Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Levels of mRNA for bone morphogenetic proteins, their receptors and SMADs in goat ovarian follicles grown in vivo and in vitro

J. J. N. Costa A , M. J. Passos A , C. C. F. Leitão A , G. L. Vasconcelos A , M. V. A. Saraiva C , J. R. Figueiredo C , R. van den Hurk B and J. R. V. Silva A D
+ Author Affiliations
- Author Affiliations

A Biotechnology Nucleus of Sobral – NUBIS, Federal University of Ceara, CEP 62042-280, Sobral, CE, Brazil.

B Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, PO Box 80.163, Utrecht, The Netherlands.

C LAMOFOPA, Faculty of Veterinary Medicine, State University of Ceara, CEP 60740-000, Fortaleza, CE, Brazil.

D Corresponding author. Email: jrvsilva@ufc.br

Reproduction, Fertility and Development 24(5) 723-732 https://doi.org/10.1071/RD11195
Submitted: 5 August 2011  Accepted: 31 October 2011   Published: 13 December 2011

Abstract

This study investigated the stability of housekeeping genes (glyceraldehyde-3-phosphate dehydrogenase, β-tubulin, β-actin, phosphoglycerate kinase (PGK), 18S rRNA, ubiquitin and ribosomal protein 19) and the levels of mRNA for bone morphogenetic protein-2 (BMP-2), -4 (BMP-4), -6 (BMP-6), -7 (BMP-7) and -15 (BMP-15), their receptors (BMPR-IA, -IB and -II) and Similar to Mothers Against Decapentaplegic (SMADs) (-1, -5 and -8) in goat follicles of 0.2, 0.5 and 1.0 mm, as well as in secondary follicles before and after culture for 18 days. β-tubulin and PGK were the most stable housekeeping genes and the levels of mRNA for BMP-2 in follicles of 0.2 mm were higher than in follicles of 0.5 and 1.0 mm. For BMP-4, -6 and -7, the highest levels of mRNA were found in follicles of 1.0 mm. The expression of BMPR-IB was higher in follicles of 0.2 mm, whereas the levels of BMPR-II were higher in follicles of 0.5 mm. The levels of mRNA for SMAD-5 were higher in follicles of 0.2 mm, whereas SMAD-8 had higher levels in 0.5-mm follicles. After culture, follicles showed increased levels of mRNA for BMP-2 and reduced mRNA for BMP-4, BMP-7, BMPR-IA and SMAD-5. In conclusion, β-tubulin and PGK are the most stable reference genes, and BMPs, their receptors and SMADs have variable levels of mRNA in the follicular size classes analysed.

Additional keywords: BMPs, housekeeping genes, ovary.


References

Arunakumari, G., Shanmugasundaram, N., and Rao, V. H. (2010). Development of morulae from the oocytes of cultured sheep preantral follicles. Theriogenology 74, 884–894.
Development of morulae from the oocytes of cultured sheep preantral follicles.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3cjosVSktA%3D%3D&md5=f5d235425c3deb9c772a9e13e513e5f7CAS | 20615540PubMed |

Bonnet, A., Dalbies-tran, R., and Sirard, M. A. (2008). Opportunities and challenges in applying genomics to the study of oogenesis and folliculogenesis in farm animals. Reproduction 135, 119–128.
Opportunities and challenges in applying genomics to the study of oogenesis and folliculogenesis in farm animals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXit1yrt7g%3D&md5=007922615fa03dbb4e2a2b6f24da7f8dCAS | 18239043PubMed |

Campbell, B. K., Souza, C. J., Skinner, A. J., Webb, R., and Baird, D. T. (2006). Enhanced response of granulose and theca cells from sheep carriers of the FecB mutation in vitro to gonadotrophins and bone morphogenic protein-2, -4 and -6. Endocrinology 147, 1608–1620.
Enhanced response of granulose and theca cells from sheep carriers of the FecB mutation in vitro to gonadotrophins and bone morphogenic protein-2, -4 and -6.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xjt1Ohsbg%3D&md5=64983973f262bc6e00ff74c358c4bf2cCAS | 16396991PubMed |

