Melatonin effects on Fundulus heteroclitus reproduction
Francesco Lombardo A , Elisabetta Giorgini A , Giorgia Gioacchini A , Francesca Maradonna A , Paolo Ferraris A and Oliana Carnevali A BA Dipartimento di Scienze della Vita e dell’Ambiente (DISVA), Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy.
B Corresponding author. Email: o.carnevali@univpm.it
Reproduction, Fertility and Development 24(6) 794-803 https://doi.org/10.1071/RD11267
Submitted: 20 October 2011 Accepted: 8 December 2011 Published: 10 February 2012
Abstract
This study aimed to investigate the effects of two different doses (100 nM (M1) and 1 µM (M2)) of exogenous melatonin on the reproductive capacity of Fundulus heteroclitus. Eight days of melatonin exposure significantly increased the fecundity and embryo survival of F. heteroclitus only in the M2 group compared with the control; the hatching rate was unaffected. Moreover, increases in the local expression of the melatonin receptor (mtnr) gene during follicle maturation were found; however, there were no differences between the experimental groups. Furthermore, in vitro melatonin-treated follicles showed a significantly higher germinal vesicle break down percentage compared with the control, while SDS–PAGE showed no difference in the electrophoretic pattern of the major yolk proteins. Nevertheless, densitometry revealed a greater intensity of the 118-, 95- and 40-kDa components in groups treated with melatonin. Finally, Fourier transform infrared microspectroscopy was applied to classify the different stages of oocyte development (Stages I–II, III and IV) on the basis of their macromolecular composition. The effects induced by melatonin on oogenesis were investigated by comparing vibrational spectra of females exposed to melatonin with those of controls. Changes to the Amide I band, corresponding to an increase in β-structure, were found in oocytes of females exposed to the highest melatonin dose. These results highlight the positive role of melatonin, which is able to enhance the reproductive capacity of F. heteroclitus. Further studies are in progress to better explain the molecular mechanisms by which melatonin treatment affects reproduction in this marine species.
Additional keywords: fecundity, FT–IR microspectroscopy, GVBD, killifish, mtnr, oogenesis.
References
Bhattacharya, S., Chattoraj, A., and Maitra, S. K. (2007). Melatonin in the regulation of annual testicular events in carp, Catla catla: evidence from the studies on the effects of exogenous melatonin, continuous light and continuous darkness. Chronobiol. Int. 24, 629–650.| Melatonin in the regulation of annual testicular events in carp, Catla catla: evidence from the studies on the effects of exogenous melatonin, continuous light and continuous darkness.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXptVWisLk%3D&md5=15b39bc992957b02bafb1b6a13fc5d25CAS | 17701677PubMed |
Carnevali, O., Mosconi, G., Roncarati, A., Belvedere, P., Romano, M., and Limatola, E. (1992). Changes in the electrophoretic pattern of yolk proteins during vitellogenesis in the gilthead sea bream Sparus aurata L. Comp. Biochem. Physiol. 103, 955–962.
| Changes in the electrophoretic pattern of yolk proteins during vitellogenesis in the gilthead sea bream Sparus aurata L.Crossref | GoogleScholarGoogle Scholar |
Carnevali, O., Sabbieti, M. G., Mosconi, G., and Polzonetti-Magni, A. M. (1995). Multihormonal control of vitellogenin mRNA expression in the liver of frog, Rana esculenta. Mol. Cell. Endocrinol. 114, 19–25.
| Multihormonal control of vitellogenin mRNA expression in the liver of frog, Rana esculenta.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXptlCrtrs%3D&md5=b6909498d4edfed51ed0cb2e6b5e202cCAS | 8674844PubMed |
Carnevali, O., Conti, C., Ferraris, P., Garavaglia, M. G., Gioacchini, G., Giorgini, E., Rubini, C., Sabbatini, S., and Tosi, G. (2009). FT–IR microspectroscopy on molecular building of Zebrafish oocytes. J. Mol. Struct. 938, 207–213.
| FT–IR microspectroscopy on molecular building of Zebrafish oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVCqsLnN&md5=c403471c35734d1a7fa3a149f75e6e28CAS |
Carnevali, O., Gioacchini, G., Piccinetti, C. C., Maradonna, F., Lombardo, F., Giorgini, G., and Tosi, G. (2010). Melatonin control of oogenesis and metabolic resources in Zebrafish. J. Appl. Ichthyology 26, 826–830.
