Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Ontogenesis of phase I hepatic drug metabolic enzymes in sheep

Manoja Pretheeban A , Geoff Hammond A , Stelvio Bandiera B , Wayne Riggs B and Dan Rurak A C
+ Author Affiliations
- Author Affiliations

A Department of Obstetrics and Gynecology, Child and Family Research Institute, Faculty of Medicine, University of British Columbia, V5Z 4H4, Canada.

B Faculty of Pharmaceutical Sciences, University of British Columbia, V6T 1Z3, Canada.

C Corresponding author. Email: drurak@cw.bc.ca

Reproduction, Fertility and Development 24(3) 425-437 https://doi.org/10.1071/RD11159
Submitted: 16 June 2011  Accepted: 5 August 2011   Published: 4 November 2011

Abstract

Cytochrome P450 (CYP) enzymes are important for the metabolism of many drugs. While there is information on their identity and ontogeny in humans and rodents, similar data in sheep are lacking. In the present study, cDNA sequences of several CYP enzymes (CYP2A6, CYP2C19, CYP2D6) were cloned by rapid amplification of cDNA ends. In adult, newborn and fetal sheep the mRNA and protein levels of these CYPs and the regulatory factor, hepatic nuclear factor 4α (HNF4α) were determined in liver samples using real-time PCR and western blotting. The effect of antenatal glucocorticoid on these enzymes was also studied by i.v. infusion of cortisol (0.45 mg h–1; 80 h) to another group of fetuses. The mRNA and protein levels of the CYPs and HNF4α were low or absent in the fetus, followed by increasing levels in the newborn and adult. Fetal cortisol administration significantly increased the mRNA and protein levels of CYP2D6. Moreover, the correlation observed between the CYP and HNF4α mRNA levels suggests a possible regulatory role for this transcription factor. The findings suggest that fetal and newborn lambs have a low ability to metabolise drugs that are substrates of these enzymes, and that this ability increases with advancing postnatal age, similar to the situation in humans.

Additional keywords: cortisol, cytochrome P450, hepatocyte nuclear factor 4α, mRNA expression, RT-PCR, sheep liver, western blot.


References

Aguiar, M., Masse, R., and Gibbs, B. F. (2005). Regulation of cytochrome P450 by post-translational modification. Drug Metab. Rev. 37, 379–404.
| 1:CAS:528:DC%2BD2MXltlWmtb8%3D&md5=a7c0877cad51a7b1629ad178c982f51bCAS | 15931769PubMed |

Ariyoshi, N., Sawamura, Y.-I., and Kamataki, T. (2001). A novel single nucleotide polymorphism altering stability and activity of CYP2A6. Biochem. Biophys. Res. Commun. 281, 810–814.
A novel single nucleotide polymorphism altering stability and activity of CYP2A6.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhsFOgtb8%3D&md5=68ce1166d7d368eaacd0130a203ae81dCAS | 11237731PubMed |

Au, M., Rurak, D., Hammond, G., Underhill, C., Lye, S., Gibb, W., and Challis, J. (2006). Expression of cytochrome CYP2D6 mRNA in fetal sheep liver and the effect of exogenous cortisol. In ‘Proceedings of the 33rd Annual meeting of the Fetal and Neonatal Physiological Conference, Cambridge’. p. 114. (Society for Fetal and Neonatal Physiology: Cambridge.)

Borlakoglu, J. T., Scott, A., Henderson, C. J., and Wolf, C. R. (1993). Expression of P450 isoenzymes during rat liver organogenesis. Int. J. Biochem. 25, 1659–1668.
Expression of P450 isoenzymes during rat liver organogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXlsFer&md5=c06596e9fd804b494af5a0cd453a00c5CAS | 8288035PubMed |

Cairns, W., Smith, C. A., McLaren, A. W., and Wolf, C. R. (1996). Characterization of the human cytochrome P4502D6 promoter. A potential role for antagonistic interactions between members of the nuclear receptor family. J. Biol. Chem. 271, 25 269–25 276.
Characterization of the human cytochrome P4502D6 promoter. A potential role for antagonistic interactions between members of the nuclear receptor family.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xmt1egurw%3D&md5=33ddf00f88dfff8adba6a865c90c7e0fCAS |

Carey, L. C., Tatter, S. B., and Rose, J. C. (2009). Cortisol infusion in late-gestation hypothalamo-pituitary disconnected sheep fetus restores pituitary cell responsiveness to arginine vasopressin. Am. J. Physiol. Endocrinol. Metab. 296, 300–304.
Cortisol infusion in late-gestation hypothalamo-pituitary disconnected sheep fetus restores pituitary cell responsiveness to arginine vasopressin.Crossref | GoogleScholarGoogle Scholar |

Chen, D., Lepar, G., and Kemper, B. (1994). A transcriptional regulatory element common to a large family of hepatic cytochrome P450 genes is a functional binding site of the orphan receptor HNF-4. J. Biol. Chem. 269, 5420–5427.
| 1:CAS:528:DyaK2cXitlOmsbY%3D&md5=224243238881a38519ddf343bb5b19baCAS | 8106524PubMed |

Chen, Y., Ferguson, S. S., Negishi, M., and Goldstein, J. A. (2003). Identification of constitutive androstane receptor and glucocorticoid receptor binding sites in the CYP2C19 promoter. Mol. Pharmacol. 64, 316–324.
Identification of constitutive androstane receptor and glucocorticoid receptor binding sites in the CYP2C19 promoter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlvVCns74%3D&md5=d1cbdcb7bb918a0a6aa8cafab7a07b54CAS | 12869636PubMed |

