Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Periconceptional influences on offspring sex ratio and placental responses

Cheryl S. Rosenfeld
+ Author Affiliations
- Author Affiliations

Departments of Biomedical Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA. Email: rosenfeldc@missouri.edu

Reproduction, Fertility and Development 24(1) 45-58 https://doi.org/10.1071/RD11906
Published: 6 December 2011

Abstract

Maternal diet and secondary factors can strikingly influence fetal outcomes, including biasing offspring sex ratio and altering the molecular biological responses of the conceptus, namely within the placenta. Alterations in the in utero environment might also lead to profound developmental origin of health and disease (DOHaD) outcomes into adulthood, including increased risk for cardiovascular disease, obesity and cancer, with males in general being at greater risk for these diseases. Female mice maintained on a very high fat (VHF) diet birth more sons than those on a chow-based and low fat (LF), high carbohydrate diet, with the latter group producing more daughters. However, neither the underlying mechanisms that contribute to this shift in offspring sex ratio nor when they occur during pregnancy have been resolved. In this review, we consider the evidence that maternal diet and other factors influence secondary sex ratio in a variety of species, including humans, and discuss when this skewing might occur. Additionally, we examine how fetal sex and maternal diet influences gene expression patterns in the mouse placenta, which serves as the primary nutrient acquisition and communication organ between the mother and her developing pups. These adaptations to diet observed as changes in gene expression are likely to provide insight into how the placenta buffers the fetus proper from environmental shifts in nutrient availability during pregnancy and whether male and female conceptuses respond differently to such challenges.

Additional keywords: conceptus, DOHaD, in utero environment, maternal diet, sexual dimorphism.


References

Alexenko, A. P., Mao, J., Ellersieck, M. R., Davis, A. M., Whyte, J. J., Rosenfeld, C. S., and Roberts, R. M. (2007). The contrasting effects of ad libitum and restricted feeding of a diet very high in saturated fats on sex ratio and metabolic hormones in mice. Biol. Reprod. 77, 599–604.
The contrasting effects of ad libitum and restricted feeding of a diet very high in saturated fats on sex ratio and metabolic hormones in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFahsbzO&md5=f5b14ac573e850cd760beb971ed3a367CAS | 17522073PubMed |

Andersson, R., and Bergstrom, S. (1998). Is maternal malnutrition associated with a low sex ratio at birth? Hum. Biol. 70, 1101–1106.
| 1:STN:280:DyaK1M%2FktlSnsg%3D%3D&md5=b3abcabfeb4f53e31db283248d27501dCAS | 9825599PubMed |

Austad, S., and Sunquist, M. (1986). Sex-ratio manipulation in the common opossum. Nature 324, 58–60.
Sex-ratio manipulation in the common opossum.Crossref | GoogleScholarGoogle Scholar |

Avery, B. (1989). Impact of asynchronous ovulations on the expression of sex-dependent growth rate in bovine preimplantation embryos. J. Reprod. Fertil. 87, 627–631.
Impact of asynchronous ovulations on the expression of sex-dependent growth rate in bovine preimplantation embryos.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3c%2Fps1SgsQ%3D%3D&md5=906e03e0cdb9f63b43caaa46c9945d48CAS | 2600913PubMed |

Avery, B., Madison, V., and Greve, T. (1991). Sex and development in bovine in-vitro fertilized embryos. Theriogenology 35, 953–963.
Sex and development in bovine in-vitro fertilized embryos.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD283pvFOhtA%3D%3D&md5=7437d5fe5f4ee4f465c8d99638a63ed2CAS | 16726963PubMed |

Avery, B., Jorgensen, C. B., Madison, V., and Greve, T. (1992). Morphological development and sex of bovine in vitro-fertilized embryos. Mol. Reprod. Dev. 32, 265–270.
Morphological development and sex of bovine in vitro-fertilized embryos.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK38zmtVakug%3D%3D&md5=1d26759e8a347a0cf5852c2a9d405c5bCAS | 1497876PubMed |

Bacon, S. J., and McClintock, M. K. (1999). Sex ratio bias in postpartum-conceived Norway rat litters is produced by embryonic loss in midpregnancy. J. Reprod. Fertil. 117, 403–411.
Sex ratio bias in postpartum-conceived Norway rat litters is produced by embryonic loss in midpregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnvFOqtrs%3D&md5=d332c898877a877eb9028529c45f4e0bCAS | 10690209PubMed |

Bernardi, M. L., and Delouis, C. (1996). Sex-related differences in the developmental rate of in-vitro matured/in-vitro fertilized ovine embryos. Hum. Reprod. 11, 621–626.
| 1:STN:280:DyaK283ptlOlug%3D%3D&md5=60b60659f68e9b802dfaa15a82afaf8bCAS | 8671280PubMed |

Bredbacka, K., and Bredbacka, P. (1996). Sex-related cleavage rate difference in bovine embryos produced in vitro is controlled by glucose. Theriogenology 45, 191.
Sex-related cleavage rate difference in bovine embryos produced in vitro is controlled by glucose.Crossref | GoogleScholarGoogle Scholar |

Brown, G. R., and Silk, J. B. (2002). Reconsidering the null hypothesis: is maternal rank associated with birth sex ratios in primate groups? Proc. Natl. Acad. Sci. USA 99, 11252–11255.
Reconsidering the null hypothesis: is maternal rank associated with birth sex ratios in primate groups?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmslSmtb4%3D&md5=e4f85fed4ae13bae95b1cfc304dfbc0cCAS | 12177424PubMed |

Brown, M. J., Cook, C. L., Henry, J. L., and Schultz, G. S. (1987). Levels of epidermal growth factor binding in third-trimester and term human placentas: elevated binding in term placentas of male fetuses. Am. J. Obstet. Gynecol. 156, 716–720.
| 1:CAS:528:DyaL2sXhvV2ktbc%3D&md5=b8c0a194d1227b34992619ccdcca157cCAS | 3493697PubMed |

Bukowski, R., Smith, G. C., Malone, F. D., Ball, R. H., Nyberg, D. A., Comstock, C. H., Hankins, G. D., Berkowitz, R. L., Gross, S. J., Dugoff, L., Craigo, S. D., Timor-Tritsch, I. E., Carr, S. R., Wolfe, H. M., and D’Alton, M. E. (2007). Human sexual size dimorphism in early pregnancy. Am. J. Epidemiol. 165, 1216–1218.
Human sexual size dimorphism in early pregnancy.Crossref | GoogleScholarGoogle Scholar | 17344203PubMed |

