Glucose and glycine synergistically enhance the in vitro development of porcine blastocysts in a chemically defined medium
Tomomi Mito A , Koji Yoshioka B C , Shoko Yamashita A , Chie Suzuki B , Michiko Noguchi B and Hiroyoshi Hoshi AA Research Institute for the Functional Peptides, 4-3-32 Shimojo, Yamagata 990-0823, Japan.
B National Institute of Animal Health, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan.
C Corresponding author. Email: kojiyos@affrc.go.jp
Reproduction, Fertility and Development 24(3) 443-450 https://doi.org/10.1071/RD11197
Submitted: 6 August 2011 Accepted: 4 September 2011 Published: 9 November 2011
Abstract
In the present study, the effects of glucose and/or glycine on the in vitro development of Day 5 (Day 0 = IVF) porcine blastocysts were determined. The addition of 2.5–10 mM glucose to the chemically defined culture medium porcine zygote medium (PZM)-5 significantly increased blastocyst survival rates compared with those of blastocysts cultured in the absence of glucose. The addition of 5 and 10 mM glycine to PZM-5 containing 5 mM glucose significantly enhanced the development to hatching and the number of hatched blastocysts compared with no addition of glycine. However, the addition of glycine to PZM-5 with no glucose did not improve blastocyst development. The ATP content of Day 6 blastocysts cultured with glucose was significantly higher than that of blastocysts cultured in the absence of glucose, regardless of glycine supplementation. The diameter and total cell numbers were significantly greater, and the apoptotic index was significantly lower, in Day 6 blastocysts cultured with both glucose and glycine. These results indicate that glucose is an important energy source for the porcine blastocyst and that glucose and glycine act synergistically to enhance development to the hatching and hatched blastocyst stage in vitro.
Additional keywords: apoptosis, hatching, in vitro culture.
References
Ankrah, N. A., and Appiah-Opong, R. (1999). Toxicity of low levels of methylglyoxal: depletion of blood glutathione and adverse effect on glucose tolerance in mice. Toxicol. Lett. 109, 61–67.| Toxicity of low levels of methylglyoxal: depletion of blood glutathione and adverse effect on glucose tolerance in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlvVWlsr0%3D&md5=effc37ad1db00339da6c802fd25acff4CAS | 10514031PubMed |
Baltz, J. M. (1993). Intracellular pH regulation in the early embryo. Bioessays 15, 523–530.
| Intracellular pH regulation in the early embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXhtVaku78%3D&md5=99869a978a82e0036c246c93f9398c68CAS | 8135765PubMed |
Bavister, B. D., and Arlotto, T. (1990). Influence of single amino acids on the development of hamster one-cell embryos in vitro. Mol. Reprod. Dev. 25, 45–51.
| Influence of single amino acids on the development of hamster one-cell embryos in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXhslGiurk%3D&md5=a6d3cce8fb693867966b01d2148e2c47CAS | 2393584PubMed |
Brinster, R. L. (1974). Embryo development. J. Anim. Sci. 38, 1003–1012.
| 1:CAS:528:DyaE2cXkvVygtbg%3D&md5=656f7734fef408bfe7a4da019c87f36dCAS | 4596884PubMed |
Brison, D. R., and Schultz, R. M. (1998). Increased incidence of apoptosis in transforming growth factor alpha-deficient mouse blastocysts. Biol. Reprod. 59, 136–144.
| Increased incidence of apoptosis in transforming growth factor alpha-deficient mouse blastocysts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXktFaktr8%3D&md5=9da78d762af45074cc7ebd97c16c0616CAS | 9675004PubMed |
Brown, J. J. G., and Whittingham, D. G. (1992). The dynamic provision of different energy substrates improves development of one-cell random-bred mouse embryos in vitro. J. Reprod. Fertil. 95, 503–511.
| The dynamic provision of different energy substrates improves development of one-cell random-bred mouse embryos in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XlsVOrt7s%3D&md5=4e68195665922cbe495872971bebcf33CAS |
Bryla, M., Trzcinska, M., and Wieczorec, J. (2009). Analysis of in vivo- and in vitro-derived pig expanded blastocysts based on DNA fragmentation. Anim. Sci. Pap. Rep. 27, 59–68.