Cecconi, S., Barboni, B., Coccia, M., and Mattioli, M. (1999). In vitro development of sheep preantral follicles. Biol. Reprod. 60, 594–601.
In vitro development of sheep preantral follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhsFekt7g%3D&md5=2823afa17804fbc803c9e330d1035ba5CAS | 10026104PubMed |

Cecconi, S., Capacchietti, G., Russo, V., Berardinelli, P., Mattioli, M., and Barboni, B. (2004). In vitro growth of preantral follicles isolated from cryopreserved ovine ovarian tissue. Biol. Reprod. 70, 12–17.
In vitro growth of preantral follicles isolated from cryopreserved ovine ovarian tissue.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhvVOl&md5=1220efcab2f643a0d5f0de5be1b9d80fCAS | 12954736PubMed |

Dheda, K., Huggett, J. F., Bustin, S. A., Johnson, M. A., Rook, G., and Zumla, A. (2004). Validation of housekeeping genes for normalizing RNA expression in real-time PCR. Biotechniques 37, 112–114.
| 1:CAS:528:DC%2BD2cXlvVagtrg%3D&md5=671d72a34a98d4eeedd7309d5878d947CAS | 15283208PubMed |

Di Pasquale, E., Beck-Peccoz, P., and Persani, L. (2004). Hypergonadotrophic ovarian failure associated with an inherited mutation of human bone morphogenetic protein-15 (BMP-15) gene. Am. J. Hum. Genet. 75, 106–111.
Hypergonadotrophic ovarian failure associated with an inherited mutation of human bone morphogenetic protein-15 (BMP-15) gene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltFCls7o%3D&md5=8b82109ff51eb25a0e4aef965f2048bcCAS | 15136966PubMed |

Drummond, A. E., Le, M. T., Ethier, J. F., Dyson, M., and Findlay, J. K. (2002). Expression and localization of activin receptors, Smads, and ß-glycan to the postnatal rat ovary. Endocrinology 143, 1423–1433.
Expression and localization of activin receptors, Smads, and ß-glycan to the postnatal rat ovary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XisFGisLc%3D&md5=72a16ffc7aa64fd02cda49a3e10424f2CAS | 11897700PubMed |

Edwards, S. J., Reader, K. L., Lun, S., Western, A., Lawrence, S., McNatty, K. P., and Juengel, J. L. (2008). The cooperative effect of growth and differentiation factor-9 and bone morphogenetic protein (BMP)-15 on granulosa cell function is modulated primarily through BMP receptor II. Endocrinology 149, 1026–1030.
The cooperative effect of growth and differentiation factor-9 and bone morphogenetic protein (BMP)-15 on granulosa cell function is modulated primarily through BMP receptor II.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXisVaqsbc%3D&md5=7cec805779cab2e4952a844a432cbac4CAS | 18063682PubMed |

Elvin, J. A., Yan, C., and Matzuk, M. M. (2000). Oocyte-expressed TGF-β superfamily members in female fertility. Mol. Cell. Endocrinol. 159, 1–5.
Oocyte-expressed TGF-β superfamily members in female fertility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXht1Grtbc%3D&md5=89ea583a5bebb5b82bd6622762a3e65bCAS | 10687846PubMed |

Erickson, G. F., and Shimasaki, S. (2003). The spatiotemporal expression pattern of the bone morphogenetic protein family in rat ovary cell types during the oestrous cycle. Reprod. Biol. Endocrinol. 1, 9–20.
The spatiotemporal expression pattern of the bone morphogenetic protein family in rat ovary cell types during the oestrous cycle.Crossref | GoogleScholarGoogle Scholar | 12741959PubMed |

Fatehi, A. N., Van Den Hurk, R., Colenbrander, B., Daemen, A. J., Van Tol, H. T., Monteiro, R. M., Roelen, B. A., and Bevers, M. M. (2005). Expression of bone morphogenetic protein 2 (BMP-2), 4 (BMP-4) and BMP receptors in the bovine ovary but absence of effects of BMP-2 and BMP-4 during IVM on bovine oocyte nuclear maturation and subsequent embryo development. Theriogenology 63, 872–889.
Expression of bone morphogenetic protein 2 (BMP-2), 4 (BMP-4) and BMP receptors in the bovine ovary but absence of effects of BMP-2 and BMP-4 during IVM on bovine oocyte nuclear maturation and subsequent embryo development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjsVWr&md5=fbfb31e1f9781cf383276b606045e463CAS | 15629804PubMed |