Bulik, C. M., Holle, A. V., Gendall, K., Lie, K. K., Hoffman, E., Mo, X., Torgersen, L., and Reichborn-Kjennerud, T. (2008). Maternal eating disorders influence sex ratio at birth. Acta Obstet. Gynecol. Scand. 87, 979–981.
Maternal eating disorders influence sex ratio at birth.Crossref | GoogleScholarGoogle Scholar | 18720046PubMed |

Cagnacci, A., Arangino, S., Caretto, S., Mazza, V., and Volpe, A. (2006). Sexual dimorphism in the levels of amniotic fluid leptin in pregnancies at 16 weeks of gestation: relation to fetal growth. Eur. J. Obstet. Gynecol. Reprod. Biol. 124, 53–57.
Sexual dimorphism in the levels of amniotic fluid leptin in pregnancies at 16 weeks of gestation: relation to fetal growth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XkvVCi&md5=a9c698881f911483c47f6e36c6456aaaCAS | 16051417PubMed |

Cameron, E. Z. (2004). Facultative adjustment of mammalian sex ratios in support of the Trivers-Willard hypothesis: evidence for a mechanism. Proc. R. Soc. Lond. B Biol. Sci. 271, 1723–1728.
Facultative adjustment of mammalian sex ratios in support of the Trivers-Willard hypothesis: evidence for a mechanism.Crossref | GoogleScholarGoogle Scholar |

Cameron, E. Z., and Linklater, W. L. (2007). Extreme sex ratio variation in relation to change in condition around conception. Biol. Lett. 3, 395–397.
Extreme sex ratio variation in relation to change in condition around conception.Crossref | GoogleScholarGoogle Scholar | 17439844PubMed |

Cameron, E. Z., Lemons, P. R., Bateman, P. W., and Bennett, N. C. (2008). Experimental alteration of litter sex ratios in a mammal. Proc. Biol. Sci. 275, 323–327.
Experimental alteration of litter sex ratios in a mammal.Crossref | GoogleScholarGoogle Scholar | 18048284PubMed |

Cassar, G., King, W. A., and King, G. J. (1994). Influence of sex on early growth of pig conceptuses. J. Reprod. Fertil. 101, 317–320.
Influence of sex on early growth of pig conceptuses.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2M%2Fhslyntg%3D%3D&md5=fd89ec21e5904062ca74c308170f01faCAS | 7932364PubMed |

Cassar, G., de la Fuente, R., Yu, Z., King, G. J., and King, W. A. (1995). Sex chromosome complement and developmental diversity in pre- and post-hatching porcine embryos. Theriogenology 44, 879–884.
Sex chromosome complement and developmental diversity in pre- and post-hatching porcine embryos.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28zgtVGnsg%3D%3D&md5=17238c9a04f383b8b00fdcead756baf9CAS | 16727783PubMed |

Cassinello, J. (1996). High-ranking females bias their investment in favour of male calves in captive Ammotragus lervia. Behav. Ecol. Sociobiol. 38, 417–424.
High-ranking females bias their investment in favour of male calves in captive Ammotragus lervia.Crossref | GoogleScholarGoogle Scholar |

Catt, S. L., O’Brien, K., Maxwell, W. M. C., and Evans, G. (1997). Effects of rate of development of in vitro-produced ovine embryos on sex ration and in vivo survival after embryo transfer. Theriogenology 48, 1369–1378.
Effects of rate of development of in vitro-produced ovine embryos on sex ration and in vivo survival after embryo transfer.Crossref | GoogleScholarGoogle Scholar |

Clutton-Brock, T. H., and Iason, G. R. (1986). Sex ratio variation in mammals. Q. Rev. Biol. 61, 339–374.
Sex ratio variation in mammals.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2s%2FhslGktQ%3D%3D&md5=461e5c4e8c90888524ef64f65aa2786eCAS | 3532167PubMed |

Crawford, M. A., Doyle, W., and Meadows, N. (1987). Gender differences at birth and differences in fetal growth. Hum. Reprod. 2, 517–520.
| 1:STN:280:DyaL1c%2FjtlKguw%3D%3D&md5=bf60193057417e8677a273adef751928CAS | 3667908PubMed |

Crosignani, P. G., Nencioni, T., and Brambati, B. (1972). Concentration of chorionic gonadotrophin and chorionic somatomammotrophin in maternal serum, amniotic fluid and cord blood serum at term. J. Obstet. Gynaecol. Br. Commonw. 79, 122–126.
Concentration of chorionic gonadotrophin and chorionic somatomammotrophin in maternal serum, amniotic fluid and cord blood serum at term.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXislaksA%3D%3D&md5=96d2b0e724b4f50117a94281a7e280f5CAS | 4624888PubMed |

Daly, M., and Wilson, M. (1983). Sex, evolution and behavior. In ‘Reproductive Success’. 2nd edn. (Ed. T. H. Clutton-Brock.) pp. 472–485. (Willard Grant Press: Boston, MA.)

Dama, M. S., Singh, N. M., and Rajender, S. (2011). High fat diet prevents over-crowding induced decrease of sex ratio in mice. PLoS ONE 6, e16296.
High fat diet prevents over-crowding induced decrease of sex ratio in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhslanu7g%3D&md5=5da7e686af70e0eea5ccc15200c6788eCAS | 21283594PubMed |

Darwin, C. (1871). ‘The Descent of Man, and Selection in Relation to Sex.’ (John Murray: London.)

Drickamer, L. C. (1985). Social dominance, reproduction, and release of the maturation-delaying chemosignal in the urine of female house mice (Mus musculus). J. Comp. Psychol. 99, 411–419.
Social dominance, reproduction, and release of the maturation-delaying chemosignal in the urine of female house mice (Mus musculus).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL28%2FotVKiuw%3D%3D&md5=d202b4cc4c0fc9921b7c9282ec62efe9CAS | 4075779PubMed |

Flint, A. P., Albon, S. D., and Jafar, S. I. (1997). Blastocyst development and conceptus sex selection in red deer Cervus elaphus: studies of a free-living population on the Isle of Rum. Gen. Comp. Endocrinol. 106, 374–383.
Blastocyst development and conceptus sex selection in red deer Cervus elaphus: studies of a free-living population on the Isle of Rum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjs1aisLo%3D&md5=ed67a33b78e67b60ac8633649492794bCAS | 9204371PubMed |

Foote, R. (1977). Sex ratios in dairy cattle under various conditions. Theriogenology 8, 349–356.
Sex ratios in dairy cattle under various conditions.Crossref | GoogleScholarGoogle Scholar |