| Melatonin control of oogenesis and metabolic resources in Zebrafish.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlKrtLzE&md5=f0f66e13a1e44ad3367981073bcec1c4CAS |
Carnevali, O., Gioacchini, G., Maradonna, F., Olivotto, I., and Migliarini, B. (2011). Melatonin induces follicle maturation in Danio rerio. PLoS ONE 6, e19978.
| Melatonin induces follicle maturation in Danio rerio.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmvFCkurk%3D&md5=439aa519648e919053d9cc70753d9a41CAS | 21647435PubMed |
Chattoraj, A., Bhattacharyya, S., Basu, D., Bhattacharya, S., Bhattacharya, S., and Maitra, S. K. (2005). Melatonin accelerates maturation-inducing hormone (MIH): induced oocyte maturation in carps. Gen. Comp. Endocrinol. 140, 145–155.
| Melatonin accelerates maturation-inducing hormone (MIH): induced oocyte maturation in carps.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXivVSnug%3D%3D&md5=6908e97b67c999ad4cc43f58776987cfCAS | 15639142PubMed |
Chattoraj, A., Seth, M., and Maitra, S. K. (2008). Influence of serotonin on the action of melatonin in MIH-induced meiotic resumption in the oocytes of carp, Catla catla. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 150, 301–306.
| Influence of serotonin on the action of melatonin in MIH-induced meiotic resumption in the oocytes of carp, Catla catla.Crossref | GoogleScholarGoogle Scholar | 18455941PubMed |
Chattoraj, A., Seth, M., and Maitra, S. K. (2009). Localization and dynamics of Mel1a melatonin receptor in the ovary of carp, Catla catla, in relation to serum melatonin levels. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 152, 327–333.
| Localization and dynamics of Mel1a melatonin receptor in the ovary of carp, Catla catla, in relation to serum melatonin levels.Crossref | GoogleScholarGoogle Scholar | 19068233PubMed |
Chaudhuri, H. (1997). Environmental regulation of gonadal maturation and spawning in fishes. In ‘Frontiers in Environmental and Metabolic Endocrinology’. (Ed. S. K. Maitra.) pp. 91–100. (University of Burdwan Publications: Burdwan, India.)
Falcón, J., Migaud, H., Muñoz-Cueto, J. A., and Carrillo, M. (2010). Current knowledge on the melatonin system in teleost fish. Gen. Comp. Endocrinol. 165, 469–482.
| Current knowledge on the melatonin system in teleost fish.Crossref | GoogleScholarGoogle Scholar | 19409900PubMed |
Falcoón, J., Bégay, V., Besse, C., Ravault, J. P., and Collin, J. P. (1992). Pineal photoreceptor cells in culture: fine structure and light control of cyclic nucleotide levels. J. Neuroendocrinol. 4, 641–651.
| Pineal photoreceptor cells in culture: fine structure and light control of cyclic nucleotide levels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXnsVShsw%3D%3D&md5=03317f6aa6c8cead3b3bf2c86882f087CAS | 21554650PubMed |
Foulkes, N. S., Borjigin, J., Snyder, S. H., and Sassone-Corsi, P. (1997). Rhythmic transcription: the molecular basis of circadian melatonin synthesis. Trends Neurosci. 20, 487–492.
| Rhythmic transcription: the molecular basis of circadian melatonin synthesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmsFKisL4%3D&md5=6b23b40d16284760ece089ca492040ffCAS | 9347618PubMed |
Goodman, R. L., and Inskeep, E. K. (2006). Neuroendocrine control of the ovarian cycle of the sheep. In ‘Knobil and Neill’s Physiology of Reproduction’. (Ed. J. D. Neill.) pp. 2389–2448. (Elsevier: Amsterdam.)
Hsiao, S. M., Limesand, S., and Wallace, R. A. (1996). Semilunar follicular cycle of an intertidal fish: the Fundulus model. Biol. Reprod. 54, 809–818.
| Semilunar follicular cycle of an intertidal fish: the Fundulus model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhslKitrY%3D&md5=5fcd5f81d839f0ba9d52c42e30f8a400CAS | 8924500PubMed |
Ikegami, T., Azuma, K., Nakamura, M., Suzuki, N., Hattori, A., and Ando, H. (2009a). Diurnal expressions of four subtypes of melatonin receptor genes in the optic tectum and retina of goldfish. Comp. Biochem. Physiol. A 152, 219–224.
