Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Altered pregnancy outcomes in mice following treatment with the hyperglycaemia mimetic, glucosamine, during the periconception period

Cheryl J. Schelbach A , Rebecca L. Robker A , Brenton D. Bennett A , Ashley D. Gauld A , Jeremy G. Thompson A and Karen L. Kind B C
+ Author Affiliations
- Author Affiliations

A The Robinson Institute, The Research Centre for Reproductive Health, School of Paediatrics and Reproductive Health, The University of Adelaide, Adelaide, SA 5005, Australia.

B The Robinson Institute, The Research Centre for Reproductive Health, School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, SA 5005, Australia.

C Corresponding author. Email: karen.kind@adelaide.edu.au

Reproduction, Fertility and Development 25(2) 405-416 https://doi.org/10.1071/RD11313
Submitted: 16 December 2011  Accepted: 31 March 2012   Published: 21 May 2012

Abstract

Exposure of cumulus–oocyte complexes to the hyperglycaemia mimetic, glucosamine, during in vitro maturation impairs embryo development, potentially through upregulation of the hexosamine biosynthesis pathway. This study examined the effects of in vivo periconception glucosamine exposure on reproductive outcomes in young healthy mice, and further assessed the effects in overweight mice fed a high-fat diet. Eight-week-old mice received daily glucosamine injections (20 or 400 mg kg–1) for 3–6 days before and 1 day after mating (periconception). Outcomes were assessed at Day 18 of gestation. Glucosamine treatment reduced litter size independent of dose. A high-fat diet (21% fat) for 11 weeks before and during pregnancy reduced fetal size. No additional effects of periconception glucosamine (20 mg kg–1) on pregnancy outcomes were observed in fat-fed mice. In 16-week-old mice fed the control diet, glucosamine treatment reduced fetal weight and increased congenital abnormalities, but did not alter litter size. As differing effects of glucosamine were observed in 8-week-old and 16-week-old mice, maternal age effects were assessed. Periconception glucosamine at 8 weeks reduced litter size, whereas glucosamine at 16 weeks reduced fetal size. Thus, in vivo periconception glucosamine exposure perturbs reproductive outcomes in mice, with the nature of the outcomes dependent upon maternal age.

Additional keywords: fetal development, hexosamine biosynthesis pathway.


References

Adebowale, A., Du, J., Liang, Z., Leslie, J. L., and Eddington, N. D. (2002). The bioavailability and pharmacokinetics of glucosamine hydrochloride and low molecular weight chondroitin sulfate after single and multiple doses to beagle dogs. Biopharm. Drug Dispos. 23, 217–225.
The bioavailability and pharmacokinetics of glucosamine hydrochloride and low molecular weight chondroitin sulfate after single and multiple doses to beagle dogs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnsFemsr4%3D&md5=b128def7721c9bf4623872e729a464dbCAS | 12214321PubMed |

Aghazadeh-Habashi, A., Sattari, S., Pasutto, F., and Jamali, F. (2002). Single dose pharmacokinetics and bioavailability of glucosamine in the rat. J. Pharm. Pharm. Sci. 5, 181–184.
| 1:CAS:528:DC%2BD38XmtlWjtr0%3D&md5=d68ffe8066910bb660f2b5ae2271e8ddCAS | 12207871PubMed |

Ali, S., and Dornhorst, A. (2011). Diabetes in pregnancy: health risks and management. Postgrad. Med. J. 87, 417–427.
Diabetes in pregnancy: health risks and management.Crossref | GoogleScholarGoogle Scholar | 21368321PubMed |

Anderson, J. W., Nicolosi, R. J., and Borzelleca, J. F. (2005). Glucosamine effects in humans: a review of effects on glucose metabolism, side effects, safety considerations and efficacy. Food Chem. Toxicol. 43, 187–201.
Glucosamine effects in humans: a review of effects on glucose metabolism, side effects, safety considerations and efficacy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVGkug%3D%3D&md5=3aa303a496aeb999730830fb9e906178CAS | 15621331PubMed |

Barrientos, C., Racotta, R., and Quevedo, L. (2010). Glucosamine attenuates increases of intraabdominal fat, serum leptin levels and insulin resistance induced by a high-fat diet in rats. Nutr. Res. 30, 791–800.
Glucosamine attenuates increases of intraabdominal fat, serum leptin levels and insulin resistance induced by a high-fat diet in rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFantbrI&md5=d8740c4f7fc61a7831e60eebe080b87dCAS | 21130299PubMed |

Buse, M. G. (2006). Hexosamines, insulin resistance and the complications of diabetes: current status. Am. J. Physiol. Endocrinol. Metab. 290, E1–E8.
Hexosamines, insulin resistance and the complications of diabetes: current status.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhsVSisrg%3D&md5=d290e1ff94e80fe23cbc4df9e2e51810CAS | 16339923PubMed |

Buse, M. G., Robinson, K. A., Gettys, T. W., McMahon, E. G., and Gulve, E. A. (1997). Increased activity of the hexosamine synthesis pathway in muscles of insulin-resistant ob/ob mice. Am. J. Physiol. Endocrinol. Metab. 272, E1080–E1088.
| 1:CAS:528:DyaK2sXktlOgsLs%3D&md5=13678b4c5f1a5fa557a7d9a6715417fbCAS |