Chatot, C. L., Ziomek, C. A., Bavister, B. D., Lewis, J. L., and Torres, I. (1989). An improved culture medium supports development of random-bred 1-cell mouse embryos in vitro. J. Reprod. Fertil. 86, 679–688.
| An improved culture medium supports development of random-bred 1-cell mouse embryos in vitro.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1Mzkt1emtA%3D%3D&md5=8cde0ffa0d96439356fce93115d05904CAS | 2760894PubMed |
Conaghan, J., Handyside, A. H., Winston, R. M., and Leese, H. J. (1993). Effects of pyruvate and glucose on the development of human preimplantation embryos in vitro. J. Reprod. Fertil. 99, 87–95.
| Effects of pyruvate and glucose on the development of human preimplantation embryos in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXlsFCg&md5=de7731378657cce8cf4dceb4d989535dCAS | 8283458PubMed |
Dawson, K. M., Collins, J. L., and Baltz, J. M. (1998). Osmolarity-dependent glycine accumulation indicates a role for glycine as an organic osmolyte in early preimplantation mouse embryos. Biol. Reprod. 59, 225–232.
| Osmolarity-dependent glycine accumulation indicates a role for glycine as an organic osmolyte in early preimplantation mouse embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXltFGnsb0%3D&md5=19b5eb5a2b856fc60bf10d60832070edCAS | 9687289PubMed |
Day, B. N. (2000). Reproductive biotechnologies: current status in porcine reproduction. Anim. Reprod. Sci. 60–61, 161–172.
| Reproductive biotechnologies: current status in porcine reproduction.Crossref | GoogleScholarGoogle Scholar | 10844192PubMed |
Dobrinsky, J. R., Johnson, L. A., and Rath, D. (1996). Development of a culture medium (BECM-3) for porcine embryos: effects of bovine serum albumin and fetal bovine serum on embryo development. Biol. Reprod. 55, 1069–1074.
| Development of a culture medium (BECM-3) for porcine embryos: effects of bovine serum albumin and fetal bovine serum on embryo development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xmtlaku7w%3D&md5=58ad2c39b8469941cdafc9c7ff88065bCAS | 8902219PubMed |
Edwards, L. J., Williams, D. A., and Gardner, D. K. (1998). Intracellular pH of the mouse preimplantation embryo: amino acids act as buffers of intracellular pH. Hum. Reprod. 13, 3441–3448.
| Intracellular pH of the mouse preimplantation embryo: amino acids act as buffers of intracellular pH.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXltFOksA%3D%3D&md5=3d3a45bce0e411d13fe585e581b65075CAS | 9886531PubMed |
Elhassan, Y. M., Wu, G., Leanez, A. C., Tasca, R. J., Watson, A. J., and Westhusin, M. E. (2001). Amino acid concentrations in fluid from the bovine oviduct and uterus and in KSOM-based culture media. Theriogenology 55, 1907–1918.
| Amino acid concentrations in fluid from the bovine oviduct and uterus and in KSOM-based culture media.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkvFarsbY%3D&md5=6e54db428aa3fc5f323ffc90176b06d1CAS | 11414495PubMed |
Epstein, C. J., and Smith, S. A. (1973). Amino acid uptake and protein synthesis in preimplantation mouse embryos. Dev. Biol. 33, 171–184.
| Amino acid uptake and protein synthesis in preimplantation mouse embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXksVSgurs%3D&md5=c8be76fcc5b5e81097f75f1c0dd03d16CAS | 4789598PubMed |
Flood, M. R., and Wiebold, J. L. (1988). Glucose metabolism by preimplantation pig embryos. J. Reprod. Fertil. 84, 7–12.