Frota, I. M. A., Leitão, C. C. F., Costa, J. J. N., Brito, I. R., Van Den Hurk, R., and Silva, J. R. V. (2011a). Stability of housekeeping genes and expression of locally produced growth factors and hormone receptors in goat preantral follicles. Zygote 19, 71–83.
Stability of housekeeping genes and expression of locally produced growth factors and hormone receptors in goat preantral follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjtVSnsw%3D%3D&md5=f5a9b7167121b417d442c011a74bca1eCAS |

Frota, I. M. A., Leitão, C. C. F., Costa, J. J. N., Van Den Hurk, R., Saraiva, M. V. A., Figueiredo, J. R., and Silva, J. R. V. (2011b). Levels of BMP-6 mRNA in goat ovarian follicles and in vitro effects of BMP-6 on secondary follicle development. Zygote , .
Levels of BMP-6 mRNA in goat ovarian follicles and in vitro effects of BMP-6 on secondary follicle development.Crossref | GoogleScholarGoogle Scholar |

Garcia-Vallejo, J. J., Van Het Hof, B., Robben, J., Vanwijk, J. A. E., Van Die, I., Joziasse, D. H., and Van Dijk, K. (2004). Approach for defining endogenous reference genes in gene expression experiments. Anal. Biochem. 329, 293–299.
Approach for defining endogenous reference genes in gene expression experiments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXkt1Wqsr4%3D&md5=8bc935a6900194eb3426244da9f53dceCAS | 15158490PubMed |

Glister, C., Kemp, C. F., and Knight, P. G. (2004). Bone morphogenetic protein (BMP) ligands and receptors in bovine ovarian follicle cells: actions of BMP-4, -6 and -7 on granulosa cells and differential modulation of Smad-1 phosphorylation by follistatin. Reproduction 127, 239–254.
Bone morphogenetic protein (BMP) ligands and receptors in bovine ovarian follicle cells: actions of BMP-4, -6 and -7 on granulosa cells and differential modulation of Smad-1 phosphorylation by follistatin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXitVWrtL8%3D&md5=8aa14cc9f9013aafd10c8d4951242e70CAS | 15056790PubMed |

Gong, X., and McGee, E. A. (2009). Smad3 is required for normal follicular follicle-stimulating hormone responsiveness in the mouse. Biol. Reprod. 81, 730–738.
Smad3 is required for normal follicular follicle-stimulating hormone responsiveness in the mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFyhsLnI&md5=5432decc8b2ed6bf7b8d0c31a01d52f4CAS | 19535790PubMed |

Gutierrez, C. G., Ralph, J. H., Telfer, E. E., Wilmut, I., and Webb, R. (2000). Growth and antrum formation of bovine preantral follicles in long-term culture in vitro. Biol. Reprod. 62, 1322–1328.
Growth and antrum formation of bovine preantral follicles in long-term culture in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXisl2htLc%3D&md5=f012a137a545a3ba3f4164fde619d3f1CAS | 10775183PubMed |

Hanrahan, J. P., Gregan, S. M., Mulsant, P., Mullen, M., Davis, G. H., Powell, R., and Galloway, S. M. (2004). Mutations in the genes for oocyte-derived growth factors GDF9 and BMP15 are associated with both increased ovulation rate and sterility in Cambridge and Belclare sheep (Ovis aries). Biol. Reprod. 70, 900–909.
Mutations in the genes for oocyte-derived growth factors GDF9 and BMP15 are associated with both increased ovulation rate and sterility in Cambridge and Belclare sheep (Ovis aries).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXis1Sitb0%3D&md5=0f0b61d17bf633d50d7ca2daaaf3a4dcCAS | 14627550PubMed |