| Diurnal expressions of four subtypes of melatonin receptor genes in the optic tectum and retina of goldfish.Crossref | GoogleScholarGoogle Scholar |
Ikegami, T., Motohashi, E., Doi, H., Hattori, A., and Ando, A. (2009b). Synchronized diurnal and circadian expressions of four subtypes of melatonin receptor genes in the diencephalon of a puffer fish with lunar-related spawning cycles. Neurosci. Lett. 462, 58–63.
| Synchronized diurnal and circadian expressions of four subtypes of melatonin receptor genes in the diencephalon of a puffer fish with lunar-related spawning cycles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXoslegs7s%3D&md5=c6d5b345049b4b7308ce76a9ed96e32dCAS | 19560515PubMed |
Kauffman, A. S., Clifton, D. K., and Steiner, R. A. (2007). Emerging ideas about kisspeptin- GPR54 signalling in the neuroendocrine regulation of reproduction. Trends Neurosci. 30, 504–511.
| Emerging ideas about kisspeptin- GPR54 signalling in the neuroendocrine regulation of reproduction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFehsrrN&md5=c7fffd7506256f976956f84b263d4f96CAS | 17904653PubMed |
LaFleur, G. J., Raldúa, D., Fabra, M., Carnevali, O., Denslow, N., Wallace, R. A., and Cerdà, J. (2005). Derivation of major yolk proteins from parental vitellogenins and alternative processing during oocyte maturation in Fundulus heteroclitus. Biol. Reprod. 73, 815–824.
| Derivation of major yolk proteins from parental vitellogenins and alternative processing during oocyte maturation in Fundulus heteroclitus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVCgtrnN&md5=3faae2f3cae6bdf69bea69bc63377527CAS | 15930322PubMed |
Lee, C. J., Do, B. R., Lee, Y. H., Park, J. H., Kim, S. J., Kim, J. K., Roh, S. I., Yoon, Y. D., and Yoon, H. S. (2001). Ovarian expression of melatonin Mel1a receptor mRNA during mouse development. Mol. Reprod. Dev. 59, 126–132.
| Ovarian expression of melatonin Mel1a receptor mRNA during mouse development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjsVals74%3D&md5=19723262852944d5f860f8b724c53d14CAS | 11389547PubMed |
Liu, K. Z., Shi, M. H., and Mantsch, H. H. (2005). Molecular and chemical characterization of blood cells by infrared spectroscopy: a new optical tool in haematology. Blood Cell. Mol. Dis. 35, 404–412.
| Molecular and chemical characterization of blood cells by infrared spectroscopy: a new optical tool in haematology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1aqu7vI&md5=fa3206b0fa2beb4d0c3b59c7ed8ac0a5CAS |
Maitra, S. K., and Chattoraj, A. (2007). Role of photoperiod and melatonin in the regulation of ovarian functions in Indian carp Catla catla: basic information for future application. Fish Physiol. Biochem. 33, 367–382.
| Role of photoperiod and melatonin in the regulation of ovarian functions in Indian carp Catla catla: basic information for future application.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlSlsbzO&md5=02f40d0cd858066ccb0787923cd202a1CAS |
Maitra, S. K., Chattoraj, A., and Bhattacharyya, S. (2005). Implication of melatonin in oocyte maturation in Indian major carp Catla catla. Fish Physiol. Biochem. 31, 201–207.
| Implication of melatonin in oocyte maturation in Indian major carp Catla catla.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XptF2rsbw%3D&md5=a1c9b39f199351d7695326d949df458bCAS | 20035459PubMed |
Mazurais, D., Brierley, I., Anglade, I., Drew, J., Randall, C., Bromage, N., Michel, D., Kah, O., and Williams, L. M. (1999). Central melatonin receptors in the rainbow trout: comparative distribution of ligand binding and gene expression. J. Comp. Neurol. 409, 313–324.
| Central melatonin receptors in the rainbow trout: comparative distribution of ligand binding and gene expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjvFGlsro%3D&md5=26061cd9661a65e7993a5c31e723a6ddCAS | 10379923PubMed |
Niles, L. P., Wang, J., Shen, L., Lobb, D. K., and Younglai, E. V. (1999). Melatonin receptor mRNA expression in human granulosa cells. Mol. Cell. Endocrinol. 156, 107–110.
| Melatonin receptor mRNA expression in human granulosa cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmsFaitLg%3D&md5=e7ac51cc5d830a782282791c7673220eCAS | 10612428PubMed |
Pandi-Perumal, S. R., Trakht, I., Srinivasan, V., Spence, D. W., Maestroni, G. J., Zisapel, N., and Cardinali, D. P. (2008). Physiological effects of melatonin: role of melatonin receptors and signal transduction pathways. Prog. Neurobiol. 85, 335–353.