Butkinaree, C., Park, K., and Hart, G. W. (2010). O-linked beta-n-acetylglucosamine (O-GlcNAc): extensive crosstalk with phosphorylation to regulate signalling and transcription in response to nutrients and stress. Biochim. Biophys. Acta 1800, 96–106.
O-linked beta-n-acetylglucosamine (O-GlcNAc): extensive crosstalk with phosphorylation to regulate signalling and transcription in response to nutrients and stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotVWitQ%3D%3D&md5=9f02671e67f7416e67e60e429ac1730eCAS | 19647786PubMed |

Cardozo, E., Pavone, M. E., and Hirshfeld-Cytron, J. E. (2011). Metabolic syndrome and oocyte quality. Trends Endocrinol. Metab. 22, 103–109.
Metabolic syndrome and oocyte quality.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsFCqsrs%3D&md5=a6c31c964382763edfdb7084e111ad82CAS | 21277789PubMed |

Chan, A., Scott, J., Nguyen, A.-M., and Sage, L. (2009). ‘Pregnancy outcome in South Australia 2008’. (Adelaide Pregnancy Outcome Unit, SA Health, Government of South Australia: Adelaide.)

Colagiuri, S., Borch-Johnsen, K., Glumer, C., and Vistisen, D. (2005). There really is an epidemic of Type 2 diabetes. Diabetologia 48, 1459–1463.
There really is an epidemic of Type 2 diabetes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2MvivFGmtg%3D%3D&md5=281dc9ea11234b7c064758ac879c9855CAS | 16007413PubMed |

Combs, C. A., and Kitzmiller, J. L. (1991). Spontaneous abortion and congenital malformations in diabetes. Baillieres Clin. Obstet. Gynaecol. 5, 315–331.
Spontaneous abortion and congenital malformations in diabetes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK38%2FmtlKgtA%3D%3D&md5=631f9932851c417b43777f8276a97781CAS | 1954716PubMed |

Considine, R. V., Cooksey, R. C., Williams, L. B., Fawcett, R. L., Zhang, P., Ambrosius, W. T., Whitfield, R. M., Jones, R., Inman, M., Huse, J., and McClain, D. A. (2000). Hexosamines regulate leptin production in human subcutaneous adipocytes. J. Clin. Endocrinol. Metab. 85, 3551–3556.
Hexosamines regulate leptin production in human subcutaneous adipocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnsFOgtr8%3D&md5=b840e7283ecd5855fa87728eb7b6b9a4CAS | 11061500PubMed |

Cooksey, R. C., and McClain, D. A. (2011). Increased hexosamine pathway flux and high-fat feeding are not additive in inducing insulin resistance: evidence for a shared pathway. Amino Acids 40, 841–846.
Increased hexosamine pathway flux and high-fat feeding are not additive in inducing insulin resistance: evidence for a shared pathway.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXitFGqsr8%3D&md5=0d61dfcd45a3640efcfba713daba1f9aCAS | 20658157PubMed |

Delbaere, I., Verstraelen, H., Goetgeluk, S., Martens, G., De Backer, G., and Temmerman, M. (2007). Pregnancy outcome in primiparae of advanced maternal age. Eur. J. Obstet. Gynecol. Reprod. Biol. 135, 41–46.
Pregnancy outcome in primiparae of advanced maternal age.Crossref | GoogleScholarGoogle Scholar | 17118520PubMed |

Diamond, M. P., Moley, K. H., Pellicer, A., Vaughn, W. K., and DeCherney, A. H. (1989). Effects of streptozotocin- and alloxan-induced diabetes mellitus on mouse follicular and early embryo development. J. Reprod. Fertil. 86, 1–10.
Effects of streptozotocin- and alloxan-induced diabetes mellitus on mouse follicular and early embryo development.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1MzivVymsQ%3D%3D&md5=3deff5eeaff329bad622dcd845c3af5aCAS | 2526873PubMed |

Dostrovsky, N. R., Towheed, T. E., Hudson, R. W., and Anastassiades, T. P. (2011). The effect of glucosamine on glucose metabolism in humans: a systematic review of the literature. Osteoarthritis Cartilage 19, 375–380.
The effect of glucosamine on glucose metabolism in humans: a systematic review of the literature.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3MzgtVSrtQ%3D%3D&md5=7fd5029eb598b60c60e4a0d625f695aaCAS | 21251987PubMed |

Dunstan, D. W., Zimmet, P. Z., Welborn, T. A., De Courten, M. P., Cameron, A. J., Sicree, R. A., Dwyer, T., Colagiuri, S., Jolley, D., Knuiman, M., Atkins, R., and Shaw, J. E. (2002). The rising prevalence of diabetes and impaired glucose tolerance: the Australian Diabetes, Obesity and Lifestyle Study. Diabetes Care 25, 829–834.
The rising prevalence of diabetes and impaired glucose tolerance: the Australian Diabetes, Obesity and Lifestyle Study.Crossref | GoogleScholarGoogle Scholar | 11978676PubMed |