Chin, R. K., and Lao, T. T. (1988). Low birth weight and hypermesis gravidarum. Eur. J. Obstet. Gynecol. Reprod. Biol. 28, 179–183.
| 1:STN:280:DyaL1M%2FptFKjtA%3D%3D&md5=6ff6877a28bd269161202353d1aa5919CAS | 3208964PubMed |

Cono, J., Cragan, J. D., Jamieson, D. J., and Rasmussen, S. A. (2006). Prophylaxis and treatment of pregnant women for emerging infections and bioterrorism emergencies. Emerg. Infect. Dis. 12, 1631–1637.
| 17283610PubMed |

Cresteil, T. (1998). Onset of xenobiotic metabolism in children: toxicological implications. Food Addit. Contam. 15, 45–51.
Onset of xenobiotic metabolism in children: toxicological implications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhslelsr0%3D&md5=a7255a67e1a32cb8b84069977aa36736CAS | 9602911PubMed |

Cresteil, T., Beaune, P., Kremers, P., Celier, C., Guengerich, F. P., and Leroux, J. P. (1985). Immunoquantification of epoxide hydrolase and cytochrome P-450 isozymes in fetal and adult human liver microsomes. Eur. J. Biochem. 151, 345–350.
Immunoquantification of epoxide hydrolase and cytochrome P-450 isozymes in fetal and adult human liver microsomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXltl2itbo%3D&md5=536d61598b5a9175ddee350f97d4c6f9CAS | 2411555PubMed |

Cui, W., Aslam, S., Fletcher, J., Wylie, D., Clinton, M., and Clark, A. J. (2002). Stabilization of telomere length and karyotypic stability are directly correlated with the level of hTERT gene expression in primary fibroblasts. J. Biol. Chem. 277, 38 531–38 539.
Stabilization of telomere length and karyotypic stability are directly correlated with the level of hTERT gene expression in primary fibroblasts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xns1Cntr4%3D&md5=0cdda7ecd6057ef1647e0bd2749f5a80CAS |

Desta, Z., Xiaojiong, X., Shin, J.-G., and Flockhart, D. A. (2002). Clinical significance of the cytochrome P450 2C19 polymorphism. Clin. Pharmacokinet. 41, 913–958.
Clinical significance of the cytochrome P450 2C19 polymorphism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XotlGisbg%3D&md5=2b79a71fa48155e50d3904e43fc70eceCAS | 12222994PubMed |

Dhe-Paganon, S., Duda, K., Iwamoto, M., Chi, Y. I., and Shoelson, S. E. (2002). Crystal structure of the HNF4 alpha ligand-binding domain in complex with endogenous fatty acid ligand. J. Biol. Chem. 277, 37 973–37 976.
Crystal structure of the HNF4 alpha ligand-binding domain in complex with endogenous fatty acid ligand.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xns1Cgtb0%3D&md5=1259d2f58bbc73874705751ebd7378feCAS |

Di, Y. M., Chow, V. D.-W., Yang, L.-P., and Zhou, S.-F. (2009). Structure, function, regulation and polymorphism of cytochrome P450 2A6. Curr. Drug Metab. 10, 754–780.
Structure, function, regulation and polymorphism of cytochrome P450 2A6.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFKlu7Y%3D&md5=3667fa176cbe8730cd5ec065320c67b3CAS | 19702528PubMed |

Dickmann, L. J., Locuson, C. W., Jones, J. P., and Rettie, A. E. (2004). Differential roles of Arg97, Asp293 and Arg108 in enzyme stability and substrate specificity of CYP2C9. Mol. Pharmacol. 65, 842–850.
Differential roles of Arg97, Asp293 and Arg108 in enzyme stability and substrate specificity of CYP2C9.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXivFalt7g%3D&md5=65558d93990c315284e9dbfb70878291CAS | 15044613PubMed |

El-Sankary, W., Plant, N. J., Gibson, G. G., and Moore, D. J. (2000). Regulation of the CYP3A4 gene by hydrocortisone and xenobiotics: role of the glucocorticoid and pregnane X receptors. Drug Metab. Dispos. 28, 493–496.
| 1:STN:280:DC%2BD3c3jsFamsA%3D%3D&md5=27dabbf85fa4f8f2f2a6ce31d362c168CAS | 10772626PubMed |

El-Sankary, W., Bombail, V., Gibson, G. G., and Plant, N. (2002). Glucocorticoid-mediated induction of CYP3A4 is decreased by disruption of a protein: DNA interaction distinct from the pregnane X receptor response element. Drug Metab. Dispos. 30, 1029–1034.
Glucocorticoid-mediated induction of CYP3A4 is decreased by disruption of a protein: DNA interaction distinct from the pregnane X receptor response element.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmsVShu78%3D&md5=90f20ff0962802fde7974c30e264433cCAS | 12167569PubMed |

Ellis, S. W., Hayhurst, G. P., Lightfoot, T., Smith, G., Harlow, J., Rowland-Yeo, K., Larsson, C., Mahling, J., Lim, C. K., Wolf, C. R., Blackburn, M. G., Lennard, M. S., and Tucker, G. T. (1996). Influence of amino acid residue 374 of cytochrome P-450 2D6 (CYP2D6) on the regio- and enantioselective metabolism of metoprolol. Biochem. J. 316, 647–654.
| 1:CAS:528:DyaK28XjvVahtLc%3D&md5=111b8ece838a50a0cfbc64674625e298CAS | 8687412PubMed |