| Glucose metabolism by preimplantation pig embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXlvVOqsrk%3D&md5=fe34a2231cabad1559257bdb8ab1919eCAS | 3184061PubMed |
Gardner, D. K., and Lane, M. (1993). Amino acids and ammonium regulate mouse embryo development in culture. Biol. Reprod. 48, 377–385.
| Amino acids and ammonium regulate mouse embryo development in culture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXpvVOrtg%3D%3D&md5=59bfe20dc5914cc31917452598552059CAS | 8439627PubMed |
Guerin, P., Gallois, E., Croteau, S., Revol, N., Maurin, F., Guillaud, J., and Menezo, Y. (1995). Collection and aminoacid composition of oviduct and follicular secretions in domestic animals. Rev. Med. Vet. (Toulouse) 146, 805–814.
| 1:CAS:528:DyaK28Xhtlyqtr8%3D&md5=d98bfa62eb0b87d2737864007f3f8bddCAS |
Harris, S. E., Gopichandran, N., Picton, H. M., Leese, H. J., and Orsi, N. M. (2005). Nutrient concentrations in murine follicular fluid and the female reproductive tract. Theriogenology 64, 992–1006.
| Nutrient concentrations in murine follicular fluid and the female reproductive tract.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmvVGjsbw%3D&md5=801cb90b5d435416067fc54059eb3ab8CAS | 16054501PubMed |
Hobbs, J. G., and Kaye, P. L. (1985). Glycine transport in mouse eggs and preimplantations embryos. J. Reprod. Fertil. 74, 77–86.
| Glycine transport in mouse eggs and preimplantations embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXktlGgt7Y%3D&md5=23466dca21646a43af6ddb53ba7de599CAS | 3926999PubMed |
Iritani, A., Sato, E., and Nishikawa, Y. (1974). Secretion rates and chemical composition of oviduct and uterine fluids in sows. J. Anim. Sci. 39, 582–588.
| 1:CAS:528:DyaE2MXktFWqsQ%3D%3D&md5=c293c1e7bda5d8a52f7ead7cd74423b1CAS | 4370355PubMed |
Karja, N. W. K., Medvedev, S., Onishi, A., Fuchimoto, D., Iwamoto, M., Otoi, T., and Nagai, T. (2004). Effect of replacement of pyruvate/lactate in culture medium with glucose on preimplantation development of porcine embryos in vitro. J. Reprod. Dev. 50, 587–592.
| Effect of replacement of pyruvate/lactate in culture medium with glucose on preimplantation development of porcine embryos in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjs1yjtQ%3D%3D&md5=3941f1cf0ac93fb4e7de4ca3641e1058CAS |
Karja, N. W. K., Kikuchi, K., Fahrudin, M., Ozawa, M., Somfai, T., Ohnuma, K., Noguchi, J., Kaneko, H., and Nagai, T. (2006). Development to the blastocyst stage, the oxidative state, and the quality of early developmental stage of porcine embryos cultured in alteration of glucose concentrations in vitro under different oxygen tensions. Reprod. Biol. Endocrinol. 54, 1–12.
Kikuchi, K., Onishi, A., Kashiwazaki, N., Iwamoto, M., Noguchi, J., Kaneko, H., Akita, T., and Nagai, T. (2002). Successful piglet production after transfer of blastocysts produced by a modified in vitro system. Biol. Reprod. 66, 1033–1041.
| Successful piglet production after transfer of blastocysts produced by a modified in vitro system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XitlClur8%3D&md5=269b24fb5177410d3dbd3914a3a1cb9bCAS | 11906923PubMed |
Lee, E. S., and Fukui, Y. (1996). Synergistic effect of alanine and glycine on bovine embryos cultured in a chemically defined medium and amino acid uptake by in vitro-produced bovine morulae and blastocysts. Biol. Reprod. 55, 1383–1389.