Einstein, F. H., Fishman, S., Bauman, J., Thompson, R. F., Huffman, D. M., Atzmon, G., Barzilai, N., and Muzumdar, R. H. (2008). Enhanced activation of a nutrient-sensing pathway with age contributes to insulin resistance. FASEB J. 22, 3450–3457.
Enhanced activation of a nutrient-sensing pathway with age contributes to insulin resistance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1SqsrnP&md5=65f398f7ea9fb472d09c87b90a686f47CAS | 18566293PubMed |

Ericsson, A., Säljö, K., Sjöstrand, E., Jansson, N., Prasad, P. D., Powell, T. L., and Jansson, T. (2007). Brief hyperglycaemia in the early pregnant rat increases fetal weight at term by stimulating placental growth and affecting placental nutrient transport. J. Physiol. 581, 1323–1332.
Brief hyperglycaemia in the early pregnant rat increases fetal weight at term by stimulating placental growth and affecting placental nutrient transport.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnslyis7o%3D&md5=03f16423293645e7ace1361fb2a4e444CAS | 17430988PubMed |

Fleming, T. P., Lucas, E. S., Watkins, A. J., and Eckert, J. J. (2012). Adaptive responses of the embryo to maternal diet and consequences for post-implantation development. Reprod. Fertil. Dev. 24, 35–44.
Adaptive responses of the embryo to maternal diet and consequences for post-implantation development.Crossref | GoogleScholarGoogle Scholar |

Fowler, R. E. (1988). An autoradiographic study of gonadotrophin regulation of labelled glycoconjugates within preovulatory mouse follicles during the final stages of oocyte maturation, using [3H] glucosamine as the radioactive precursor. J. Reprod. Fertil. 83, 759–772.
An autoradiographic study of gonadotrophin regulation of labelled glycoconjugates within preovulatory mouse follicles during the final stages of oocyte maturation, using [3H] glucosamine as the radioactive precursor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXlt1alu70%3D&md5=eaffb069ad16bcf83cee768a69440d77CAS | 3411566PubMed |

Fowler, R. E., and Barratt, E. (1989). The uptake of [3H] glucosamine-labelled glycoconjugates into the perivitelline space of preimplantation mouse embryos. Hum. Reprod. 4, 821–825.
| 1:CAS:528:DyaK3MXhvVaktr4%3D&md5=d39108d271673c60c3c9cf331e983c7aCAS | 2606961PubMed |

Fowler, R. E., and Guttridge, K. (1987). An autoradiographic study using [3H] glucosamine of gonadotrophin regulation of proteoglycan and glycoprotein synthesis in developing mouse follicles. J. Reprod. Fertil. 81, 415–426.
An autoradiographic study using [3H] glucosamine of gonadotrophin regulation of proteoglycan and glycoprotein synthesis in developing mouse follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXotFY%3D&md5=f9781903e4adc3a55c6b7d611a5f9ecaCAS | 3430461PubMed |

Friede, A., Baldwin, W., Rhodes, P. H., Buehler, J. W., and Strauss, L. T. (1988). Older maternal age and infant mortality in the United States. Obstet. Gynecol. 72, 152–157.
| 1:STN:280:DyaL1c3ns1Cjsw%3D%3D&md5=85cdecc09cdffdbff7244b82a9d03bc2CAS | 3393358PubMed |

Fulop, N., Mason, M. M., Dutta, K., Wang, P., Davidoff, A. J., Marchase, R. B., and Chatham, J. C. (2007). Impact of Type 2 diabetes and aging on cardiomyocyte function and O-linked n-acetylglucosamine levels in the heart. Am. J. Physiol. Cell Physiol. 292, C1370–C1378.
Impact of Type 2 diabetes and aging on cardiomyocyte function and O-linked n-acetylglucosamine levels in the heart.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXks1GqtbY%3D&md5=ff48fcdf9aef4b3c9311c47613a0ce29CAS | 17135297PubMed |

Greene, M. F. (1999). Spontaneous abortions and major malformations in women with diabetes mellitus. Semin. Reprod. Endocrinol. 17, 127–136.
Spontaneous abortions and major malformations in women with diabetes mellitus.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1MvlslKksw%3D%3D&md5=b1b27cbaebe72104aad5124304fe074aCAS | 10528364PubMed |

Hansen, J. P. (1986). Older maternal age and pregnancy outcome: a review of the literature. Obstet. Gynecol. Surv. 41, 726–742.
Older maternal age and pregnancy outcome: a review of the literature.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2s7ksFCjsQ%3D%3D&md5=9156ea0e4eed016258eca8751520eb09CAS | 2950347PubMed |

Heilig, C. W., Saunders, T., Brosius, F. C., Moley, K., Heilig, K., Baggs, R., Guo, L., and Conner, D. (2003). Glucose transporter-1-deficient mice exhibit impaired development and deformities similar to diabetic embryopathy. Proc. Natl. Acad. Sci. USA 100, 15 613–15 618.
Glucose transporter-1-deficient mice exhibit impaired development and deformities similar to diabetic embryopathy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVChtw%3D%3D&md5=ecf86a2a35f3b78d72b0b6ab5b1f92efCAS |

