecol. 198, 431.e1–431.e6.
Maternal creatine: does it reach the fetus and improve survival after an acute hypoxic episode in the spiny mouse (Acomys cahirinus)?Crossref | GoogleScholarGoogle Scholar |

Lawson, R. A. S., Parr, R. A., and Cahill, L. P. (1983). Evidence for maternal control of blastocyst growth after asynchronous transfer of embryos to the uterus of the ewe. J. Reprod. Fertil. 67, 477–483.
Evidence for maternal control of blastocyst growth after asynchronous transfer of embryos to the uterus of the ewe.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL3s7mtlyqsw%3D%3D&md5=8661dc109665f0036e650e173b76b30cCAS |

Luo, C., Zuniga, J., Edison, E., Palla, S., Dong, W., and Parker-Thornburg, J. (2011). Superovulation strategies for 6 commonly used mouse strains. J. Am. Assoc. Lab. Anim. Sci. 50, 471–478.
| 1:CAS:528:DC%2BC3MXhtVCntLrN&md5=4102d4001a9b512d8e0c0c3cf8e2e893CAS | 21838974PubMed |

Mapletoft, R. J., Steward, K. B., and Adams, G. P. (2002). Recent advances in the superovulation in cattle. Reprod. Nutr. Dev. 42, 601–611.
Recent advances in the superovulation in cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXit1ymtr8%3D&md5=18b09d4c6bb19af7006a027e83de8573CAS | 12625424PubMed |

Marcondes, F. K., Bianchi, F. J., and Tanno, A. P. (2002). Determination of the estrous cycle phases of rats: some helpful considerations. Braz. J. Biol. 62, 609–614.
Determination of the estrous cycle phases of rats: some helpful considerations.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3s7ksValsA%3D%3D&md5=3de03ced0300268a9a5bb098f94a2363CAS | 12659010PubMed |

Masters, W. G., and Wheeler, M. B. (1996). Timing of Induced Ovulation in C.B-17/Icr-scid/scid and B6SJLF1 Mice. Lab. Anim. Sci. 46, 663–666.
| 1:CAS:528:DyaK2sXhtVSnt7c%3D&md5=fdd78df988f65a3f18296246075d58e5CAS | 9001180PubMed |

Mayorga, I., Mara, L., Sanna, D., Stelletta, C., Morgante, M., Casu, S., and Dattena, M. (2011). Good quality sheep embryos produced by superovulation treatment without the use of progesterone devices. Theriogenology 75, 1661–1668.
Good quality sheep embryos produced by superovulation treatment without the use of progesterone devices.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotFWgt7g%3D&md5=f355332c57b5cec977cf399b3c38adbfCAS | 21396698PubMed |

Nelson, J. F., Felicio, L. S., Randall, P. K., Sims, C., and Finch, C. E. (1982). A longitudinal study of estrous cyclicity in aging C57BL/6J mice: I. Cycle frequency, length and vaginal cytology. Biol. Reprod. 27, 327–339.
A longitudinal study of estrous cyclicity in aging C57BL/6J mice: I. Cycle frequency, length and vaginal cytology.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL3s%2FitlCgtg%3D%3D&md5=cecdd94b39bbe393e2cab54d2295c842CAS | 6889895PubMed |

O’Connell, B. A., Moritz, K. M., Roberts, C. T., Walker, D. W., and Dickinson, H. (2011). The placental response to excess maternal glucocorticoid exposure differs between the male and female conceptus in spiny mice. Biol. Reprod. 85, 1040–1047.
The placental response to excess maternal glucocorticoid exposure differs between the male and female conceptus in spiny mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtl2is7fI&md5=9e856782b686b3defff61926318c0bbfCAS | 21795670PubMed |

Peitz, B. (1981). The oestrous cycle of the spiny mouse (Acomys cahirinus). J. Reprod. Fertil. 61, 453–549.
The oestrous cycle of the spiny mouse (Acomys cahirinus).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL3M7ksFSnsA%3D%3D&md5=e43e59a54d5aaf309df609a9aadab97bCAS | 7193735PubMed |

Simonetti, L., Forcada, F., Rivera, O. E., Carou, N., Alberio, R. H., Abecia, J. A., and Palacin, I. (2008). Simplified superovulatory treatments in Corriedale ewes. Anim. Reprod. Sci. 104, 227–237.
Simplified superovulatory treatments in Corriedale ewes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVOmsLk%3D&md5=5617f537a626a67e9c51efd6063502beCAS | 17331680PubMed |

Taft, R. A. (2008). Virtues and limitations of the preimplantation mouse embryo as a model system. Theriogenology 69, 10–16.
Virtues and limitations of the preimplantation mouse embryo as a model system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVSmu7jE&md5=7a6360c860de5442013f99dda4fe0355CAS | 18023855PubMed |

Tríbulo, A., Rogan, D., Tribulo, H., Tribulo, R., Alasino, R. V., Beltramo, D., Bianco, I., Mapletoft, R. J., and Bó, G. A. (2011). Superstimulation of ovarian follicular development in beef cattle with a single intramuscular injection of Folltropin-V. Anim. Reprod. Sci. 129, 7–13.
Superstimulation of ovarian follicular development in beef cattle with a single intramuscular injection of Folltropin-V.Crossref | GoogleScholarGoogle Scholar | 22115521PubMed |

Van der Auwera, I., Pijnenborg, R., and Koninckx, P. R. (1999). The influence of in-vitro culture versus stimulated and untreated oviductal environment on mouse embryo development and implantation. Hum. Reprod. 14, 2570–2574.
The influence of in-vitro culture versus stimulated and untreated oviductal environment on mouse embryo development and implantation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1MvlvFemsA%3D%3D&md5=3c17d0926bfa16eee7a24ec25ec6539aCAS | 10527989PubMed |

Wilson, E. D., and Zarrow, M. X. (1962). Comparison of superovulation in the immature mouse and rat. J. Reprod. Fertil. 3, 148–158.
Comparison of superovulation in the immature mouse and rat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF38XktFelt7Y%3D&md5=19c602b2e2d00410108335e7c526a283CAS | 14007344PubMed |