Fukuda, T., Imal, Y., Komori, M., Nakamura, M., Kusunose, E., Kiyoshi, S., and Kusunoee, M. (1993). Replacement of Thr-303 of P450 2E11 with serine modifies the regioselectivity of its fatty acid hydroxylase activity. J. Biochem. 113, 7–12.
| 1:CAS:528:DyaK3sXhtF2ltrc%3D&md5=0402c968c6fd3852e00a686f6e4e6bfeCAS | 8454577PubMed |

Gampe, R. T., Montana, V. G., Lambert, M. H., Miller, A. B., Bledsoe, R. K., Milburn, M. V., Kliewer, S. A., Willson, T. M., and Xu, H. E. (2000). Asymmetry in the PPAR gamma/RXR alpha crystal structure reveals the molecular basis of heterodimerization among nuclear receptors. Mol. Cell 5, 545–555.
Asymmetry in the PPAR gamma/RXR alpha crystal structure reveals the molecular basis of heterodimerization among nuclear receptors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXisVWrs7s%3D&md5=5b49bf88b6f1b2f74e790e93cae3a497CAS | 10882139PubMed |

Gilmore, J., Rotondo, F., Pelletier, A. M., LaMarre, J., Alaoui-Jamali, M., and Kirby, G. M. (2001). Identification of a 43-kDa protein in human liver cytosol that binds to the Y-untranslated region of CYP2A6 mRNA. Biochem. Pharmacol. 62, 669–678.
Identification of a 43-kDa protein in human liver cytosol that binds to the Y-untranslated region of CYP2A6 mRNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXms1Oksr0%3D&md5=05aaf0e4ddbbb6b2418f55925480da1fCAS | 11551511PubMed |

Gonzalez, F. J., Kimura, S., Song, B. J., Pastewka, J., Gelboin, H. V., and Hardwick, J. P. (1986). Sequence of two related P-450 mRNAs transcriptionally increased during rat development. An R.dre.1 sequence occupies the complete 3′ untranslated region of a liver mRNA. J. Biol. Chem. 261, 10 667–10 672.
| 1:CAS:528:DyaL28XlsVOgtL0%3D&md5=3038ae1ade837547f26416a8f369cfe0CAS |

Gu, J., Su, T., Chen, Y., Zhang, Q.-Y., and Ding, X. (2000). Expression of biotransformation enzymes in human fetal olfactory mucosa: potential roles in developmental toxicity. Toxicol. Appl. Pharmacol. 165, 158–162.
Expression of biotransformation enzymes in human fetal olfactory mucosa: potential roles in developmental toxicity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjsFGrtr8%3D&md5=54560e366f4bf4ba18381757d369e4f5CAS | 10828211PubMed |

Hakkola, J., Pasanen, M., Purkunen, R., Saarikoski, S., Pelkonen, O., Maenpaa, J., Rane, A., and Raunio, H. (1994). Expression of xenobiotic-metabolizing cytochrome P450 forms in human adult and fetal liver. Biochem. Pharmacol. 48, 59–64.
Expression of xenobiotic-metabolizing cytochrome P450 forms in human adult and fetal liver.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXltlSkurk%3D&md5=6dffedbac1e98c8c47645a52acd48a8fCAS | 8043031PubMed |

Hakkola, J., Tanaka, E., and Pelkonen, O. (1998). Developmental expression of cytochrome P450 enzymes in human liver. Pharmacol. Toxicol. 82, 209–217.
Developmental expression of cytochrome P450 enzymes in human liver.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjsVynuro%3D&md5=0c6e92ae33c647c3a46f4094d8fd0952CAS | 9646325PubMed |

Hines, R. N. (2007). Ontogeny of human hepatic cytochromes P450. J. Biochem. Mol. Toxicol. 21, 169–175.
Ontogeny of human hepatic cytochromes P450.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVGjtLrP&md5=268b36e6a4256047d636c664fc1ccc7bCAS | 17936930PubMed |

Hines, R. N., and McCarver, D. G. (2002). The ontogeny of human drug metabolizing enzymes: phase I oxidative enzymes. J. Pharmacol. Exp. Ther. 300, 355–360.
The ontogeny of human drug metabolizing enzymes: phase I oxidative enzymes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xos1yhuw%3D%3D&md5=d27338197e24e5409955df970af161c5CAS | 11805191PubMed |

Hiroi, T., Chow, T., Imaoka, S., and Funae, Y. (2002). Catalytic specificity of CYP2D isoforms in rat and human. Drug Metab. Dispos. 30, 970–976.
Catalytic specificity of CYP2D isoforms in rat and human.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmsVShur0%3D&md5=a28d4ddb56f485efbe368a2f568ec5dbCAS | 12167561PubMed |

Hoffman, S. M., Nelson, D. R., and Keeney, D. S. (2001). Organization, structure and evolution of the CYP2 gene cluster on human chromosome 19. Pharmacogenetics 11, 687–698.
Organization, structure and evolution of the CYP2 gene cluster on human chromosome 19.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnsFKrurk%3D&md5=3bf2ae2ce417f492fb452bbdead24316CAS | 11692077PubMed |

Hrycay, E. G., and Bandiera, S. M. (2009). Expression, function and regulation of mouse cytochrome P450 enzymes: comparison with human P450 enzymes. Curr. Drug Metab. 10, 1151–1183.
Expression, function and regulation of mouse cytochrome P450 enzymes: comparison with human P450 enzymes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkvV2jsLc%3D&md5=a36a01d8d9adf0ad798c4323c73bbbb9CAS | 20166999PubMed |