Horal, M., Zhang, Z., Stanton, R., Virkamaki, A., and Loeken, M. R. (2004). Activation of the hexosamine pathway causes oxidative stress and abnormal embryo gene expression: involvement in diabetic teratogenesis. Birth Defects Res. A Clin. Mol. Teratol. 70, 519–527.
Activation of the hexosamine pathway causes oxidative stress and abnormal embryo gene expression: involvement in diabetic teratogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXns1Sms70%3D&md5=e30e86bfc0fac715b2094347ddb2853aCAS | 15329829PubMed |

Hsieh, T. T., Liou, J. D., Hsu, J. J., Lo, L. M., Chen, S. F., and Hung, T. T. (2010). Advanced maternal age and adverse perinatal outcomes in an Asian population. Eur. J. Obstet. Gynecol. Reprod. Biol. 148, 21–26.
Advanced maternal age and adverse perinatal outcomes in an Asian population.Crossref | GoogleScholarGoogle Scholar | 19773110PubMed |

Jacobsson, B., Ladfors, L., and Milsom, I. (2004). Advanced maternal age and adverse perinatal outcome. Obstet. Gynecol. 104, 727–733.
Advanced maternal age and adverse perinatal outcome.Crossref | GoogleScholarGoogle Scholar | 15458893PubMed |

Jones, H. N., Woollett, L. A., Barbour, N., Prasad, P. D., Powell, T. L., and Jansson, T. (2009). High-fat diet before and during pregnancy causes marked up-regulation of placental nutrient transport and fetal overgrowth in C57/Bl6 mice. FASEB J. 23, 271–278.
High-fat diet before and during pregnancy causes marked up-regulation of placental nutrient transport and fetal overgrowth in C57/Bl6 mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlsVOktA%3D%3D&md5=dd890c97dc80899fb47ca08d7377951eCAS | 18827021PubMed |

Jungheim, E. S. (2010). Current knowledge of obesity’s effects in the pre- and peri-conceptional periods and avenues for future research. Am. J. Obstet. Gynecol. 203, 525–530.
Current knowledge of obesity’s effects in the pre- and peri-conceptional periods and avenues for future research.Crossref | GoogleScholarGoogle Scholar | 20739012PubMed |

Jungheim, E. S., and Moley, K. H. (2008). The impact of Type 1 and Type 2 diabetes mellitus on the oocyte and the preimplantation embryo. Semin. Reprod. Med. 26, 186–195.
The impact of Type 1 and Type 2 diabetes mellitus on the oocyte and the preimplantation embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkt1WgsrY%3D&md5=23d6699103b3649ba49580b24ef9974fCAS | 18302110PubMed |

Jungheim, E. S., Schoeller, E. L., Marquard, K. L., Louden, E. D., Schaffer, J. E., and Moley, K. H. (2010). Diet-induced obesity model: abnormal oocytes and persistent growth abnormalities in the offspring. Endocrinology 151, 4039–4046.
Diet-induced obesity model: abnormal oocytes and persistent growth abnormalities in the offspring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Oju7rN&md5=54ba19f3577315ea559618de02c445a6CAS | 20573727PubMed |

Kaneto, H., Xu, G., Song, K.-H., Suzuma, K., Bonner-Weir, S., Sharma, A., and Weir, G. C. (2001). Activation of the hexosamine pathway leads to deterioration of pancreatic β-cell function through the induction of oxidative stress. J. Biol. Chem. 276, 31 099–31 104.
Activation of the hexosamine pathway leads to deterioration of pancreatic β-cell function through the induction of oxidative stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmsVejsr8%3D&md5=38ca1a6414ee3ce4b21d51fe40318344CAS |

Kimura, K., Iwata, H., and Thompson, J. G. (2008). The effect of glucosamine concentration on the development and sex ratio of bovine embryos. Anim. Reprod. Sci. 103, 228–238.
The effect of glucosamine concentration on the development and sex ratio of bovine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVSmtLfL&md5=911f3e52001d3726295ca884e71651f2CAS | 17198747PubMed |

Kitzmiller, J. L., Block, J. M., Brown, F. M., Catalano, P. M., Conway, D. L., Coustan, D. R., Gunderson, E. P., Herman, W. H., Hoffman, L. D., Inturrisi, M., Jovanovic, L. B., Kjos, S. I., Knopp, R. H., Montoro, M. N., Ogata, E. S., Paramsothy, P., Reader, D. M., Rosenn, B. M., Thomas, A. M., and Kirkman, M. S. (2008). Managing pre-existing diabetes for pregnancy: summary of evidence and consensus recommendation for care. Diabetes Care 31, 1060–1079.
Managing pre-existing diabetes for pregnancy: summary of evidence and consensus recommendation for care.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmsFGrtbg%3D&md5=7dfdf78eaf6ef0b85955391e749fa810CAS | 18445730PubMed |