Fountain, E. D., Mao, J., Whyte, J. J., Mueller, K. E., Ellersieck, M. R., Will, M. J., Roberts, R. M., Macdonald, R., and Rosenfeld, C. S. (2008). Effects of diets enriched in omega-3 and omega-6 polyunsaturated fatty acids on offspring sex-ratio and maternal behavior in mice. Biol. Reprod. 78, 211–217.
Effects of diets enriched in omega-3 and omega-6 polyunsaturated fatty acids on offspring sex-ratio and maternal behavior in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1Kru78%3D&md5=259ac29d8b77e2fe4cc1102732deb68cCAS | 17928632PubMed |

Gallou-Kabani, C., Gabory, A., Tost, J., Karimi, M., Mayeur, S., Lesage, J., Boudadi, E., Gross, M. S., Taurelle, J., Vige, A., Breton, C., Reusens, B., Remacle, C., Vieau, D., Ekstrom, T. J., Jais, J. P., and Junien, C. (2010). Sex- and diet-specific changes of imprinted gene expression and DNA methylation in mouse placenta under a high-fat diet. PLoS ONE 5, e14398.
Sex- and diet-specific changes of imprinted gene expression and DNA methylation in mouse placenta under a high-fat diet.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisFahsw%3D%3D&md5=d85807b4389c11a4481f3551e2878cc1CAS | 21200436PubMed |

Geary, M. P., Pringle, P. J., Rodeck, C. H., Kingdom, J. C., and Hindmarsh, P. C. (2003). Sexual dimorphism in the growth hormone and insulin-like growth factor axis at birth. J. Clin. Endocrinol. Metab. 88, 3708–3714.
Sexual dimorphism in the growth hormone and insulin-like growth factor axis at birth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmsFOkt7k%3D&md5=5e3c5c38fcb34d5fa1cfc32256fb11f0CAS | 12915659PubMed |

Geiringer, E. (1961). Effect of A.C.T.H. on sex ratio of the albino rat. Proc. Soc. Exp. Biol. Med. 106, 752–754.
| 1:STN:280:DyaF3c%2FitlOjtg%3D%3D&md5=adc335bf82f748fe683e2ab0e5edab92CAS | 13704212PubMed |

Gheorghe, C. P., Goyal, R., Holweger, J. D., and Longo, L. D. (2009). Placental gene expression responses to maternal protein restriction in the mouse. Placenta 30, 411–417.
Placental gene expression responses to maternal protein restriction in the mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltFelsrs%3D&md5=54ec5209ee8c756419aa821ebec8b3c6CAS | 19362366PubMed |

Gol, M., Altunyurt, S., Cimrin, D., Guclu, S., Bagci, M., and Demir, N. (2004). Different maternal serum hCG levels in pregnant women with female and male fetuses: does fetal hypophyseal–adrenal–gonadal axis play a role? J. Perinat. Med. 32, 342–345.
Different maternal serum hCG levels in pregnant women with female and male fetuses: does fetal hypophyseal–adrenal–gonadal axis play a role?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntVyht7k%3D&md5=0a88ae51dcb5295cb424519be09d899dCAS | 15346821PubMed |

Grant, V. J. (1994). Maternal dominance and the conception of sons. Br. J. Med. Psychol. 67, 343–351.
Maternal dominance and the conception of sons.Crossref | GoogleScholarGoogle Scholar | 7888397PubMed |

Grant, V. J. (1996). Sex determination and the maternal dominance hypothesis. Hum. Reprod. 11, 2371–2375.
| 1:STN:280:DyaK2s7jsFGktA%3D%3D&md5=f440237beacc361c29081d0459accab4CAS | 8981113PubMed |

Grant, V. J. (2007). Could maternal testosterone levels govern mammalian sex ratio deviations? J. Theor. Biol. 246, 708–719.
Could maternal testosterone levels govern mammalian sex ratio deviations?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlt1Sgtrw%3D&md5=6282c024a141800a2996135b80c47b51CAS | 17379251PubMed |

Grant, V. J., and France, J. T. (2001). Dominance and testosterone in women. Biol. Psychol. 58, 41–47.
Dominance and testosterone in women.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD38%2Fislalug%3D%3D&md5=4f573ccc4c02df5d48fd5d8258f7c9daCAS | 11473794PubMed |

Grant, V. J., Irwin, R. J., Standley, N. T., Shelling, A. N., and Chamley, L. W. (2008). Sex of bovine embryos may be related to mothers’ preovulatory follicular testosterone. Biol. Reprod. 78, 812–815.
Sex of bovine embryos may be related to mothers’ preovulatory follicular testosterone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltVOgu7k%3D&md5=7add126b526761ecbea8e2f6f8be81fbCAS | 18184920PubMed |

Green, M. P., Spate, L. D., Parks, T. E., Kimura, K., Murphy, C. N., Williams, J. E., Kerley, M. S., Green, J. A., Keisler, D. H., and Roberts, R. M. (2008). Nutritional skewing of conceptus sex in sheep: effects of a maternal diet enriched in rumen-protected polyunsaturated fatty acids (PUFA). Reprod. Biol. Endocrinol. 6, 21.
Nutritional skewing of conceptus sex in sheep: effects of a maternal diet enriched in rumen-protected polyunsaturated fatty acids (PUFA).Crossref | GoogleScholarGoogle Scholar | 18541015PubMed |

Guerrero, R. (1970). Sex ratio: a statistical association with type and time of insemination in the menstrual cycle. Int. J. Fertil. 15, 221–225.
| 1:STN:280:DyaE3M%2FlvVOgsw%3D%3D&md5=58ea4b5de53e28051ee8cf5cef0503a6CAS | 5487546PubMed |

Guerrero, R. (1974). Association of the type and time of insemination within the menstrual cycle with the human sex ratio at birth. N. Engl. J. Med. 291, 1056–1059.
Association of the type and time of insemination within the menstrual cycle with the human sex ratio at birth.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE2M%2Fgslaksw%3D%3D&md5=f2a2f853c250ae856a6938c78465b6a3CAS | 4412107PubMed |

Gutierrez-Adan, A., Perez, G., Granados, J., Garde, J. J., Perez-Guzman, M., Pintado, B., and De La Fuente, J. (1999). Relationship between sex ratio and time of insemination according to both time of ovulation and maturational state of oocyte. Zygote 7, 37–43.
Relationship between sex ratio and time of insemination according to both time of ovulation and maturational state of oocyte.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1M3jt1Glsw%3D%3D&md5=2eabb747cf2dae60d24689ceb404426fCAS | 10216915PubMed |

Gutierrez-Adan, A., Granados, J., Pintado, B., and De La Fuente, J. (2001). Influence of glucose on the sex ratio of bovine IVM/IVF embryos cultured in vitro. Reprod. Fertil. Dev. 13, 361–365.
Influence of glucose on the sex ratio of bovine IVM/IVF embryos cultured in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmtVWntw%3D%3D&md5=3123aae6c8740431123c34a690dc99e7CAS | 11833931PubMed |

Hamilton, W. (1967). Extraordinary sex ratios. A sex-ratio theory for sex linkage and inbreeding has new implications in cytogenetics and entomology. Science 156, 477–488.
Extraordinary sex ratios. A sex-ratio theory for sex linkage and inbreeding has new implications in cytogenetics and entomology.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaF2s7ivFOltg%3D%3D&md5=c9c5651894e519a1d504a82c90935693CAS | 6021675PubMed |

Hammond, J. (1934). The fertilization of rabbit ova in relation to ovulation. J. Exp. Biol. 11, 140–161.