Ho, C. C., and Bernard, D. J. (2009). Bone morphogenetic protein 2 signals via BMPR1A to regulate murine follicle-stimulating hormone beta subunit transcription. Biol. Reprod. 81, 133–141.
Bone morphogenetic protein 2 signals via BMPR1A to regulate murine follicle-stimulating hormone beta subunit transcription.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnslaqsrs%3D&md5=9b456ef9e08386306a368e961eb35d06CAS | 19211807PubMed |

Inagaki, K., Otsuka, F., Miyoshi, T., Yamashita, M., Takahashi, M., Goto, J., Suzuki, J., and Makino, H. (2009). p38-mitogen-activated protein kinase stimulated steroidogenesis in granulosa cell–oocyte co-cultures: Role of Bone Morphogenetic Proteins 2 and 4. Endocrinology 150, 1921–1930.
p38-mitogen-activated protein kinase stimulated steroidogenesis in granulosa cell–oocyte co-cultures: Role of Bone Morphogenetic Proteins 2 and 4.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktVWlsLY%3D&md5=9ec7bcfe43b4194e6e868abb47d39603CAS | 19022884PubMed |

Itoh, T., Kacchi, M., Abe, H., Sendai, Y., and Hoshi, H. (2002). Growth, antrum formation and oestradiol production of bovine preantral follicles cultured in a serum-free medium. Biol. Reprod. 67, 1099–1105.
Growth, antrum formation and oestradiol production of bovine preantral follicles cultured in a serum-free medium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnsV2rtr4%3D&md5=f38248a8f61a54fca2b45cfaf87a6752CAS | 12297524PubMed |

Jaatinen, R., Bondestam, J., Raivio, T., Hilden, K., Dunkel, L., Groome, N., and Ritvos, O. (2002). Activation of the bone morphogenetic protein signalling pathway induces inhibin b (B)-subunit mRNA and secreted inhibin B levels in cultured human granulosa–luteal cells. J. Clin. Endocrinol. Metab. 87, 1254–1261.
Activation of the bone morphogenetic protein signalling pathway induces inhibin b (B)-subunit mRNA and secreted inhibin B levels in cultured human granulosa–luteal cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XitlWnsrc%3D&md5=64043ab8f96eafd82d801a95cb5dd5f7CAS | 11889196PubMed |

Joyce, I. M., Pendola, F. L., Wigglesworth, K., and Eppig, J. J. (1999). Oocyte regulation of kit ligand expression in mouse ovarian follicles. Dev. Biol. 214, 342–353.
Oocyte regulation of kit ligand expression in mouse ovarian follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXms1CrtLk%3D&md5=bf87c695c317bdbb212e1922f06b05f8CAS | 10525339PubMed |

Juengel, J. L., and McNatty, K. P. (2005). The role of proteins of the transforming growth factor-β superfamily in the ovarian regulation of follicular development. Hum. Reprod. Update 11, 144–161.
The role of proteins of the transforming growth factor-β superfamily in the ovarian regulation of follicular development.Crossref | GoogleScholarGoogle Scholar |

Juengel, J. L., Bodensteiner, K. J., Heath, D. A., Hudson, N. L., Moeller, C. L., Smith, P., Galloway, S. M., Davis, G. H., Sawyer, H. R., and McNatty, K. P. (2004). Physiology of GDF9 and BMP15 signalling molecules. Anim. Reprod. Sci. 82–83, 447–460.
Physiology of GDF9 and BMP15 signalling molecules.Crossref | GoogleScholarGoogle Scholar | 15271472PubMed |

Juengel, J. L., Reader, K. L., Bibby, A. H., Lun, S., Ross, I., Haydon, L. J., and McNatty, K. P. (2006). The role of bone morphogenetic proteins 2, 4, 6 and 7 during ovarian follicular development in sheep: contrast to rat. Reproduction 131, 501–513.
The role of bone morphogenetic proteins 2, 4, 6 and 7 during ovarian follicular development in sheep: contrast to rat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xjs12jsLw%3D&md5=70ca25737d414b88736e2fc3e62b22f0CAS | 16514193PubMed |