Le Floch, J. P., Escuyer, P., Baudin, E., Baudin, D., and Perlemuter, L. (1990). Blood glucose area under the curve. Methodological aspects. Diabetes Care 13, 172–175.
Blood glucose area under the curve. Methodological aspects.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3c3ns1WgsA%3D%3D&md5=c9782b93a714cb8654f8389273120911CAS | 2351014PubMed |

Love, D. C., and Hanover, J. A. (2005). The hexosamine signalling pathway: deciphering the “O-GlcNAc code”. Sci. STKE 2005, re13.
The hexosamine signalling pathway: deciphering the “O-GlcNAc code”.Crossref | GoogleScholarGoogle Scholar | 16317114PubMed |

Marshall, S., Bacote, V., and Traxinger, R. R. (1991). Discovery of a metabolic pathway mediating glucose-induced desensitisation of the glucose transport system. Role of hexosamine biosynthesis in the induction of insulin resistance. J. Biol. Chem. 266, 4706–4712.
| 1:CAS:528:DyaK3MXhs1WltL0%3D&md5=38dc74a7dac082cbc219315801d64c11CAS | 2002019PubMed |

Martin, J. A., Hamilton, B. E., Sutton, P. D., Ventura, S. J., Menacker, F., and Munson, M. L. (2006). ‘Births: Final data for 2004. National Vital Statistics Reports, Vol. 55, No. 1’. (National Center for Health Statistics: Hyattsville, MD, USA.)

McCance, D. R. (2011). Pregnancy and diabetes. Best Pract. Res. Clin. Obstet. Gynaecol. 25, 945–958.
| 1:CAS:528:DC%2BC3MXhsFGjtrnN&md5=9fd7a1aa41445c6b95d752168640332eCAS |

McClain, D. A. (2002). Hexosamines as mediators of nutrient sensing and regulation in diabetes. J. Diabetes Complications 16, 72–80.
Hexosamines as mediators of nutrient sensing and regulation in diabetes.Crossref | GoogleScholarGoogle Scholar | 11872372PubMed |

McClain, D. A., and Crook, E. D. (1996). Hexosamines and insulin resistance. Diabetes 45, 1003–1009.
Hexosamines and insulin resistance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XkslSjsbY%3D&md5=772fbd12df91973151c75ef6a207fc34CAS | 8690144PubMed |

Metzger, B. E., Buchanan, T. A., Coustan, D. R., de Leiva, A., Dunger, D. B., Hadden, D. R., Hod, M., Kitzmiller, J. L., Kjos, S. L., Oats, J. N., Pettitt, D. J., Sacks, D. A., and Zoupas, C. (2007). Summary and recommendations of the Fifth International Workshop-Conference on Gestational Diabetes Mellitus. Diabetes Care 30, S251–S260.
Summary and recommendations of the Fifth International Workshop-Conference on Gestational Diabetes Mellitus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotlWhsLk%3D&md5=70ef76c8a5d7110c272fc3d7d3e8f992CAS | 17596481PubMed |

Miletic, T., Aberle, N., Mikulandra, F., Karelovic, D., Zakani, Z., Banovic, I., Tadin, I., Perisa, M., Ognjenovic, M., and Tadic, C. (2002). Perinatal outcome of pregnancies in women aged 40 and over. Coll. Antropol. 26, 251–258.
| 1:STN:280:DC%2BD38zovVKjsw%3D%3D&md5=bea2ad269741d04dc0710bdbe98140d1CAS | 12137307PubMed |

Miller, E., Hare, J. W., Cloherty, J. P., Dunn, P. J., Gleason, R. E., Soeldner, J. S., and Kitzmiller, J. L. (1981). Elevated maternal haemoglobin A1c in early pregnancy and major congenital anomalies in infants of diabetic mothers. N. Engl. J. Med. 304, 1331–1334.
Elevated maternal haemoglobin A1c in early pregnancy and major congenital anomalies in infants of diabetic mothers.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL3M7nt12itA%3D%3D&md5=624e827638811961e9c5b4ff384d7389CAS | 7012627PubMed |

Minge, C. E., Bennett, B. D., Norman, R. J., and Robker, R. L. (2008). Peroxisome proliferator-activated receptor-gamma agonist rosiglitazone reverses the adverse effects of diet-induced obesity on oocyte quality. Endocrinology 149, 2646–2656.
Peroxisome proliferator-activated receptor-gamma agonist rosiglitazone reverses the adverse effects of diet-induced obesity on oocyte quality.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1Gmsb%2FO&md5=f2989d225f5874bc6f4976c3d425701bCAS | 18276752PubMed |

Moley, K. H., Vaughn, W. K., DeCherney, A. H., and Diamond, M. P. (1991). Effect of diabetes mellitus on mouse preimplantation embryo development. J. Reprod. Fertil. 93, 325–332.
Effect of diabetes mellitus on mouse preimplantation embryo development.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK387lslSlsw%3D%3D&md5=e0a7a06809954f29001871233b929f8cCAS | 1787451PubMed |

Nybo Andersen, A. M., Wohlfahrt, J., Christens, P., Olsen, J., and Melbye, M. (2000). Maternal age and fetal loss: population-based register linkage study. BMJ 320, 1708–1712.
Maternal age and fetal loss: population-based register linkage study.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3czitlSmug%3D%3D&md5=5df389a17043c9f75793138b30a9def4CAS | 10864550PubMed |