Ibeanu, G. C., and Goldstein, J. A. (1995). Transcriptional regulation of human CYP2C genes: functional comparison of CYP2C9 and CYP2C18 promoter regions. Biochemistry 34, 8028–8036.
Transcriptional regulation of human CYP2C genes: functional comparison of CYP2C9 and CYP2C18 promoter regions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXmtVyit78%3D&md5=980ee66b578f9f6ea1f27aca5cd204f6CAS | 7794915PubMed |

Ibeanu, G. C., Ghanayem, B. I., Linko, P., Leiping, L., Pedersen, L. G., and Goldstein, J. A. (1996). Identification of residues 99, 220 and 221 of human cytochrome P450 2C19 as key determinants of omeprazole hydroxylase activity. J. Biol. Chem. 271, 12 496–12 501.
Identification of residues 99, 220 and 221 of human cytochrome P450 2C19 as key determinants of omeprazole hydroxylase activity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjtFantrg%3D&md5=df0c6b86e240b3ff39b8efe00a4b419cCAS |

Ionescu, C., and Caira, M. R. (2005). ‘Drug metabolism current concepts.’ (Springer: The Netherlands.)

Ingelman-Sundberg, M. (2004). Human drug metabolising cytochrome P450 enzymes: properties and polymorphisms. N-S. Arch. Pharmacol 369, 89–104.
Human drug metabolising cytochrome P450 enzymes: properties and polymorphisms. N-S.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXitF2iug%3D%3D&md5=8f25d44d8803af4c0e22afc2f81a5a0cCAS |

Ivan, B., Celine, N., Tarik, A., Sophie, V., Patrick, M., Rosette, L., and Philippe, B. (2007). Reverse transcriptase-PCR quantification of mRNA levels from cytochrome (CYP)1, CYP2 and CYP3 families in 22 different human tissues. Pharmacogenet. Genomics 17, 731–742.
Reverse transcriptase-PCR quantification of mRNA levels from cytochrome (CYP)1, CYP2 and CYP3 families in 22 different human tissues.Crossref | GoogleScholarGoogle Scholar |

Jacqz-Aigrain, E., Funck-Brentano, C., and Cresteil, T. (1993). CYP2D6- and CYP3A-dependent metabolism of dextromethorphan in humans. Pharmacogenetics 3, 197–204.
CYP2D6- and CYP3A-dependent metabolism of dextromethorphan in humans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXhsFaqs7g%3D&md5=1d2db1d7de6e1a4c1267dc8a96e89b91CAS | 8220439PubMed |

Jover, R., Bort, R., Gomez-Lechon, M. J., and Castell, J. V. (2001). Cytochrome P450 regulation by hepatocyte nuclear factor 4 in human hepatocytes: a study using adenovirus-mediated antisense targeting. Hepatology 33, 668–675.
Cytochrome P450 regulation by hepatocyte nuclear factor 4 in human hepatocytes: a study using adenovirus-mediated antisense targeting.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXit1emtL0%3D&md5=b11d1bb46e509440347c66b2da5b6665CAS | 11230748PubMed |

Jung, F., Griffin, K. J., Song, W., Richardson, T. H., Yang, M., and Johnson, E. F. (1998). Identification of amino acid substitutions that confer a high affinity for sulfaphenazole binding and a high catalytic efficiency for warfarin metabolism to P450 2C19. Biochemistry 37, 16 270–16 279.
Identification of amino acid substitutions that confer a high affinity for sulfaphenazole binding and a high catalytic efficiency for warfarin metabolism to P450 2C19.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmvVKlsLo%3D&md5=8ec5ce53d774f48935505c48228433c9CAS |

Kamiya, A., Inoue, Y., and Gonzalez, F. J. (2003). Role of the hepatocyte nuclear factor 4a in control of the pregnane X receptor during fetal liver development. Hepatology 37, 1375–1384.
Role of the hepatocyte nuclear factor 4a in control of the pregnane X receptor during fetal liver development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkvFWltbg%3D&md5=f638903ba63344484c889ac2fe1959ecCAS | 12774017PubMed |

Kawashima, S., Kobayashi, K., Takama, K., Higuchi, T., Furihata, T., Hosokawa, M., and Chiba, K. (2006). Involvement of hepatocyte nuclear factor 4alpha in the different expression level between CYP2C9 and CYP2C19 in the human liver. Drug Metab. Dispos. 34, 1012–1018.
| 1:CAS:528:DC%2BD28XlsVOnur8%3D&md5=60adcfb581edaf73113f91be3ec7f86dCAS | 16540586PubMed |

Kirton, S. B., Kemp, C. A., Tomkinson, N. P., St. Gallay, S., and Sutcliffe, M. J. (2002). Impact of incorporating the 2C5 crystal structure into comparative models of cytochrome P4502D6. Proteins 49, 216–231.
Impact of incorporating the 2C5 crystal structure into comparative models of cytochrome P4502D6.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnsFeksbw%3D&md5=64bb49aef5afc33375785af1dd2c9501CAS | 12211002PubMed |

Kitagawa, K., Kunugita, N., and Kawamoto, T. (2001). CYP2A6*6, a novel polymorphism of cytochrome P450 2A6, has a single amino acid substitution (R128Q) that inactivates enzymatic activity. J. Biol. Chem. 276, 17 830­–17 835.
| 1:CAS:528:DC%2BD3MXktFWnurw%3D&md5=8f07742f6ddcb270321c3d38fd4d6aacCAS |

Klose, T. S., Ibeanu, G. C., Ghanayem, B. I., Pedersen, L. G., Li, L., Hall, S. D., and Goldstein, J. A. (1998). Identification of residues 286 and 289 as critical for conferring substrate specificity of human CYP2C9 for diclofenac and ibuprofen. Arch. Biochem. Biophys. 357, 240–248.
Identification of residues 286 and 289 as critical for conferring substrate specificity of human CYP2C9 for diclofenac and ibuprofen.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmtFyjtLk%3D&md5=9fec57d79a122d856a63956c36e8c2b5CAS | 9735164PubMed |