Kaivo-Oja, N., Jeffery, L. A., Ritvos, O., and Mottershead, D. G. (2006). Smad signalling in the ovary. Reprod. Biol. Endocrinol. 4, 1–13.
Smad signalling in the ovary.Crossref | GoogleScholarGoogle Scholar |

Knight, P. G., and Glister, C. (2006). TGF-beta superfamily members and ovarian follicle development. Reproduction 132, 191–206.
TGF-beta superfamily members and ovarian follicle development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xpt1Wjsr0%3D&md5=e3952199251c52a7267a52410fc3d2c7CAS | 16885529PubMed |

Krysko, D. V., Diez-Fraile, A., Criel, G., Svistunov, A. A., Vandenabeele, P., and D’herde, K. (2008). Life and death of female gametes during oogenesis and folliculogenesis. Apoptosis 13, 1065–1087.
Life and death of female gametes during oogenesis and folliculogenesis.Crossref | GoogleScholarGoogle Scholar | 18622770PubMed |

Lee, W. S., Yoon, S. J., Yoon, T. K., Cha, K. Y., Lee, S. H., Shimasaki, S., Lee, S., and Lee, K. A. (2004). Effects of bone morphogenetic protein-7 (BMP-7) on primordial follicular growth in the mouse ovary. Mol. Reprod. Dev. 69, 159–163.
Effects of bone morphogenetic protein-7 (BMP-7) on primordial follicular growth in the mouse ovary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnsVKns74%3D&md5=e859d93c6115f2c5ba34d0598ef3dc0dCAS | 15293217PubMed |

Lin, C., Spikings, E., Zhang, T., and Rawson, D. (2009). Housekeeping genes for cryopreservation studies on zebrafish embryos and blastomeres. Theriogenology 71, 1147–1155.
Housekeeping genes for cryopreservation studies on zebrafish embryos and blastomeres.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjsV2qs7w%3D&md5=36f48d49d9e6ea0114168aada44aa70aCAS | 19201018PubMed |

Livak, K. J., and Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the –2ΔΔCT method. Methods 25, 402–408.
| 1:CAS:528:DC%2BD38XhtFelt7s%3D&md5=e0ea026c02920b4196beca401ea8984bCAS | 11846609PubMed |

Magalhães, D. M., Duarte, A. B., Araújo, V. R., Brito, I. R., Soares, T. G., Lima, I. M., Lopes, C. A., Campello, C. C., Rodrigues, A. P. R., and Figueiredo, J. R. (2011). In vitro production of a caprine embryo from a preantral follicle cultured in media supplemented with growth hormone. Theriogenology 75, 182–188.
In vitro production of a caprine embryo from a preantral follicle cultured in media supplemented with growth hormone.Crossref | GoogleScholarGoogle Scholar | 20875671PubMed |

Massagué, J. (1998). TGF-beta signal transduction. Annu. Rev. Biochem. 67, 753–791.
TGF-beta signal transduction.Crossref | GoogleScholarGoogle Scholar | 9759503PubMed |

Matsakas, A., and Patel, K. (2009). Intracellular signalling pathways regulating the adaptation of skeletal muscle to exercise and nutritional changes. Histol. Histopathol. 24, 209–222.
| 1:CAS:528:DC%2BD1MXjtVyks78%3D&md5=98f6d278376f45841e65567d252b141eCAS | 19085837PubMed |

McNatty, K. P., Juengel, J. L., Wilson, T., Galloway, S. M., Davis, G. H., Hudson, N. L., Moeller, C. L., Cranfield, M., Reader, K. L., Laitinen, M. P., Groome, N. P., Sawyer, H. R., and Ritvos, O. (2003). Oocyte-derived growth factors and ovulation rate in sheep. Reprod. Suppl. 61, 339–351.
| 1:CAS:528:DC%2BD3sXptFKhtrw%3D&md5=e84354c346680156f3a2429558b6a90bCAS | 14635946PubMed |

Miyazono, K., Kamiya, Y., and Morikawa, M. (2010). Bone morphogenetic protein receptors and signal transduction. J. Biochem. 147, 35–51.
Bone morphogenetic protein receptors and signal transduction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkt1Kmuw%3D%3D&md5=6dda90b9347ee435767aa09ab1970d0cCAS | 19762341PubMed |