Pantaleon, M., Tan, H. Y., Kafer, G. R., and Kaye, P. L. (2010). Toxic effects of hyperglycaemia are mediated by the hexosamine signalling pathway and O-linked glycosylation in early mouse embryos. Biol. Reprod. 82, 751–758.
Toxic effects of hyperglycaemia are mediated by the hexosamine signalling pathway and O-linked glycosylation in early mouse embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjslelt7g%3D&md5=df1faed222429acecea53d2ff4139050CAS | 20032283PubMed |

Parnell, S. E., Dehart, D. B., Wills, T. A., Chen, S., Hodge, C. W., Besheer, J., Waage-Baudet, H. G., Charness, M. E., and Sulik, K. K. (2006). Maternal oral intake mouse model for fetal alcohol spectrum disorders: ocular defects as a measure of effect. Alcohol. Clin. Exp. Res. 30, 1791–1798.
Maternal oral intake mouse model for fetal alcohol spectrum disorders: ocular defects as a measure of effect.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFyksL%2FE&md5=31d4eaccd61ed8b1d6dbeabcc574de7eCAS | 17010146PubMed |

Patti, M. E., Virkamaki, A., Landaker, E. J., Kahn, C. R., and Yki-Jarvinen, H. (1999). Activation of the hexosamine pathway by glucosamine in vivo induces insulin resistance of early postreceptor insulin signalling events in skeletal muscle. Diabetes 48, 1562–1571.
Activation of the hexosamine pathway by glucosamine in vivo induces insulin resistance of early postreceptor insulin signalling events in skeletal muscle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXkvVKnu7k%3D&md5=3bd0ad886d3db4b4f993751c3eecb3dbCAS | 10426374PubMed |

Persiani, S., Roda, E., Rovati, L. C., Locatelli, M., Giacovelli, G., and Roda, A. (2005). Glucosamine oral bioavailability and plasma pharmacokinetics after increasing doses of crystalline glucosamine sulfate in man. Osteoarthritis Cartilage 13, 1041–1049.
Glucosamine oral bioavailability and plasma pharmacokinetics after increasing doses of crystalline glucosamine sulfate in man.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2MnjtVOrug%3D%3D&md5=5d17805fb7e55600b74a73186f2c34a1CAS | 16168682PubMed |

Ramin, N., Thieme, R., Fischer, S., Schindler, M., Schmidt, T., Fischer, B., and Navarrete Santos, A. (2010). Maternal diabetes impairs gastrulation and insulin and IGF-I receptor expression in rabbit blastocysts. Endocrinology 151, 4158–4167.
Maternal diabetes impairs gastrulation and insulin and IGF-I receptor expression in rabbit blastocysts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtF2qtrzO&md5=821d990d5aafd08f8231cce7b2d4c4c4CAS | 20631000PubMed |

Ray, J. G., O’Brien, T. E., and Chan, W. S. (2001). Preconception care and the risk of congenital anomalies in the offspring of women with diabetes mellitus: a meta-analysis. Q. J. Med. 94, 435–444.
Preconception care and the risk of congenital anomalies in the offspring of women with diabetes mellitus: a meta-analysis.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3Mvos1Oqsg%3D%3D&md5=4890a1c02a7fa4ca19886648adbaf1a5CAS |

Robinson, K. A., Weinstein, M. L., Lindenmayer, G. E., and Buse, M. G. (1995). Effects of diabetes and hyperglycaemia on the hexosamine synthesis pathway in rat muscle and liver. Diabetes 44, 1438–1446.
Effects of diabetes and hyperglycaemia on the hexosamine synthesis pathway in rat muscle and liver.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXps1Kgsbg%3D&md5=0219bd727a341b271e544d35313a0a1eCAS | 7589852PubMed |

Rossetti, L., Hawkins, M., Chen, W., Gindi, J., and Barzilai, N. (1995). In vivo glucosamine infusion induces insulin resistance in normoglycaemic but not hyperglycaemic conscious rats. J. Clin. Invest. 96, 132–140.
In vivo glucosamine infusion induces insulin resistance in normoglycaemic but not hyperglycaemic conscious rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXmslyru70%3D&md5=2570a79f22cb4626fbe7de616106fdafCAS | 7615783PubMed |

Salbaum, J. M., and Kappen, C. (2011). Diabetic embryopathy: a role for the epigenome? Birth Defects Res. A Clin. Mol. Teratol. 91, 770–780.
Diabetic embryopathy: a role for the epigenome?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpvVyht7c%3D&md5=6472e3498b2e74bfabfe5e6643745a16CAS | 21538816PubMed |

Schelbach, C. J., Kind, K. L., Lane, M., and Thompson, J. G. (2010). Mechanisms contributing to the reduced developmental competence of glucosamine-exposed mouse oocytes. Reprod. Fertil. Dev. 22, 771–779.
Mechanisms contributing to the reduced developmental competence of glucosamine-exposed mouse oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlsVCqt7k%3D&md5=445a95480dd8ef1d7afabfd3cb3c75bcCAS | 20450829PubMed |