| Synergistic effect of alanine and glycine on bovine embryos cultured in a chemically defined medium and amino acid uptake by in vitro-produced bovine morulae and blastocysts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXkvFWntQ%3D%3D&md5=b52cfa5a63417e0fa7649f9d6c23d3eeCAS | 8949897PubMed |
Lee, E. S., Fukui, Y., Lee, B. C., Lim, J. M., and Hwang, W. S. (2004). Promoting effect of amino acids added to a chemically defined medium on blastocyst formation and blastomere proliferation of bovine embryos cultured in vitro. Anim. Reprod. Sci. 84, 257–267.
| Promoting effect of amino acids added to a chemically defined medium on blastocyst formation and blastomere proliferation of bovine embryos cultured in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmsVCqu70%3D&md5=1ce8ad5ae8ae82c84278a87031b46176CAS | 15302369PubMed |
Li, R., Whitworth, K., Lai, L., Wax, D., Spate, L., Murphy, C. N., Rieke, A., Isom, C., Hao, Y., Zhong, Z., Katayama, M., Schatten, H., and Prather, R. S. (2007). Concentration and composition of free amino acids and osmolalities of porcine oviductal and uterine fluid and their effects on development of porcine IVF embryos. Mol. Reprod. Dev. 74, 1228–1235.
| Concentration and composition of free amino acids and osmolalities of porcine oviductal and uterine fluid and their effects on development of porcine IVF embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpt1altb4%3D&md5=0714651dc3776c13b975ec7c22fbdbc1CAS | 17342727PubMed |
Long, C., Dobrinsky, J., Garrett, W., and Johnson, L. (1998). Dual labeling of the cytoskeleton and DNA strand breaks in porcine embryos produced in vivo and in vitro. Mol. Reprod. Dev. 51, 59–65.
| Dual labeling of the cytoskeleton and DNA strand breaks in porcine embryos produced in vivo and in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXltVGrs7Y%3D&md5=4a0c4756a5e3384676bdcbcf6f7726dfCAS | 9712318PubMed |
Machaty, Z., Day, B. N., and Prather, R. S. (1998). Development of early porcine embryos in vitro and in vivo. Biol. Reprod. 59, 451–455.
| Development of early porcine embryos in vitro and in vivo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXltFGntLs%3D&md5=81be8c1835a2d9d2744140b4d992c3e2CAS | 9687321PubMed |
MacPhee, D. J., Barr, K. J., De Sousa, P. A., Todd, S. D., and Kidder, G. M. (1994). Regulation of Na+-K+-ATPase α-subunit gene expression during mouse preimplantation development. Dev. Biol. 162, 259–266.
| Regulation of Na+-K+-ATPase α-subunit gene expression during mouse preimplantation development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXhvVOqt7c%3D&md5=2682a1f9d1890633830aa36449ea5a18CAS | 8125192PubMed |
Magli, M. C., Gianaroli, L., Ferraretti, A. P., Fortini, D., Aicardi, G., and Montanaro, N. (1998). Rescue of implantation potential in embryos with poor prognosis by assisted zona hatching. Hum. Reprod. 13, 1331–1335.
| Rescue of implantation potential in embryos with poor prognosis by assisted zona hatching.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1czgvFOrsQ%3D%3D&md5=65bce46b35ee804dff7a2dfea86158afCAS | 9647568PubMed |
Medvedev, S., Onishi, A., Fuchimoto, D., Iwamoto, M., and Nagai, T. (2004). Advanced in vitro production of pig blastocysts obtained through determining the time for glucose supplementation. J. Reprod. Dev. 50, 71–76.
| Advanced in vitro production of pig blastocysts obtained through determining the time for glucose supplementation.Crossref | GoogleScholarGoogle Scholar | 15007204PubMed |
Partridge, R. J., and Leese, H. J. (1996). Consumption of amino acids by bovine preimplantation embryos. Reprod. Fertil. Dev. 8, 945–950.
| Consumption of amino acids by bovine preimplantation embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmtlGgtL4%3D&md5=3df6a2edece1913ce7de7a01e91a8502CAS | 8896028PubMed |
Petters, R. M., and Wells, K. D. (1993). Culture of pig embryos. J. Reprod. Fertil. Suppl. 48, 61–73.