Otsuka, F., Yao, Z., Lee, T.-h., Yamamoto, S., Erickson, G. F., and Shimasaki, S. (2000). Bone morphogenetic protein-15: identification of target cells and biological functions. J. Biol. Chem. 275, 39523–39528.
Bone morphogenetic protein-15: identification of target cells and biological functions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXptFSrt7o%3D&md5=abe34ac432dcc5d6af80e9d946351ca4CAS | 10998422PubMed |

Qin Chen, A., Yu, S. D., Wang, Z. G., Xu, Z. R., and Yang, Z. G. (2009). Stage-specific expression of bone morphogenetic protein type I and type II receptor genes: effects of follicle-stimulating hormone on ovine antral follicles. Anim. Reprod. Sci. 111, 2391–2399.

Saraiva, M. V. A., Rossetto, R., Brito, I. R., Celestino, J. J. H., Silva, C. M. G., Faustino, L. R., Almeida, A. P., Bruno, J. B., Magalhães, D. M., Matos, M. H. T., Campello, C. C., and Figueiredo, J. R. (2010). Dynamic medium produces caprine embryo from preantral follicles grown in vitro. Reprod. Sci. 17, 1135–1143.
Dynamic medium produces caprine embryo from preantral follicles grown in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1akt77F&md5=4bb677b237060338981edf76a960e98bCAS |

Saraiva, M. V. A., Celestino, J. J. H., Araújo, V. R., Chaves, R. N., Almeida, A. P., Lima-Verde, I. B., Duarte, A. B., Silva, G. M., Martins, F. S., Bruno, J. B., Matos, M. H. T., Campello, C. C., Silva, J. R. V., and Figueiredo, J. R. (2011). Expression of follicle-stimulating hormone receptor (FSHR) in goat ovarian follicles and the impact of sequential culture medium on in vitro development of caprine preantral follicles. Zygote 19, 205–214.
Expression of follicle-stimulating hormone receptor (FSHR) in goat ovarian follicles and the impact of sequential culture medium on in vitro development of caprine preantral follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXot1amsbo%3D&md5=bcec3ef1b8b6399611a6e75b1ffdb3b9CAS |

Schmierer, B., and Hill, C. S. (2007). TGFbeta–SMAD signal transduction: molecular specificity and functional flexibility. Nat. Rev. Mol. Cell Biol. 8, 970–982.
TGFbeta–SMAD signal transduction: molecular specificity and functional flexibility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlCrsb3K&md5=3911cd350ba047ec89a9be78ec5545e3CAS | 18000526PubMed |

Shi, J., Yoshino, O., Osuga, Y., Koga, K., Hirota, Y., Hirata, T., Yano, T., Nishii, O., and Taketani, Y. (2009). Bone morphogenetic protein-6 stimulates gene expression of follicle-stimulating hormone receptor, inhibin/activin β subunits, and anti-Mullerian hormone in human granulosa cells. Fertil. Steril. 92, 1794–1798.
Bone morphogenetic protein-6 stimulates gene expression of follicle-stimulating hormone receptor, inhibin/activin β subunits, and anti-Mullerian hormone in human granulosa cells.Crossref | GoogleScholarGoogle Scholar | 19539911PubMed |

Shi, J., Yoshino, O., Osuga, Y., Nishii, O., Tetsu, Y., and Taketani, Y. (2010). Bone morphogenetic protein 7 (BMP-7) increases the expression of follicle-stimulating hormone (FSH) receptor in human granulosa cells. Fertil. Steril. 93, 1273–1279.
Bone morphogenetic protein 7 (BMP-7) increases the expression of follicle-stimulating hormone (FSH) receptor in human granulosa cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkvVaqtbc%3D&md5=080536dce2bee7f45b9dac9d9ff2c27dCAS | 19108831PubMed |