Setnikar, I., Palumbo, R., Canali, S., and Zanolo, G. (1993). Pharmacokinetics of glucosamine in man. Arzneimittelforschung 43, 1109–1113.
| 1:CAS:528:DyaK2cXitlShsQ%3D%3D&md5=6b67bc8e57b9c9bfe245dc50de6e7a56CAS | 8267678PubMed |

Shand, A. W., Bell, J. C., McElduff, A., Morris, J., and Roberts, C. L. (2008). Outcomes of pregnancies in women with pre-gestational diabetes mellitus and gestational diabetes mellitus; a population-based study in New South Wales, Australia, 1998–2002. Diabet. Med. 25, 708–715.
Outcomes of pregnancies in women with pre-gestational diabetes mellitus and gestational diabetes mellitus; a population-based study in New South Wales, Australia, 1998–2002.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1czns1ersw%3D%3D&md5=b787bc317a410cf7adf9647996693d54CAS | 18544109PubMed |

Simmons, D. (2011). Diabetes and obesity in pregnancy. Best Pract. Res. Clin. Obstet. Gynaecol. 25, 25–36.
Diabetes and obesity in pregnancy.Crossref | GoogleScholarGoogle Scholar | 21247811PubMed |

Simon, R. R., Marks, V., Leeds, A. R., and Anderson, J. W. (2011). A comprehensive review of oral glucosamine use and effects on glucose metabolism in normal and diabetic individuals. Diabetes Metab. Res. Rev. 27, 14–27.
A comprehensive review of oral glucosamine use and effects on glucose metabolism in normal and diabetic individuals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsl2msrg%3D&md5=078091e4a2b6ad5a4d6e180b6df96bbaCAS | 21218504PubMed |

Sivojelezova, A., Koren, G., and Einarson, A. (2007). Glucosamine use in pregnancy: an evaluation of pregnancy outcome. J. Womens Health Larchmt 16, 345–348.
Glucosamine use in pregnancy: an evaluation of pregnancy outcome.Crossref | GoogleScholarGoogle Scholar | 17439379PubMed |

Spampinato, D., Giaccari, A., Trischitta, V., Costanzo, B. V., Morviducci, L., Buongiorno, A., Di Mario, U., Vigneri, R., and Frittitta, L. (2003). Rats that are made insulin resistant by glucosamine treatment have impaired skeletal muscle insulin receptor phosphorylation. Metabolism 52, 1092–1095.
Rats that are made insulin resistant by glucosamine treatment have impaired skeletal muscle insulin receptor phosphorylation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntVGlurc%3D&md5=7abb09d0fbe53f3a1b5797a424eb1b33CAS | 14506612PubMed |

Stothard, K. J., Tennant, P. W., Bell, R., and Rankin, J. (2009). Maternal overweight and obesity and the risk of congenital anomalies: a systematic review and meta-analysis. JAMA 301, 636–650.
Maternal overweight and obesity and the risk of congenital anomalies: a systematic review and meta-analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhvVyjt70%3D&md5=b0c52bb9638dd75c783a51a2e2897171CAS | 19211471PubMed |

Sulik, K. K., Johnston, M. C., and Webb, M. A. (1981). Fetal alcohol syndrome: embryogenesis in a mouse model. Science 214, 936–938.
Fetal alcohol syndrome: embryogenesis in a mouse model.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL38%2FmtFygsw%3D%3D&md5=4706195b59174ddff525fdc468e3cc0fCAS | 6795717PubMed |

Sutton-McDowall, M. L., Gilchrist, R. B., and Thompson, J. G. (2004). Cumulus expansion and glucose utilisation by bovine cumulus–oocyte complexes during in vitro maturation: the influence of glucosamine and follicle-stimulating hormone. Reproduction 128, 313–319.
Cumulus expansion and glucose utilisation by bovine cumulus–oocyte complexes during in vitro maturation: the influence of glucosamine and follicle-stimulating hormone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXot1KitLk%3D&md5=cca0c749897e2e1e952e0bc3b98bcf73CAS | 15333782PubMed |

Sutton-McDowall, M. L., Mitchell, M., Cetica, P., Dalvit, G., Pantaleon, M., Lane, M., Gilchrist, R. B., and Thompson, J. G. (2006). Glucosamine supplementation during in vitro maturation inhibits subsequent embryo development: possible role of the hexosamine pathway as a regulator of developmental competence. Biol. Reprod. 74, 881–888.
Glucosamine supplementation during in vitro maturation inhibits subsequent embryo development: possible role of the hexosamine pathway as a regulator of developmental competence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xjsl2jur8%3D&md5=6346693bebf8341947914828cbbf172dCAS | 16436527PubMed |

Temple, R. C., Aldridge, V. J., and Murphy, H. R. (2006). Prepregnancy care and pregnancy outcomes in women with Type 1 diabetes. Diabetes Care 29, 1744–1749.
Prepregnancy care and pregnancy outcomes in women with Type 1 diabetes.Crossref | GoogleScholarGoogle Scholar | 16873774PubMed |