| 1:STN:280:DyaK2c7psVCktQ%3D%3D&md5=1693e6b3d03fbbac8f6082018c0b977eCAS | 8145215PubMed |
Rieger, D. (1992). Relationships between energy metabolism and development of early mammalian embryos. Theriogenology 37, 75–93.
| Relationships between energy metabolism and development of early mammalian embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xht1Ggsb0%3D&md5=19a0a3bd14b240048d98d135dffcdfc7CAS |
Robl, J. M., and Davis, D. L. (1981). Effects of serum on swine morulae and blastocysts in vitro. J. Anim. Sci. 52, 1450–1456.
| 1:STN:280:DyaL38%2Flt1Oluw%3D%3D&md5=c0ad5494bda524b63d1be25ee0e2e43fCAS | 7298530PubMed |
Schini, S. A., and Bavister, B. D. (1988). Two-cell block to development of cultured hamster embryos is caused by phosphate and glucose. Biol. Reprod. 39, 1183–1192.
| Two-cell block to development of cultured hamster embryos is caused by phosphate and glucose.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXhtFahurw%3D&md5=d7e3561060abf952a732c09f00f9f94eCAS | 3219389PubMed |
Schultz, G. A., Kaye, P. L., Mckay, D. J., and Johnson, M. H. (1981). Endogenous amino acid pool sizes in mouse eggs and preimplantation embryos. J. Reprod. Fertil. 61, 387–393.
| Endogenous amino acid pool sizes in mouse eggs and preimplantation embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXhtlKqs78%3D&md5=c74b15a90539864ca362ad69c4d55d33CAS | 7193734PubMed |
Steeves, C. L., Hammer, M. A., Walker, G. B., Rae, D., Stewart, N. A., and Baltz, J. M. (2003). The glycine neurotransmitter transporter GLYT1 is an organic osmolyte transporter regulating cell volume in cleavage-stage embryos. Proc. Natl Acad. Sci. USA 100, 13 982–13 987.
| The glycine neurotransmitter transporter GLYT1 is an organic osmolyte transporter regulating cell volume in cleavage-stage embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpsFGitr8%3D&md5=6e9a83500a0047edf2779b794e6dcf1bCAS |
Sturmey, R. G., and Leese, H. J. (2003). Energy metabolism in pig oocytes and early embryos. Reproduction 126, 197–204.
| Energy metabolism in pig oocytes and early embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntFyjtr4%3D&md5=909ebac0d2348d75ceaeafecb234253bCAS | 12887276PubMed |
Suzuki, C., and Yoshioka, K. (2006). Effects of amino acid supplements and replacement of polyvinyl alcohol with bovine serum albumin in porcine zygote medium. Reprod. Fertil. Dev. 18, 789–795.
| Effects of amino acid supplements and replacement of polyvinyl alcohol with bovine serum albumin in porcine zygote medium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XpsFWlu74%3D&md5=5073e7f404777d86e3da2c4c37bd3465CAS | 17032588PubMed |
Takahashi, Y., and First, N. L. (1992). In vitro development of bovine one-cell embryos: influence of glucose, lactate, pyruvate, amino acids and vitamins. Theriogenology 37, 963–978.
| In vitro development of bovine one-cell embryos: influence of glucose, lactate, pyruvate, amino acids and vitamins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXpvVOmtg%3D%3D&md5=84ea7b1c72559f281a41d47aa18630b1CAS | 16727096PubMed |
Takahashi, Y., and Kanagawa, H. (1998). Effects of glutamine, glycine and taurine on the development of in vitro fertilized bovine zygotes in a chemically defined medium. J. Vet. Med. Sci. 60, 433–437.
| Effects of glutamine, glycine and taurine on the development of in vitro fertilized bovine zygotes in a chemically defined medium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjtFWjtr8%3D&md5=f04df7b66bbe34d70e88e76f0758153eCAS | 9592714PubMed |
Tartia, A. P., Rudraraju, N., Richards, T., Hammer, M. A., Talbot, P., and Baltz, J. M. (2009). Cell volume regulation is initiated in mouse oocytes after ovulation. Development 136, 2247–2254.