Harlap, S. (1979). Gender of infants conceived on different days of the menstrual cycle. N. Engl. J. Med. 300, 1445–1448.
Gender of infants conceived on different days of the menstrual cycle.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE1M7pvFertQ%3D%3D&md5=9f5f67630bb0cd607e7ba66278b7720fCAS | 449885PubMed |

Hedricks, C., and McClintock, M. K. (1990). Timing of insemination is correlated with the secondary sex ratio of Norway rats. Physiol. Behav. 48, 625–632.
Timing of insemination is correlated with the secondary sex ratio of Norway rats.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3M7osl2msQ%3D%3D&md5=07fa89bbd6206e8a9de908b5986ea6acCAS | 2082361PubMed |

Hercz, P., Kazy, Z., Siklos, P., and Ungar, L. (1989). Quantitative comparison of serum steroid and peptide hormone concentrations in male and female fetuses in the maternal-fetoplacental system during the 28th–40th weeks of pregnancy. Eur. J. Obstet. Gynecol. Reprod. Biol. 30, 201–204.
Quantitative comparison of serum steroid and peptide hormone concentrations in male and female fetuses in the maternal-fetoplacental system during the 28th–40th weeks of pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXitVGqu7g%3D&md5=e9a3179dfca83e1a8385c58d0c98925eCAS | 2523826PubMed |

Hiraiwa-Hasegawa, M. (1993). Skewed birth sex ratios in primates: should high-ranking mothers have daughters or sons. Trends Ecol. Evol. 8, 395–400.
Skewed birth sex ratios in primates: should high-ranking mothers have daughters or sons.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3M7itV2guw%3D%3D&md5=b11e6c104699cf56abc1c6bf2a8cc83bCAS | 21236210PubMed |

Holm, P., Shukri, N. N., Vatja, G, Booth, P, Bendixen, C, and Callesen, H (1998). Developmental kinetics of the first cell cycles of bovine in vitro produced embryos in relation to their in vitro viability and sex. Theriogenology 50, 1285–1299.
Developmental kinetics of the first cell cycles of bovine in vitro produced embryos in relation to their in vitro viability and sex.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3c7pvVKitQ%3D%3D&md5=115d8e2ace42f661f7342afe0ef01395CAS | 10734442PubMed |

Hung, P. H., Froenicke, L., Lyons, L. A., and Vandevoort, C. A. (2009). Nothing ‘FISH’y about the rhesus macaque sex ratio. J. Med. Primatol. 38, 42–50.
Nothing ‘FISH’y about the rhesus macaque sex ratio.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXislOht7k%3D&md5=1a52aa7a6fe61e73c480c07c1f5b3dbbCAS | 18671768PubMed |

James, W. (1971). Cycle day of insemination, coital rate, and sex ratio. Lancet 297, 112–114.
Cycle day of insemination, coital rate, and sex ratio.Crossref | GoogleScholarGoogle Scholar |

James, W. (1983). Timing of fertilization and the sex ratio of offspring. In ‘Sex Selection of Children’. (Ed. N. G. Bennett.) pp. 73–99. (Academic Press: New York, NY.)

James, W. (1990). The hypothesized hormonal control of human sex ratio at birth: an update. J. Theor. Biol. 143, 555–564.
The hypothesized hormonal control of human sex ratio at birth: an update.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3czjvFyqug%3D%3D&md5=c754165ec2dbaf5a9a6551fbd5b43da1CAS | 2199736PubMed |

James, W. H. (2008a). The variations of human sex ratio at birth with time of conception within the cycle, coital rate around the time of conception, duration of time taken to achieve conception, and duration of gestation: A synthesis. J. Theor. Biol. 255, 199–204.
The variations of human sex ratio at birth with time of conception within the cycle, coital rate around the time of conception, duration of time taken to achieve conception, and duration of gestation: A synthesis.Crossref | GoogleScholarGoogle Scholar | 18687340PubMed |

James, W. H. (2008b). Women’s age, weight, parity and offspring sex ratio: a comment on the paper of Helle. J. Theor. Biol. 254, 716.
Women’s age, weight, parity and offspring sex ratio: a comment on the paper of Helle.Crossref | GoogleScholarGoogle Scholar | 18644384PubMed |

Jansson, T., and Powell, T. L. (2006). IFPA 2005 Award in Placentology Lecture. Human placental transport in altered fetal growth: does the placenta function as a nutrient sensor? – a review. Placenta 27, 91–97.
IFPA 2005 Award in Placentology Lecture. Human placental transport in altered fetal growth: does the placenta function as a nutrient sensor? – a review.Crossref | GoogleScholarGoogle Scholar |

Jimenez, A., Fernandez, R., Madrid-Bury, N., Moreira, P. N., Borque, C., Pintado, B., and Gutierrez-Adan, A. (2003). Experimental demonstration that pre- and post-conceptional mechanisms influence sex ratio in mouse embryos. Mol. Reprod. Dev. 66, 162–165.
Experimental demonstration that pre- and post-conceptional mechanisms influence sex ratio in mouse embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnt1Wntrw%3D&md5=dcbe025a0804d7f418d72f6ee16249bfCAS | 12950103PubMed |

Jongbloet, P. H., Zielhuis, G. A., Groenewoud, H. M. M., and Pasker-de Jong, P. C. M. (2001). The secular trends in male:female ratio at birth in postwar industrialized countries. Environ. Health Perspect. 109, 749–752.
The secular trends in male:female ratio at birth in postwar industrialized countries.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MvjvF2qsw%3D%3D&md5=2e040c9e808764d677ac3720d3f3e797CAS | 11485875PubMed |