Koukouritaki, S. B., Manro, J. R., Marsh, S. A., Stevens, J. C., Rettie, A. E., McCarver, D. G., and Hines, R. N. (2004). Developmental expression of human hepatic CYP2C9 and CYP2C19. J. Pharmacol. Exp. Ther. 308, 965–974.
Developmental expression of human hepatic CYP2C9 and CYP2C19.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhvVWntb8%3D&md5=e8a4d81e5ef731047f5eea0265e97044CAS | 14634042PubMed |

Kronbach, T., Larabeet, T. M., and Johnson, E. F. (1989). Hybrid cytochromes P-450 identify a substrate-binding domain in P-450IIC5 and P-450IIC4. Proc. Natl. Acad. Sci. USA 86, 8262–8265.
Hybrid cytochromes P-450 identify a substrate-binding domain in P-450IIC5 and P-450IIC4.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXhvVajsw%3D%3D&md5=ad1edec0a632bf84c1dddc27740d8508CAS | 2813390PubMed |

Ladona, M. G., Spalding, D. J. M., Ekman, L., Lindstrom, B., and Rane, A. (1989). Human foetal and adult liver metabolism of ethylmorphine. Relation to immunodetected cytochrome P450 PCN and interactions with important foetal corticosteroids. Biochem. Pharmacol. 38, 3147–3155.
Human foetal and adult liver metabolism of ethylmorphine. Relation to immunodetected cytochrome P450 PCN and interactions with important foetal corticosteroids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXhs1M%3D&md5=4082596b7ae397d902c0edc45e631698CAS | 2818616PubMed |

Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.
Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlsFags7s%3D&md5=af270e6a716a77b40e17f744b93b8b62CAS | 5432063PubMed |

Lake, B. G., Sauer, M. J., Esclangon, F., Beamand, J. A., Price, R. J., and Walters, D. G. (1995). Metabolism of coumarin by precision-cut calf liver slices and calf liver microsomes. Xenobiotica 25, 133–141.
Metabolism of coumarin by precision-cut calf liver slices and calf liver microsomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXmsFChurk%3D&md5=5e7df5feee6afad32c3838290af4e0b1CAS | 7618341PubMed |

Leff, T. (2003). AMP-activated protein kinase regulates gene expression by direct phosphorylation of nuclear proteins. Biochem. Soc. Trans. 31, 224–227.
AMP-activated protein kinase regulates gene expression by direct phosphorylation of nuclear proteins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXptF2rtg%3D%3D&md5=004f1bf217c0e26106aa017c0c431383CAS | 12546690PubMed |

Lewis, D. F. V., and Lake, B. G. (1995). Molecular modelling of members of the P4502A subfamily: application to studies of enzyme specificity. Xenobiotica 25, 585–598.
Molecular modelling of members of the P4502A subfamily: application to studies of enzyme specificity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXntFGrs7g%3D&md5=823d3f6e3e025825b0074bcc55b54103CAS |

Lewis, D. F. V., and Lake, B. G. (2002). Species differences in coumarin metabolism: a molecular modelling evaluation of CYP2A interactions. Xenobiotica 32, 547–561.
| 1:CAS:528:DC%2BD38XlsFGjtr0%3D&md5=b116fe6354e93c9e63527ee560653935CAS |

Lewis, D. F. V., Dickins, M., Lake, B. G., Eddershaw, P. J., Tarbit, M. H., and Goldfarb, P. S. (1999). Molecular modelling of the human cytochrome P450 isoform CYP2A6 and investigations of CYP2A substrate selectivity. Toxicology 133, 1–33.
Molecular modelling of the human cytochrome P450 isoform CYP2A6 and investigations of CYP2A substrate selectivity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjsVWrt74%3D&md5=fdae2c48be5c8470052a1c9350a59b4cCAS |

Lewis, D. F. V., Ito, Y., and Lake, B. G. (2006). Metabolism of coumarin by human P450s: a molecular modelling study. Toxicol. In Vitro 20, 256–264.
Metabolism of coumarin by human P450s: a molecular modelling study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksVemsg%3D%3D&md5=03a743c1fc3527bd727265c9793c8849CAS |

Liggins, G. C. (1994). The role of cortisol in preparing the fetus for birth. Reprod. Fertil. Dev. 6, 141–150.
The role of cortisol in preparing the fetus for birth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXlvFKjs7w%3D&md5=01168965af55e0553d01994c70497913CAS | 7991781PubMed |

Lin, Z., Lou, Y., and Squires, E. J. (2004). Molecular cloning, expression and functional characterization of the cytochrome P4502A6 gene in pig liver. Anim. Genet. 35, 314–316.
Molecular cloning, expression and functional characterization of the cytochrome P4502A6 gene in pig liver.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntVGqtLY%3D&md5=0776ccc1a2954f8b0f8f7bd06177f92bCAS | 15265071PubMed |

Livak, K. J., and Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCt method. Cell 25, 402–408.
| 1:CAS:528:DC%2BD38XhtFelt7s%3D&md5=e0ea026c02920b4196beca401ea8984bCAS |

Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275.
| 1:CAS:528:DyaG38XhsVyrsw%3D%3D&md5=bf889e650a79a3301ea8a7ff813d6a54CAS | 14907713PubMed |