| Physiological effects of melatonin: role of melatonin receptors and signal transduction pathways.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXosVymurY%3D&md5=46544326a4a084039142d2f1820b31adCAS | 18571301PubMed |
Petrino, T. R., Lin, Y. W. P., Netherton, J. C., Powell, D. H., and Wallace, R. A. (1993). Steroidogenesis in Fundulus heteroclitus V.: purification, characterization and metabolism of 17α,20β-dihydroxy-4-pregnen-3-one by intact follicles and its role in oocyte maturation. Gen. Comp. Endocrinol. 92, 1–15.
| Steroidogenesis in Fundulus heteroclitus V.: purification, characterization and metabolism of 17α,20β-dihydroxy-4-pregnen-3-one by intact follicles and its role in oocyte maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXmsVKiurg%3D&md5=f3b1c284eb0b68ec337c737477c1b970CAS | 8262351PubMed |
Piccinetti, C. C., Migliarini, B., Olivotto, I., Coletti, G., Amici, A., and Carnevali, O. (2010). Appetite regulation: the central role of melatonin in Danio rerio. Horm. Behav. 58, 780–785.
| Appetite regulation: the central role of melatonin in Danio rerio.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVWqt7fL&md5=fe5d0babeee0bb71c7bfb976c5c831b1CAS | 20692259PubMed |
Popek, W., Bieniarz, K., and Epler, P. (1991). Role of pineal gland in the sexual cycle in common carp. In ‘Chronobiology and Chronomedicine’. (Eds J. M. Surowiak and H. Lewandowski.) pp. 99–102. (Verlag Peter Lang: Frankfurt.)
Reiter, R. J. (1991). Pineal melatonin: cell biology of its synthesis and of its physiological interactions. Endocr. Rev. 12, 151–180.
| Pineal melatonin: cell biology of its synthesis and of its physiological interactions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXlsFSlsLs%3D&md5=7de69ace0493bf59992ccfa5345f37f9CAS | 1649044PubMed |
Reiter, R. J. (1993). The melatonin rhythm: both a clock and a calendar. Experientia 49, 654–664.
| The melatonin rhythm: both a clock and a calendar.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXmsVWnt74%3D&md5=0e180fb799761bf618c1abe719911c1cCAS | 8395408PubMed |
Reiter, R. J. (1998). Melatonin and human reproduction. Ann. Med. 30, 103–108.
| Melatonin and human reproduction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjsFChtbo%3D&md5=d8f6a17643a9315134f3bafde837d32aCAS | 9556096PubMed |
Reppert, S. M., Weaver, D. R., Cassone, V. M., Godson, C., and Kolakowski, L. F. (1995). Melatonin receptors are for the birds: molecular analysis of two receptor subtypes differentially expressed in chick brain. Neuron 15, 1003–1015.
| Melatonin receptors are for the birds: molecular analysis of two receptor subtypes differentially expressed in chick brain.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXps1Grsrk%3D&md5=7dd3a5f55d2f7074654c2ebf22bdc0beCAS | 7576645PubMed |
Selman, K., and Wallace, R. A. (1986). Gametogenesis in Fundulus heteroclitus. Am. Zool. 26, 173–192.
Selman, K., Wallace, R. A., Sarka, A., and Xiaoping, Q. (1993). Stages of oocyte development in the zebrafish, Brachydanio rerio. J. Morphol. 218, 203–224.
| Stages of oocyte development in the zebrafish, Brachydanio rerio.Crossref | GoogleScholarGoogle Scholar |
Shimizu, A. (2003). Effect of photoperiod and temperature on gonadal activity and plasma steroid levels in a reared strain of the mummichog (Fundulus heteroclitus) during different phases of its annual reproductive cycle. Gen. Comp. Endocrinol. 131, 310–324.
| Effect of photoperiod and temperature on gonadal activity and plasma steroid levels in a reared strain of the mummichog (Fundulus heteroclitus) during different phases of its annual reproductive cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtFWmtLs%3D&md5=2f15b1b4aa4a31ecbc5e8022b097ac95CAS | 12714014PubMed |
Soares, J. M., Masana, M. I., Ersahin, C., and Dubocovich, M. L. (2003). Functional melatonin receptors in rat ovaries at various stages of the oestrous cycle. J. Pharmacol. Exp. Ther. 306, 694–702.
| Functional melatonin receptors in rat ovaries at various stages of the oestrous cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlslGlu7w%3D&md5=2d0a669d5c85b9a7c1a6e3ff0aecef16CAS | 12721330PubMed |
Stuart, B. (2004). ‘Infrared Spectroscopy: Fundamentals and Applications’. (Wiley & Sons, Ltd: Chicester, England.)