Teo, C. F., Wollaston-Hayden, E. E., and Wells, L. (2010). Hexosamine flux, the O-GlcNAc modification and the development of insulin resistance in adipocytes. Mol. Cell. Endocrinol. 318, 44–53.
Hexosamine flux, the O-GlcNAc modification and the development of insulin resistance in adipocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXit1OnsLk%3D&md5=995e9f88623551cfa9c0a05849f5978cCAS | 19799964PubMed |

Torres, C. R., and Hart, G. W. (1984). Topography and polypeptide distribution of terminal n-acetylglucosamine residues on the surfaces of intact lymphocytes. Evidence for O-linked GlcNAc. J. Biol. Chem. 259, 3308–3317.
| 1:CAS:528:DyaL2cXhtlOhtr4%3D&md5=a9a7f0da625f1fe93040af06e2751b2fCAS | 6421821PubMed |

Vaughan, O. R., Sferruzzi-Perri, A. N., Coan, P. M., and Fowden, A. L. (2012). Environmental regulation of placental phenotype. Reprod. Fertil. Dev. 24, 80–96.
Environmental regulation of placental phenotype.Crossref | GoogleScholarGoogle Scholar |

Veerababu, G., Tang, J., Hoffman, R. T., Daniels, M. C., Hebert, L. F., Crook, E. D., Cooksey, R. C., and McClain, D. A. (2000). Overexpression of glutamine: fructose-6-phosphate amidotransferase in the liver of transgenic mice results in enhanced glycogen storage, hyperlipidemia, obesity and impaired glucose tolerance. Diabetes 49, 2070–2078.
Overexpression of glutamine: fructose-6-phosphate amidotransferase in the liver of transgenic mice results in enhanced glycogen storage, hyperlipidemia, obesity and impaired glucose tolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXos1ejs7s%3D&md5=31f447c475201374411d2a9ad28e2bfcCAS | 11118009PubMed |

Virkamaki, A., Daniels, M. C., Hamalainen, S., Utriainen, T., McClain, D., and Yki-Jarvinen, H. (1997). Activation of the hexosamine pathway by glucosamine in vivo induces insulin resistance in multiple insulin-sensitive tissues. Endocrinology 138, 2501–2507.
Activation of the hexosamine pathway by glucosamine in vivo induces insulin resistance in multiple insulin-sensitive tissues.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjsVemtr0%3D&md5=2cad5bfcccb93c3460f88c86e1aebdf5CAS | 9165041PubMed |

Vosseller, K., Wells, L., Lane, M. D., and Hart, G. W. (2002). Elevated nucleocytoplasmic glycosylation by O-GlcNAc results in insulin resistance associated with defects in Akt activation in 3T3–L1 adipocytes. Proc. Natl. Acad. Sci. USA 99, 5313–5318.
Elevated nucleocytoplasmic glycosylation by O-GlcNAc results in insulin resistance associated with defects in Akt activation in 3T3–L1 adipocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjtFKls78%3D&md5=200b5d3ca885e9a72a5aa0ad43391a78CAS | 11959983PubMed |

Waller, D. K., Shaw, G. M., Rasmussen, S. A., Hobbs, C. A., Canfield, M. A., Siega-Riz, A. M., Gallaway, M. S., and Correa, A. (2007). Prepregnancy obesity as a risk factor for structural birth defects. Arch. Pediatr. Adolesc. Med. 161, 745–750.
Prepregnancy obesity as a risk factor for structural birth defects.Crossref | GoogleScholarGoogle Scholar | 17679655PubMed |

Wang, Q., and Moley, K. H. (2010). Maternal diabetes and oocyte quality. Mitochondrion 10, 403–410.
Maternal diabetes and oocyte quality.Crossref | GoogleScholarGoogle Scholar | 20226883PubMed |

Wang, Q., Ratchford, A. M., Chi, M. M.-Y., Schoeller, E., Frolova, A., Schedl, T., and Moley, K. H. (2009). Maternal diabetes causes mitochondrial dysfunction and meiotic defects in murine oocytes. Mol. Endocrinol. 23, 1603–1612.
Maternal diabetes causes mitochondrial dysfunction and meiotic defects in murine oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlSitb%2FF&md5=c58453597793c6010509ddb97ac1163bCAS | 19574447PubMed |

Wang, Y. C., McPherson, K., Marsh, T., Gortmaker, S. L., and Brown, M. (2011). Health and economic burden of the projected obesity trends in the USA and the UK. Lancet 378, 815–825.
Health and economic burden of the projected obesity trends in the USA and the UK.Crossref | GoogleScholarGoogle Scholar | 21872750PubMed |

Wyman, A., Pinto, A. B., Sheridan, R., and Moley, K. H. (2008). One-cell zygote transfer from diabetic to non-diabetic mouse results in congenital malformations and growth retardation in offspring. Endocrinology 149, 466–469.
One-cell zygote transfer from diabetic to non-diabetic mouse results in congenital malformations and growth retardation in offspring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1yqsLc%3D&md5=a37a9891d61651c55e901863933008e9CAS | 18039778PubMed |