Kaminski, M. A., Ford, S. P., Youngs, C. R., and Conley, A. J. (1996). Lack of effect of sex on pig embryonic development in vivo. J. Reprod. Fertil. 106, 107–110.
Lack of effect of sex on pig embryonic development in vivo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmtVCmtw%3D%3D&md5=e2ea5e6608a019d6c83ecdbfce4d0701CAS | 8667334PubMed |

Kent, J. P. (1995). Birth sex ratios in sheep over nine lambing seasons: years 7–9 and the effects of ageing. Behav. Ecol. Sociobiol. 36, 101–104.
Birth sex ratios in sheep over nine lambing seasons: years 7–9 and the effects of ageing.Crossref | GoogleScholarGoogle Scholar |

Kimura, K., Spate, L. D., Green, M. P., Murphy, C. N., Seidel, G. E., and Roberts, R. M. (2004a). Sexual dimorphism in interferon-tau production by in vivo-derived bovine embryos. Mol. Reprod. Dev. 67, 193–199.
Sexual dimorphism in interferon-tau production by in vivo-derived bovine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjvVKrtA%3D%3D&md5=db83222f85123d4a3147a00a26fcc27eCAS | 14694435PubMed |

Kimura, K., Spate, L. D., Green, M. P., and Roberts, R. M. (2004b). Effects of oxidative stress and inhibitors of the pentose phosphate pathway on sexually dimorphic production of IFN-tau by bovine blastocysts. Mol. Reprod. Dev. 68, 88–95.
Effects of oxidative stress and inhibitors of the pentose phosphate pathway on sexually dimorphic production of IFN-tau by bovine blastocysts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXivFyrsr0%3D&md5=345cc8ac92bfadfb6ef8735ad348a998CAS | 15039952PubMed |

Kimura, K., Spate, L. D., Green, M. P., and Roberts, R. M. (2005). Effects of D-glucose concentration, D-fructose, and inhibitors of enzymes of the pentose phosphate pathway on the development and sex ratio of bovine blastocysts. Mol. Reprod. Dev. 72, 201–207.
Effects of D-glucose concentration, D-fructose, and inhibitors of enzymes of the pentose phosphate pathway on the development and sex ratio of bovine blastocysts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXnt1ygu7c%3D&md5=f7d6a89f26915bc0b6a89f0c0e12b335CAS | 15968626PubMed |

Kojola, I., and Eloranta, E. (1989). Influences of maternal body weight, age, and parity on sex ration in semidomesticated reindeer (Rangifer t. tarandus). Evolution Int. J. Org. Evolution 43, 1331–1336.
Influences of maternal body weight, age, and parity on sex ration in semidomesticated reindeer (Rangifer t. tarandus).Crossref | GoogleScholarGoogle Scholar |

Krackow, S. (1992). Sex ratio manipulation in wild house mice: the effect of fetal resorption in relation to the mode of reproduction. Biol. Reprod. 47, 541–548.
Sex ratio manipulation in wild house mice: the effect of fetal resorption in relation to the mode of reproduction.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3s%2Fgtl2isA%3D%3D&md5=d64ba3913f52242c108798a83ee6f154CAS | 1391340PubMed |

Krackow, S. (1997). Effects of mating dynamics and crowding on sex ratio variance in mice. J. Reprod. Fertil. 110, 87–90.
Effects of mating dynamics and crowding on sex ratio variance in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXksVansrY%3D&md5=9a4b6c7cde7f268e993bae04a111be99CAS | 9227361PubMed |

Krackow, S., and Burgoyne, P. S. (1997). Timing of mating, developmental asynchrony and the sex ratio in mice. Physiol. Behav. 63, 81–84.
Timing of mating, developmental asynchrony and the sex ratio in mice.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1c%2Fms1aguw%3D%3D&md5=35f1831a7c8bcd64bee5cf75f07808bcCAS | 9402619PubMed |

Kruuk, L. E., Clutton-Brock, T. H., Albon, S. D., Pemberton, J. M., and Guinness, F. E. (1999). Population density affects sex ratio variation in red deer. Nature 399, 459–461.
Population density affects sex ratio variation in red deer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjvV2jt7Y%3D&md5=8745382d242eec34341795ca84143252CAS | 10365956PubMed |

Kubisch, H. M., and Johnson, K. M. (2007). The effects of blastomere biopsy and oxygen tension on bovine embryo development, rate of apoptosis and interferon-tau secretion. Reprod. Domest. Anim. 42, 509–515.
The effects of blastomere biopsy and oxygen tension on bovine embryo development, rate of apoptosis and interferon-tau secretion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFKntLjO&md5=a1d2cf4554b8f201c9eab6d47ad4502eCAS | 17845607PubMed |

Kubisch, H. M., Rasmussen, T. A., and Johnson, K. M. (2003). Interferon-tau in bovine blastocysts following parthenogenetic activation of oocytes: pattern of secretion and polymorphism in expressed mRNA sequences. Mol. Reprod. Dev. 64, 79–85.
Interferon-tau in bovine blastocysts following parthenogenetic activation of oocytes: pattern of secretion and polymorphism in expressed mRNA sequences.Crossref | GoogleScholarGoogle Scholar | 12420302PubMed |

Lane, E. A., and Hyde, T. S. (1973). The effect of maternal stress on fertility and sex ratio: a pilot study with rats. J. Abnorm. Psychol. 82, 78–80.
The effect of maternal stress on fertility and sex ratio: a pilot study with rats.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE3s3lt1eqtQ%3D%3D&md5=8679dd92a45dc83ce849f0a843b62b96CAS | 4738328PubMed |

Larson, M. A., Kimura, K., Kubisch, H. M., and Roberts, R. M. (2001). Sexual dimorphism among bovine embryos in their ability to make the transition to expanded blastocyst and in the expression of the signaling molecule IFN-tau. Proc. Natl. Acad. Sci. USA 98, 9677–9682.
Sexual dimorphism among bovine embryos in their ability to make the transition to expanded blastocyst and in the expression of the signaling molecule IFN-tau.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmtlCnu7g%3D&md5=6d942116f0c47089d2674763eb41a7b8CAS | 11481449PubMed |

Lehavi, O., Aizenstein, O., Evans, M. I., and Yaron, Y. (2005). 2nd-trimester maternal serum human chorionic gonadotropin and alpha-fetoprotein levels in male and female fetuses with Down syndrome. Fetal Diagn. Ther. 20, 235–238.
2nd-trimester maternal serum human chorionic gonadotropin and alpha-fetoprotein levels in male and female fetuses with Down syndrome.Crossref | GoogleScholarGoogle Scholar | 15824504PubMed |