Lu, A. Y., and Levin, W. (1972). Partial purification of cytochromes P-450 and P-448 from rat liver microsomes. Biochem. Biophys. Res. Commun. 46, 1334–1339.
Partial purification of cytochromes P-450 and P-448 from rat liver microsomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38Xht1ejurc%3D&md5=5a0e14183104886e75838086832edf77CAS | 5012170PubMed |

Maenpaa, J., Rane, A., Raunio, H., Honkakoski, P., and Pelkonen, O. (1993). Cytochrome P450 isoforms in human fetal tissues related to phenobarbital-inducible forms in the mouse. Biochem. Pharmacol. 45, 899–907.
Cytochrome P450 isoforms in human fetal tissues related to phenobarbital-inducible forms in the mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXitlSqsLo%3D&md5=b9d1697bdce1a68ce937e213c1ca5716CAS | 8452565PubMed |

Martinez-Jimenez, C. P., Gomez-Lechon, M. J., Castell, J. V., and Jover, R. (2006). Underexpressed coactivators PGC1α and SRC1 impair hepatocyte nuclear factor 4α function and promote dedifferentiation in human hepatoma cells. J. Biol. Chem. 281, 29 840–29 849.
Underexpressed coactivators PGC1α and SRC1 impair hepatocyte nuclear factor 4α function and promote dedifferentiation in human hepatoma cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVahsbzI&md5=f1311db09efe4d09a55a7a8ca90c66d7CAS |

Messina, A., Nencioni, S., Gervasi, P. G., Gotlinger, K. H., Schwartzman, M. L., and Longo, V. (2010). Molecular cloning and enzymatic characterization of sheep CYP2J. Xenobiotica 40, 109–118.
Molecular cloning and enzymatic characterization of sheep CYP2J.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXntlCjsA%3D%3D&md5=5c57f70714a110da9ccfeb0b8f4f0571CAS | 20021200PubMed |

Morita, J., Kobayashi, K., Wanibuchi, A., Kimura, M., Irie, S., Ishizaki, T., and Chiba, K. (2004). A novel single nucleotide polymorphism (SNP) of the CYP2C19 gene in a Japanese subject with lowered capacity of mephobarbital 4’-hydroxylation. Drug Metab. Pharmacokinet. 19, 236–238.
A novel single nucleotide polymorphism (SNP) of the CYP2C19 gene in a Japanese subject with lowered capacity of mephobarbital 4’-hydroxylation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmvFKqs7c%3D&md5=ade217f98592a7e1f45c36a6bfeb016aCAS | 15499191PubMed |

Nagata, T., Takahashi, Y., Ishii, Y., Asai, S., Sugahara, M., Nishida, Y., Murata, A., Chin, M., Schichino, H., Koshinaga, T., Fukuzawa, M., and Mugishima, H. (2003). Profiling of genes differentially expressed between fetal liver and postnatal liver using high-density oligonucleotide DNA array. Int. J. Mol. Med. 11, 713–721.
| 1:CAS:528:DC%2BD3sXksFSlt74%3D&md5=fcc148e81acb4aef3178dbf9c6a7b2c1CAS | 12736711PubMed |

Navas, M. A., Munoz-Elias, E. J., Kim, J., Shih, D., and Stoffel, M. (1999). Functional characterization of the MODY1 gene mutations HNF4(R127W), HNF4(V255M), and HNF4(E276Q). Diabetes 48, 1459–1465.
Functional characterization of the MODY1 gene mutations HNF4(R127W), HNF4(V255M), and HNF4(E276Q).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXktFanurg%3D&md5=4e87975439894c3852c63731104baab8CAS | 10389854PubMed |

Nelson, D. (2006). Cytochrome P450 homepage. Available at http://drnelson.uthsc.edu/CytochromeP450.html [Verified 19 October 2011]

Nelson, D. R., Koymans, L., Kamataki, T., Stegeman, J. J., Feyereisen, R., Waxman, D. J., Waterman, M. R., Gotoh, O., Coon, M. J., Estabrook, R. W., Gunsalus, I. C., and Nebert, D. W. (1996). P450 superfamily: update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacogenetics 6, 1–42.
P450 superfamily: update on new sequences, gene mapping, accession numbers and nomenclature.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XisFyhsLg%3D&md5=99962ad1d5a0e488f54be80b6e6b351cCAS | 8845856PubMed |

Nishimura, M., Yaguti, H., Yoshitsugu, H., Naito, S., and Satoh, T. (2003). Tissue distribution of mRNA expression of human cytochrome P450 isoforms assessed by high-sensitivity real-time reverse transcription PCR. Yakugaku Zasshi 123, 369–375.
Tissue distribution of mRNA expression of human cytochrome P450 isoforms assessed by high-sensitivity real-time reverse transcription PCR.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktF2qurc%3D&md5=bff9bffcc2a2c86a5378d81cd669a7adCAS | 12772594PubMed |

Niwa, T., Kageyama, A., Kishimoto, K., Yabusaki, Y., Ishibashi, F., and Katagiri, M. (2002). Amino acid residues affecting the activities of human cytochrome P450 2C9 and 2C19. Drug Metab. Dispos. 30, 931–936.
Amino acid residues affecting the activities of human cytochrome P450 2C9 and 2C19.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlslWhsr8%3D&md5=3956e03c1a616efd02a50e5b821dab8dCAS | 12124312PubMed |

Norman, L. J., Lye, S. J., Wlodek, M. E., and Challis, J. R. G. (1985). Changes in pituitary responses to synthetic ovine corticotrophin-releasing factor in fetal sheep. Can. J. Physiol. Pharmacol. 63, 1398–1403.
Changes in pituitary responses to synthetic ovine corticotrophin-releasing factor in fetal sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXlslamt70%3D&md5=466ce8aa7dde6c07ea011d36d024eabaCAS | 3000558PubMed |