Shimasaki, S., Zachow, R. J., Li, D., Kim, H., Iemura, S., Ueno, N., Sampath, K., Chang, R. J., and Erickson, G. F. (1999). A functional bone morphogenetic protein system in the ovary. Proc. Natl. Acad. Sci. USA 96, 7282–7287.
A functional bone morphogenetic protein system in the ovary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXltVOruro%3D&md5=3f8df2535ba567dbca4d2de383d4729eCAS | 10377406PubMed |

Shimasaki, S., Moore, R. K., Otsuka, F., and Erickson, G. F. (2004). The bone morphogenetic protein system in mammalian reproduction. Endocr. Rev. 25, 72–101.
The bone morphogenetic protein system in mammalian reproduction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhvFOmt78%3D&md5=aaebd080e5743c55c9eac8e32155039dCAS | 14769828PubMed |

Souza, C. J., Campbell, B. K., McNeill, A. S., and Baird, D. T. (2002). Effect of bone morphogenetic protein 2 (BMP-2) on oestradiol and inhibin A production by sheep granulosa cells, and localization of BMP receptors in the ovary by immunohistochemistry. Reproduction 123, 363–369.
Effect of bone morphogenetic protein 2 (BMP-2) on oestradiol and inhibin A production by sheep granulosa cells, and localization of BMP receptors in the ovary by immunohistochemistry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xit1Clsro%3D&md5=70337abff4e8ad0cda78bb12b67fe09dCAS | 11882013PubMed |

Thomas, F. H., Ethier, J. F., Shimasaki, S., and Vanderhyden, B. C. (2005). Follicle-stimulating hormone regulates oocyte growth by modulation of expression of oocyte and granulosa cell factors. Endocrinology 146, 941–949.
Follicle-stimulating hormone regulates oocyte growth by modulation of expression of oocyte and granulosa cell factors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXotlWnuw%3D%3D&md5=cb3bd88a7ce8bd7bd48a53a6e3d9473fCAS | 15539559PubMed |

van den Hurk, R., and Zhao, J. (2005). Formation of mammalian oocytes and their growth, differentiation and maturation within ovarian follicles. Theriogenology 63, 1717–1751.
Formation of mammalian oocytes and their growth, differentiation and maturation within ovarian follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXitF2js70%3D&md5=778277fcccd01a4245e4b316e283478dCAS | 15763114PubMed |

Van Tol, H. T. A., Van Eerdenburg, F. J. C. M., Colenbrander, B., and Roelen, B. A. J. (2008). Enhancement of bovine oocyte maturation by leptin is accompanied by an upregulation in mRNA expression of leptin receptor isoforms in cumulus cells. Mol. Reprod. Dev. 75, 578–587.
Enhancement of bovine oocyte maturation by leptin is accompanied by an upregulation in mRNA expression of leptin receptor isoforms in cumulus cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjtFClurg%3D&md5=84446b789f397145575e8558024b6762CAS |

Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A., and Speleman, F. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3, 34.1–34.11.

Wilson, T., Wu, X. Y., Juengel, J. L., Ross, I. K., Lumsden, J. M., and Lord, E. A. (2001). Highly prolific Booroola sheep have a mutation in the intracellular kinase domain of bone morphogenetic protein IB receptor (ALK-6) that is expressed in both oocytes and granulosa cells. Biol. Reprod. 64, 1225–1235.
Highly prolific Booroola sheep have a mutation in the intracellular kinase domain of bone morphogenetic protein IB receptor (ALK-6) that is expressed in both oocytes and granulosa cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXit1aqsr8%3D&md5=bc02defc484bc6ac557b11369fea952cCAS | 11259271PubMed |

Wu, Y.-T., Tang, L., Cai, J., Lu, X. E., Xu, J., Zhu, X. M., Luo, Q., and Huang, H. F. (2007b). High bone morphogenetic protein-15 level in follicular fluid is associated with high-quality oocytes and subsequent embryonic development. Hum. Reprod. 22, 1526–1531.
High bone morphogenetic protein-15 level in follicular fluid is associated with high-quality oocytes and subsequent embryonic development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXot1ejt7o%3D&md5=090e547ae9a006373861cb4a7d4a133cCAS | 17347167PubMed |