Mao, J., and Rosenfeld, C. S. (2009). Usage of X- and Y-chromosome fluorescent in situ hybridization to determine whether the murine oocytes selectively attract one class of spermatozoa over another. Mol. Reprod. Dev. 76, 320.
Usage of X- and Y-chromosome fluorescent in situ hybridization to determine whether the murine oocytes selectively attract one class of spermatozoa over another.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjt12hs7k%3D&md5=e63d3a77ed0be4c74fb30000e45fd3efCAS | 19084886PubMed |

Mao, J., Zhang, X., Sieli, P. T., Falduto, M. T., Torres, K. E., and Rosenfeld, C. S. (2010). Contrasting effects of different maternal diets on sexually dimorphic gene expression in the murine placenta. Proc. Natl. Acad. Sci. USA 107, 5557–5562.
Contrasting effects of different maternal diets on sexually dimorphic gene expression in the murine placenta.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXktFKhsLc%3D&md5=33bf27559933b2164babf86dcfbf5464CAS | 20212133PubMed |

Marquant-Le Guinne, B., Nibart, M., Guyader, C., Kohen, G., Esposito, L., Thuard, J. M., and Thibier, M. (1992). DNA probe sexing of young in vitro fertilized bovine embryos. Theriogenology 37, 253.
DNA probe sexing of young in vitro fertilized bovine embryos.Crossref | GoogleScholarGoogle Scholar |

Martin, J. F. (1997). Length of the follicular phase, time of insemination, coital rate and the sex of offspring. Hum. Reprod. 12, 611–616.
Length of the follicular phase, time of insemination, coital rate and the sex of offspring.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2s3nslSktA%3D%3D&md5=0ce9e31d4a6873db5d7cb923fe27f760CAS | 9130769PubMed |

Mathews, F., Johnson, P. J., and Neil, A. (2008). You are what your mother eats: evidence for maternal preconception diet influencing foetal sex in humans. Proc. Biol. Sci. 275, 1661–1668.
You are what your mother eats: evidence for maternal preconception diet influencing foetal sex in humans.Crossref | GoogleScholarGoogle Scholar | 18430648PubMed |

Meikle, D., and Drickamer, L. (1986a). Food availability and secondary sex ratio variation in wild and laboratory house mice (Mus musculus). J. Reprod. Fertil. 78, 587–591.
Food availability and secondary sex ratio variation in wild and laboratory house mice (Mus musculus).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2s7ht1eqtw%3D%3D&md5=1d6fe40956a48dc58f0116906b4f15b1CAS | 3806517PubMed |

Meikle, D. B., and Drickamer, L. C. (1986b). Food availability and secondary sex ratio variation in wild and laboratory house mice (Mus musculus). J. Reprod. Fertil. 78, 587–591.
Food availability and secondary sex ratio variation in wild and laboratory house mice (Mus musculus).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2s7ht1eqtw%3D%3D&md5=1d6fe40956a48dc58f0116906b4f15b1CAS | 3806517PubMed |

Meikle, D., and Thornton, M. (1995). Premating and gestational effects of maternal nutrition on secondary sex ratio in house mice. J. Reprod. Fertil. 105, 193–196.
Premating and gestational effects of maternal nutrition on secondary sex ratio in house mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjslShug%3D%3D&md5=2d7da6e718cea291eab936736de0b207CAS | 8568760PubMed |

Meikle, D., and Westberg, M. (2001). Maternal nutrition and reproduction of daughters in wild house mice (Mus musculus). Reproduction 122, 437–442.
Maternal nutrition and reproduction of daughters in wild house mice (Mus musculus).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXntVGksbo%3D&md5=d7066d0da3bb92b31b1e670d65afbd17CAS | 11597308PubMed |

Meikle, D., Kruper, J., and Browning, C. (1995). Adult male house mice born to undernourished mothers are unattractive to oestrous females. Anim. Behav. 50, 753–758.
Adult male house mice born to undernourished mothers are unattractive to oestrous females.Crossref | GoogleScholarGoogle Scholar |

Meikle, D. B., Drickamer, L. C., Vessey, S. H., Arthur, R. D., and Rosenthal, T. L. (1996). Dominance rank and parental investment in swine (Sus scrofa domesticus). Ethology 102, 969–978.
Dominance rank and parental investment in swine (Sus scrofa domesticus).Crossref | GoogleScholarGoogle Scholar |

Moriya, A., and Hiroshige, T. (1978). Sex ratio of offspring of rats bred at 5°C. Int. J. Biometeorol. 22, 312–315.
Sex ratio of offspring of rats bred at 5°C.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE1M7nt1aquw%3D%3D&md5=fb38ab34b9d5907e6561f1057f4e1e25CAS |

Mueller, B. R., and Bale, T. L. (2008). Sex-specific programming of offspring emotionality after stress early in pregnancy. J. Neurosci. 28, 9055–9065.
Sex-specific programming of offspring emotionality after stress early in pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFSmsr%2FM&md5=2049efc2a8587a1e88bd5edc5c4f7013CAS | 18768700PubMed |

Nagelkerke, C. (1996). Discrete clutch sizes, local mate competition, and the evolution of precise sex allocation. Theor. Popul. Biol. 49, 314–343.
Discrete clutch sizes, local mate competition, and the evolution of precise sex allocation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK283ns1KltA%3D%3D&md5=068dee42884b3f937b9d0486f363e3ccCAS | 8693430PubMed |

Ng, E., Claman, P., Leveille, M. C., Tanphaichitr, N., Compitak, K., Suwajanakorn, S., and Wells, G. (1995). Sex ratio of babies in unchanged after transfer of fast- versus slow-cleaving embryos. J. Assist. Reprod. Genet. 12, 566–568.
Sex ratio of babies in unchanged after transfer of fast- versus slow-cleaving embryos.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK287ltFWisw%3D%3D&md5=a0bdbab1e1c9064441fab0cd9579aea8CAS | 8580650PubMed |

Nunney, L., and Luck, R. (1988). Factors influencing the optimum sex ratio in a structured population. Theor. Popul. Biol. 33, 1–30.
Factors influencing the optimum sex ratio in a structured population.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1c3js1ehtQ%3D%3D&md5=71df69dd4d12b8e7a4baf74ae7be51e2CAS | 3376051PubMed |

Peippo, J., and Bredbacka, P. (1996). Male bovine zygotes cleave earlier than female zygotes in the presence of glucose. Theriogenology 45, 187.
Male bovine zygotes cleave earlier than female zygotes in the presence of glucose.Crossref | GoogleScholarGoogle Scholar |