Nosten, F., McGready, R., d’Alessandro, U., Bonell, A., Verhoeff, F., Menendez, C., Mutabingwa, T., and Brabin, B. (2006). Antimalarial drugs in pregnancy: a review Curr. Drug Saf. 1, 1–15.
Antimalarial drugs in pregnancy: a reviewCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XitVWmtbo%3D&md5=a5f188fd22e37db874cb37b0cbdfd183CAS | 18690910PubMed |

Nyirenda, M. J., Dean, S., Lyons, V., Chapman, K. E., and Seckl, J. R. (2006). Prenatal programming of hepatocyte nuclear factor 4α in the rat: a key mechanism in the ‘foetal origins of hyperglycaemia’. Diabetologia 49, 1412–1420.
Prenatal programming of hepatocyte nuclear factor 4α in the rat: a key mechanism in the ‘foetal origins of hyperglycaemia’.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xktlaltbs%3D&md5=f5792d5ddfdce1c252ca6f662b14c9fdCAS | 16570165PubMed |

Oesterheld, J. R. (1998). A review of developmental aspects of cytochrome P450. J. Child Adolesc. Psychopharmacol. 8, 161–174.
A review of developmental aspects of cytochrome P450.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1M%2FmvVGkuw%3D%3D&md5=695813a426c8ad35557dc13c03cf5c2cCAS | 9853690PubMed |

Park, Y., and Harris, D. (2003). Construction and assessment of models of CYP2E1: predictions of metabolism from docking, molecular dynamics and density functional theoretical calculations. J. Med. Chem. 46, 1645–1660.
Construction and assessment of models of CYP2E1: predictions of metabolism from docking, molecular dynamics and density functional theoretical calculations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXisVaksb4%3D&md5=790e018bfa49a96c5e46090cc8762e5cCAS |

Pascussi, J. M., Drocourt, L., Gerbal-Chaloin, S., Fabre, J. M., Maurel, P., and Vilarem, M. J. (2001). Dual effect of dexamethasone on CYP3A4 gene expression in human hepatocytes. Sequential role of glucocorticoid receptor and pregnane X receptor. Eur. J. Biochem. 268, 6346–6358.
Dual effect of dexamethasone on CYP3A4 gene expression in human hepatocytes. Sequential role of glucocorticoid receptor and pregnane X receptor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XivFynsg%3D%3D&md5=4d8d5f44c4d3dedb7e3a7833dbbcfa8fCAS | 11737189PubMed |

Pitarque, M., Rodriguez-Antona, C., Oscarson, M., and Ingelman-Sundnerg, M. (2005). Transcriptional regulation of the human CYP2A6 gene. Pharmacol. Exp. Ther 313, 814–822.
Transcriptional regulation of the human CYP2A6 gene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktFemsbc%3D&md5=f213a9fc243e57f6d0eab966702c64c4CAS |

Pons, C., Dansette, P. M., Amar, C., Jaouen, M., Wolf, C. R., Gregeois, J., Homberg, J. C., and Mansuy, D. (1991). Detection of human hepatitis anti-liver kidney microsomes (LKM2) autoantibodies on rat liver sections is predominately due to reactivity with rat liver P-450 IIC11. J. Pharmacol. Exp. Ther. 259, 1328–1334.
| 1:CAS:528:DyaK38XltVCiu74%3D&md5=1cfd7a8eb155263d4949b4128686b296CAS | 1762080PubMed |

Raija, L., Lindberg, P., and Negishi, M. (1989). Alteration of mouse cytochrome P450co substrate specificity by mutation of a single amino-acid residue. Nature 339, 632–634.
Alteration of mouse cytochrome P450co substrate specificity by mutation of a single amino-acid residue.Crossref | GoogleScholarGoogle Scholar |

Ratanasavanh, D., Beaune, P., Morel, F., Flinois, J. P., Guengerich, F. P., and Guillouzo, A. (1991). Intralobular distribution and quantitation of cytochrome P-450 enzymes in human liver as a function of age. Hepatology 13, 1142–1151.
Intralobular distribution and quantitation of cytochrome P-450 enzymes in human liver as a function of age.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3M3mslCksQ%3D%3D&md5=641e45354d7cf995faff6ff26e9aa3eaCAS | 1904834PubMed |

Raucy, J. L., Mueller, L., Duan, K., Allen, S. W., Strom, S., and Lasker, J. M. (2002). Expression and induction of CYP2C P450 enzymes in primary cultures of human hepatocytes. J. Pharmacol. Exp. Ther. 302, 475–482.
Expression and induction of CYP2C P450 enzymes in primary cultures of human hepatocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xls1Ogsb8%3D&md5=ee9e6611c675b10910dc49d5a4149192CAS | 12130704PubMed |

Ridderström, M., Masimirembwa, C., Trump-Kallmeyer, S., Ahlefelt, M., Otter, C., and Andersson, T. B. (2000). Arginines 97 and 108 in CYP2C9 are important determinants of the catalytic function. Biochem. Biophys. Res. Commun. 270, 983–987.
Arginines 97 and 108 in CYP2C9 are important determinants of the catalytic function.Crossref | GoogleScholarGoogle Scholar | 10772937PubMed |

Ring, R. A., Ghabrial, H., Ching, M. S., Smallwood, R. A., and Morgan, D. J. (1999). Fetal hepatic drug elimination. Pharmacol. Ther. 84, 429–445.
Fetal hepatic drug elimination.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnslGqs7w%3D&md5=48181e9dd831d4e012a3b969d8f8a5c0CAS |