| Cell volume regulation is initiated in mouse oocytes after ovulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXps1ehsL0%3D&md5=78dd576501be7cb9fca7f01824986026CAS | 19502485PubMed |
Thompson, J. G., Sherman, A. N. M., Allen, N. W., McGowan, L. T., and Tervit, H. R. (1998). Protein content, synthesis and uptake in pre-elongation stage bovine embryos. Mol. Reprod. Dev. 50, 139–145.
| Protein content, synthesis and uptake in pre-elongation stage bovine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXislWks7k%3D&md5=36f30288747a8c32cfe000b642b7aea3CAS | 9590529PubMed |
Van Winkle, L. J., and Campione, A. L. (1996). Amino acid transport regulation in preimplantation mouse embryos: effects of amino acid content and pre- and peri-implantation development. Theriogenology 45, 69–80.
| Amino acid transport regulation in preimplantation mouse embryos: effects of amino acid content and pre- and peri-implantation development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhtFGks7g%3D&md5=c3efc1e8833e7f5e5fef27e1ab84ae59CAS |
Watson, A. J. (1992). The cell biology of blastocyst development. Mol. Reprod. Dev. 33, 492–504.
| The cell biology of blastocyst development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXpvVGmtg%3D%3D&md5=3f72c40fd67203830047b3a0bbf857d9CAS | 1335276PubMed |
Xia, P., Rutledge, J., and Armstrong, D. T. (1995). Expression of glycine cleavage system and effect of glycine on in vitro maturation, fertilization and early embryonic development in pigs. Anim. Reprod. Sci. 38, 155–165.
| Expression of glycine cleavage system and effect of glycine on in vitro maturation, fertilization and early embryonic development in pigs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXlt1ert70%3D&md5=9a3f71819bb499d4e1c0eacc23591305CAS |
Yoshioka, K., Suzuki, C., Tanaka, A., Anas, I. M. K., and Iwamura, S. (2002). Birth of piglets derived from porcine zygotes cultured in a chemically defined medium. Biol. Reprod. 66, 112–119.
| Birth of piglets derived from porcine zygotes cultured in a chemically defined medium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xht1yksQ%3D%3D&md5=1222cf9263515655d52deba5e03ac896CAS | 11751272PubMed |
Yoshioka, K., Suzuki, C., Itoh, S., Kikuchi, K., Iwamura, S., and Rodriguez-Martinez, H. (2003). Production of piglets derived from in vitro-produced blastocysts fertilized and cultured in chemically defined media: effect of theophylline, adenosine, and cysteine during in vitro fertilization. Biol. Reprod. 69, 2092–2099.
| Production of piglets derived from in vitro-produced blastocysts fertilized and cultured in chemically defined media: effect of theophylline, adenosine, and cysteine during in vitro fertilization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpsVCntrw%3D&md5=c3d4e24a5211465471fbccaa9f96db3cCAS | 12930720PubMed |
Yoshioka, K., Suzuki, C., and Onishi, A. (2008). Defined system for in vitro production of porcine embryos using a single basic medium. J. Reprod. Dev. 54, 208–213.
| Defined system for in vitro production of porcine embryos using a single basic medium.Crossref | GoogleScholarGoogle Scholar | 18408352PubMed |
Zhang, Y., Ikejima, K., Honda, H., Kitamura, T., Takei, Y., and Sato, N. (2000). Glycine prevents apoptosis of rat sinusoidal endothelial cells caused by deprivation of vascular endothelial growth factor. Hepatology 32, 542–546.
| Glycine prevents apoptosis of rat sinusoidal endothelial cells caused by deprivation of vascular endothelial growth factor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmsF2murs%3D&md5=0f0478f29bd22ee76daff6781fa203e5CAS | 10960447PubMed |