Pomp, D., Good, B. A., Geisert, R. D., Corbin, C. J., and Conley, A. J. (1995). Sex identification in mammals with polymerase chain reaction and its use to examine sex effects on diameter of day-10 or -11 pig embryos. J. Anim. Sci. 73, 1408–1415.
| 1:CAS:528:DyaK2MXlsFSjur4%3D&md5=00e09f61e1dbf780e65088227174a9d8CAS | 7665371PubMed |

Pratt, N. C., and Lisk, R. D. (1989). Effects of social stress during early pregnancy on litter size and sex ratio in the golden hamster (Mesocricetus auratus). J. Reprod. Fertil. 87, 763–769.
Effects of social stress during early pregnancy on litter size and sex ratio in the golden hamster (Mesocricetus auratus).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3c%2Fps1Snug%3D%3D&md5=10bcf299947bf638128700802401eed9CAS | 2600923PubMed |

Pratt, N. C., and Lisk, R. D. (1990). Dexamethasone can prevent stress-related litter deficits in the golden hamster. Behav. Neural Biol. 54, 1–12.
Dexamethasone can prevent stress-related litter deficits in the golden hamster.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXlt1Kks7k%3D&md5=a8317dbc0e89eaf5ad9f645af7ecee8eCAS | 2378604PubMed |

Pratt, N. C., and Lisk, R. D. (1991). Role of progesterone in mediating stress-related litter deficits in the golden hamster (Mesocricetus auratus). J. Reprod. Fertil. 92, 139–146.
Role of progesterone in mediating stress-related litter deficits in the golden hamster (Mesocricetus auratus).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXlsFSrur4%3D&md5=ca07632c3d25349be71ba85768abc452CAS | 2056485PubMed |

Pratt, N., Huck, U., and Lisk, R. (1987a). Offspring sex ratio in hamsters is correlated with vaginal pH at certain times of mating. Behav. Neural Biol. 48, 310–316.
Offspring sex ratio in hamsters is correlated with vaginal pH at certain times of mating.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1c%2FkvFGmug%3D%3D&md5=3b41bb82ae474b0ffc1888a019b45f44CAS | 3675523PubMed |

Pratt, N. C., Huck, U. W., and Lisk, R. D. (1987b). Offspring sex ratio in hamsters is correlated with vaginal pH at certain times of mating. Behav. Neural Biol. 48, 310–316.
Offspring sex ratio in hamsters is correlated with vaginal pH at certain times of mating.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1c%2FkvFGmug%3D%3D&md5=3b41bb82ae474b0ffc1888a019b45f44CAS | 3675523PubMed |

Reubinoff, B., and Schenker, J. (1996). New advances in sex preselection. Fertil. Steril. 66, 343–350.
| 1:STN:280:DyaK28zlt1Kitg%3D%3D&md5=83c0a0378a9cd7c2db8c4e8904ca9c63CAS | 8751727PubMed |

Riddle, O. (1917). The observed changes in hereditary characters in relation to evolution. Washington Academy of Sciences 7, 281–301, 319–356, 369, 387.

Rivers, J., and Crawford, M. (1974). Maternal nutrition and the sex ratio at birth. Nature 252, 297–298.
Maternal nutrition and the sex ratio at birth.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE2M%2FksFelsA%3D%3D&md5=9aeebd10077584144f29793804eb5e45CAS | 4431446PubMed |

Roche, J. R., Lee, J. M., and Berry, D. P. (2006). Pre-conception energy balance and secondary sex ratio – partial support for the Trivers-Willard hypothesis in dairy cows. J. Dairy Sci. 89, 2119–2125.
Pre-conception energy balance and secondary sex ratio – partial support for the Trivers-Willard hypothesis in dairy cows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xlt1eqs7s%3D&md5=dc20e119bc61500d9389020c0121ba21CAS | 16702278PubMed |

Rodina, T. M., Cooke, F. N., Hansen, P. J., and Ealy, A. D. (2009). Oxygen tension and medium type actions on blastocyst development and interferon-tau secretion in cattle. Anim. Reprod. Sci. 111, 173–188.
Oxygen tension and medium type actions on blastocyst development and interferon-tau secretion in cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFKmtrk%3D&md5=a6c63a59ca1b361757f6196862b8b2efCAS | 18394828PubMed |

Rorie, R. W. (1999). Effect of timing of artificial insemination on sex ratio. Theriogenology 52, 1273–1280.
Effect of timing of artificial insemination on sex ratio.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3c7pvFamsg%3D%3D&md5=c9e386e9f0eac61d6a3aedae4c07a8b3CAS | 10735075PubMed |

Rosenfeld, C. S., and Roberts, R. M. (2004). Maternal diet and other factors affecting offspring sex ratio: a review. Biol. Reprod. 71, 1063–1070.
Maternal diet and other factors affecting offspring sex ratio: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnvVGqtrY%3D&md5=6527300db1dec1722f3c45c7aab5bcdfCAS | 15229140PubMed |

Rosenfeld, C. S., Grimm, K. M., Livingston, K. A., Brokman, A. M., Lamberson, W. E., and Roberts, R. M. (2003). Striking variation in the sex ratio of pups born to mice according to whether maternal diet is high in fat or carbohydrate. Proc. Natl. Acad. Sci. USA 100, 4628–4632.
Striking variation in the sex ratio of pups born to mice according to whether maternal diet is high in fat or carbohydrate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjt12nsrs%3D&md5=751fb8a8e5dd8a795f24e99f641433f4CAS | 12672968PubMed |

Rostron, J., and James, W. (1977). Maternal age, parity, social class and sex ratio. Ann. Hum. Genet. 41, 205–217.
Maternal age, parity, social class and sex ratio.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE1c%2FnvFWgug%3D%3D&md5=45f62e92592b81269009d979fb5f989eCAS | 596828PubMed |

Sheldon, B. C. (2004). Maternal dominance, maternal condition, and offspring sex ratio in ungulate mammals. Am. Nat. 163, 40–54.
Maternal dominance, maternal condition, and offspring sex ratio in ungulate mammals.Crossref | GoogleScholarGoogle Scholar | 14767835PubMed |

Singh, D., and Zambarano, R. (1997). Offspring sex ratio in women with android body fat distribution. Hum. Biol. 69, 545–556.
| 1:STN:280:DyaK2szkt1WqtQ%3D%3D&md5=3bc7699004a76cd07b36cf711e2145d9CAS | 9198313PubMed |

Skjervold, H., and James, W. H. (1979). Causes of variation in the sex ratio in dairy cattle. J. Anim. Breed. Genet. 95, 293–305.