Takasaki, A., Nakamura, Y., Tamura, H., Shimamura, K., and Morioka, H. (2003). Melatonin as a new drug for improving oocyte quality. Reprod. Med. Biol. 2, 139–144.
| Melatonin as a new drug for improving oocyte quality.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltVagu70%3D&md5=daacdd4f02f2152c5e1e3603d56e4028CAS |
Tamura, H., Nakamura, Y., Korkmaz, A., Manchester, L. C., Tan, D. X., Sugino, N., and Reiter, R. J. (2009). Melatonin and the ovary: physiological and pathophysiological implications. Fertil. Steril. 92, 328–343.
| Melatonin and the ovary: physiological and pathophysiological implications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFWisLrP&md5=61590ed5544d1ac026668fe64edf512dCAS | 18804205PubMed |
Tan, D. X., Manchester, L. C., Terron, M. P., Flores, L. J., and Reiter, R. J. (2007). One molecule, many derivatives: a never-ending interaction of melatonin with reactive oxygen and nitrogen species? J. Pineal Res. 42, 28–42.
| One molecule, many derivatives: a never-ending interaction of melatonin with reactive oxygen and nitrogen species?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlKksb8%3D&md5=8e5ca86efe5f62af283e0bec2cb5a008CAS | 17198536PubMed |
Taylor, M. H. (1986). Environmental and endocrine influences on reproduction of Fundulus heteroclitus. Am. Zool. 26, 159–171.
| 1:CAS:528:DyaL28Xktl2ktL8%3D&md5=11c14683cf73403b7dd68b663e0f991bCAS |
Wallace, R. A., and Selman, K. (1978). Oogenesis in Fundulus heteroclitus. I. Preliminary observations on oocyte maturation in vivo and in vitro. Dev. Biol. 62, 354–369.
| Oogenesis in Fundulus heteroclitus. I. Preliminary observations on oocyte maturation in vivo and in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXos1CnsQ%3D%3D&md5=349d475c7056f9bae7f33dbf0b99553eCAS | 564305PubMed |
Woo, M. M., Tai, C. J., Kang, S. K., Nathwani, P. S., and Pang, S. F. (2001). Direct action of melatonin in human granulosa-luteal cells. J. Clin. Endocrinol. Metab. 86, 4789–4797.
| Direct action of melatonin in human granulosa-luteal cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXptVars7c%3D&md5=e6bb100645b13d5f6f15fbf3c017b4f5CAS | 11600542PubMed |
Wood, B. R., Chiriboga, L., Yee, H., Quinn, M. A., McNaughton, D., and Diem, M. (2004). Fourier transform infrared (FTIR) spectral mapping of the cervical transformation zone, and dysplastic squamous epithelium. Gynecol. Oncol. 93, 59–68.
| Fourier transform infrared (FTIR) spectral mapping of the cervical transformation zone, and dysplastic squamous epithelium.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2c7lsVCjtA%3D%3D&md5=3eda767de45b8d3588c97d3b3f1f72f9CAS | 15047215PubMed |
Wu, J., Nayudu, P. L., Kiesel, P. S., and Michelmann, H. W. (2000). Luteinizing hormone has a stage-limited effect on preantral follicle development in vitro. Biol. Reprod. 63, 320–327.
| Luteinizing hormone has a stage-limited effect on preantral follicle development in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXktl2rsbg%3D&md5=4d928d4a97a95563eaf0cacbc5ec6a46CAS | 10859274PubMed |
Zhdanova, I. V., Yu, L., Lopez-Patino, M., Shang, E., Kishi, S., and Guelin, E. (2008). Aging of the circadian system in zebrafish and the effects of melatonin on sleep and cognitive performance. Brain Res. Bull. 75, 433–441.
| Aging of the circadian system in zebrafish and the effects of melatonin on sleep and cognitive performance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjtVajsrs%3D&md5=c6c2de051c44cc5446e26087e58c10c2CAS | 18331912PubMed |
Zimecki, M. (2006). The lunar cycle: effects on human and animal behaviour and physiology. Postepy Hig. Med. Dosw. 60, 1–7.