Sood, R., Zehnder, J. L., Druzin, M. L., and Brown, P. O. (2006). Gene expression patterns in human placenta. Proc. Natl. Acad. Sci. USA 103, 5478–5483.
Gene expression patterns in human placenta.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xjslejsrk%3D&md5=adcba4a4807c79de385acd1c06e3f1b2CAS | 16567644PubMed |

Steier, J. A., Myking, O. L., and Bergsjo, P. B. (1999). Correlation between fetal sex and human chorionic gonadotropin in peripheral maternal blood and amniotic fluid in second and third trimester normal pregnancies. Acta Obstet. Gynecol. Scand. 78, 367–371.
Correlation between fetal sex and human chorionic gonadotropin in peripheral maternal blood and amniotic fluid in second and third trimester normal pregnancies.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1M3ls1yisg%3D%3D&md5=ceff7bc8354da5856cbff0f687f280cfCAS | 10326878PubMed |

Steier, J. A., Bergsjo, P. B., Thorsen, T., and Myking, O. L. (2004). Human chorionic gonadotropin in maternal serum in relation to fetal gender and utero-placental blood flow. Acta Obstet. Gynecol. Scand. 83, 170–174.
| 14756735PubMed |

Teitelbaum, M. (1970). Factors affecting the sex ratio in large populations. J. Biosoc. Sci. Suppl. 2, 61–71.
| 1:STN:280:DyaE3M7gsFOlsg%3D%3D&md5=30c1a7fda996d43dcdd5bdfbcc9286e9CAS | 5276627PubMed |

Teitelbaum, M. (1972). Factors associated with the sex ratio in human populations. In ‘The Structure of Human Populations’. (Eds G. A. Harrison, A. J. Boyce) pp. 90–109. (Clarendon Press: Oxford.)

Thornburg, K. L., O’Tierney, P. F., and Louey, S. (2010). Review: the placenta is a programming agent for cardiovascular disease. Placenta 31, S54–S59.
Review: the placenta is a programming agent for cardiovascular disease.Crossref | GoogleScholarGoogle Scholar | 20149453PubMed |

Trivers, R. L., and Willard, D. E. (1973). Natural selection of parental ability to vary the sex ratio of offspring. Science 179, 90–92.
Natural selection of parental ability to vary the sex ratio of offspring.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE3s%2Fls1Wqsg%3D%3D&md5=d20e74570f8933883e11f03daef94c56CAS | 4682135PubMed |

Valdivia, R. P., Kunieda, T., Azuma, S., and Toyoda, Y. (1993). PCR sexing and developmental rate differences in preimplantation mouse embryos fertilized and cultured in-vitro. Mol. Reprod. Dev. 35, 121–126.
PCR sexing and developmental rate differences in preimplantation mouse embryos fertilized and cultured in-vitro.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3szgsFaqtA%3D%3D&md5=5da2789f77834eb608d612d94275972bCAS | 8318217PubMed |

Van Dyk, Q., Mahony, M. C., and Hodgen, G. D. (2001). Differential binding of X- and Y-chromosome-bearing human spermatozoa to zona pellucida in vitro. Andrologia 33, 199–205.
Differential binding of X- and Y-chromosome-bearing human spermatozoa to zona pellucida in vitro.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MvisVyrtQ%3D%3D&md5=105fef8ac921fc5960017fcb1daf7835CAS | 11472331PubMed |

Vandenbergh, J., and Huggett, C. (1995). Mother’s prior intrauterine position affects the sex ratio of her offspring in house mice. Proc. Natl. Acad. Sci. USA 91, 1155–1159.

Verme, L., and Ozoga, J. (1981). Sex ratio of white-tailed deer and the estrus cycle. J. Wildl. Manage. 45, 710–715.
Sex ratio of white-tailed deer and the estrus cycle.Crossref | GoogleScholarGoogle Scholar |

Vom Saal, F., Clark, M., Galef, B., Drickamer, L., and Vandenbergh, J. (1999). The intrauterine position (IUP) phenomenon. In ‘Encyclopedia of Reproduction, Volume 2’. (Ed. E. Knobil, J. D. Neill.) pp. 893–900. (Academic Press: New York.)

Wauters, L. A., Crombrugghe, S. A., Nour, N., and Matthysen, E. (1995). Do female roe deer in good condition produce more sons than daughters. Behav. Ecol. Sociobiol. 37, 189–193.
Do female roe deer in good condition produce more sons than daughters.Crossref | GoogleScholarGoogle Scholar |

West, S., Herre, E., and Sheldon, B. (2000). The benefits of allocating sex. Science 290, 288–290.
The benefits of allocating sex.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnsVGisrs%3D&md5=6f639b86294d4f18ca7ee5d5d5fb0d92CAS | 11183376PubMed |

Whyte, J. J., Alexenko, A. P., Davis, A. M., Ellersieck, M. R., Fountain, E. D., and Rosenfeld, C. S. (2007a). Maternal diet composition alters serum steroid and free fatty acid concentrations and vaginal pH in mice. J. Endocrinol. 192, 75–81.
Maternal diet composition alters serum steroid and free fatty acid concentrations and vaginal pH in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXktlKqtLY%3D&md5=ef8d96fd6ce5df1c9cd12b8b0b877288CAS | 17210744PubMed |

Whyte, J. J., Roberts, R. M., and Rosenfeld, C. S. (2007b). Fluorescent in situ hybridization for sex chromosome determination before and after fertilization in mice. Theriogenology 67, 1022–1031.
Fluorescent in situ hybridization for sex chromosome determination before and after fertilization in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitFOgu7c%3D&md5=38caec824273e54cc20e45120b24e5f1CAS | 17215034PubMed |

Wild, G., and West, S. A. (2007). A sex allocation theory for vertebrates: combining local resource competition and condition-dependent allocation. Am. Nat. 170, E112–E128.
A sex allocation theory for vertebrates: combining local resource competition and condition-dependent allocation.Crossref | GoogleScholarGoogle Scholar | 17926288PubMed |

Williams, R. J., and Gloster, S. P. (1992). Human sex ratio as it relates to caloric availability. Soc. Biol. 39, 285–291.
| 1:STN:280:DyaK2c%2FisVSqtQ%3D%3D&md5=8aca51fcfc72aa916a3a4c32486d9ef5CAS | 1340046PubMed |

Yadav, B. R., King, W. A., and Betteridge, K. J. (1993). Relationships between the completion of first cleavage and the chromosomal complement, sex and developmental rates of bovine embryos generated in vitro. Mol. Reprod. Dev. 36, 434–439.
Relationships between the completion of first cleavage and the chromosomal complement, sex and developmental rates of bovine embryos generated in vitro.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2c7jslCmtA%3D%3D&md5=bdc7b6bafb557a7e47c4f0bb6ac25509CAS | 8305205PubMed |