Rowland, A., Elliot, D. J., Williams, J. A., Mackenzie, P. I., Dickinson, R. G., and Miners, J. O. (2006). In vitro characterization of lamotrigine N2-glucuronidation and the lamotrigine-valproic acid interaction. Drug Metab. Dispos. 34, 1055–1062.
| 1:CAS:528:DC%2BD28XlsVOnurk%3D&md5=187ec66f953133f1ce28e1b1fd4d5199CAS | 16565174PubMed |

Rurak, D. W., Yoo, S. D., Kwan, E., Taylor, S. M., Riggs, K. W., and Axelson, J. E. (1988). Effects of diphenhydramine in the fetal lamb after maternal or fetal administration. J. Pharmacol. Exp. Ther. 247, 271–278.
| 1:CAS:528:DyaL1cXmtVCgur4%3D&md5=40a17fe297ee4f57c29d8d25f9b99ec4CAS | 3139866PubMed |

Rurak, D. W., Wright, M. R., and Axelson, J. E. (1991). Drug disposition and effects in the fetus. J. Dev. Physiol. 15, 33–44.
| 1:CAS:528:DyaK3MXkvVClt7Y%3D&md5=dc2a664a210db3318338b91aaaee5b65CAS | 1678754PubMed |

Saarikoski, S. T., Rivera, S. P., Hankinson, O., and Husgafvel-Pursiainen, K. (2005). CYP2S1: a short review. Toxicol. Appl. Pharmacol. 207, 62–69.
CYP2S1: a short review.Crossref | GoogleScholarGoogle Scholar | 16054184PubMed |

Sachdeva, P., Patel, B. G., and Patel, B. K. (2009). Drug use in pregnancy; a point to ponder. Indian J. Pharm. Sci. 71, 1–7.
Drug use in pregnancy; a point to ponder.Crossref | GoogleScholarGoogle Scholar | 20177448PubMed |

Shimada, T., Yamazaki, H., Mimura, M., Wakamiya, N., Ueng, Y.-F., Guengerich, F. P., and Inui, Y. (1996). Characterization of microsomal cytochrome P450 enzymes involved in the oxidation of xenobiotic chemicals in human fetal liver and adult lungs. Drug Metab. Dispos. 25, 512–522.

Sloboda, D. M., Challis, J. R., Moss, T. J., and Newnham, J. P. (2005). Synthetic glucocorticoids: Antenatal administration and long-term implications. Curr. Pharm. Des. 11, 1459–1472.
| 1:CAS:528:DC%2BD2MXjslais70%3D&md5=a14720741514b00dc753a00577795627CAS | 15853676PubMed |

Tateishi, T., Nakura, H., Asoh, M., Watanabe, M., Tanaka, M., Kumai, T., Takashima, S., Imaoka, S., Funae, Y., Yabusaki, Y., Kamataki, T., and Kobayashi, S. (1997). A comparison of hepatic cytochrome P450 protein expression between infancy and postinfancy. Life Sci. 61, 2567–2574.
A comparison of hepatic cytochrome P450 protein expression between infancy and postinfancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXnslWlur8%3D&md5=a244b0d4e074682ef1247cda3fe5d242CAS | 9416779PubMed |

Tilloy-Ellul, A., Raffalli-Mathieu, F., and Lang, M. A. (1999). Analysis of RNA-protein interactions of mouse liver cytochrome P4502A5 mRNA. Biochem. J. 339, 695–703.
Analysis of RNA-protein interactions of mouse liver cytochrome P4502A5 mRNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXksFKrsbs%3D&md5=21f4ecef614c02cbd3f24ca6de6be8cbCAS | 10215609PubMed |

Tirona, R. G., and Kim, R. B. (2005). Nuclear receptors and drug disposition gene regulation. J. Pharm. Sci. 94, 1169–1186.
Nuclear receptors and drug disposition gene regulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkvF2qt7k%3D&md5=c7f279495867a2b2b0fb48eb15bec4f6CAS | 15858847PubMed |

Tirona, R. G., Lee, W., Leake, B. F., Lan, L. B., Cline, C. B., Lamba, V., Parviz, F., Duncan, S. A., Inoue, Y., Gonzalez, F. J., Schuetz, E. G., and Kim, R. B. (2003). The orphan nuclear receptor HNF4alpha determines PXR- and CAR-mediated xenobiotic induction of CYP3A4. Nat. Med. 9, 220–224.
The orphan nuclear receptor HNF4alpha determines PXR- and CAR-mediated xenobiotic induction of CYP3A4.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXotlShtA%3D%3D&md5=b0d3388b4e4122be7e87e751a0d87b69CAS | 12514743PubMed |

Treluyer, J.-M., Jacqz-Augrain, E., Alvarez, F., and Cresteil, T. (1991). Expression of CYP2D6 in developing human liver. Eur. J. Biochem. 202, 583–588.
Expression of CYP2D6 in developing human liver.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XhvVyisw%3D%3D&md5=53603242a5c5796edc7be51fdf2587bbCAS | 1722149PubMed |

Treluyer, J.-M., Gueret, G., Cheron, G., Sonnier, M., and Cresteil, T. (1997). Developmental expression of CYP2C- and CYP2C-dependant activities in the human liver: in vivo/in vitro correlation and inducibility. Pharmacogenetics 7, 441–452.
Developmental expression of CYP2C- and CYP2C-dependant activities in the human liver: in vivo/in vitro correlation and inducibility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXotVChsb0%3D&md5=95f0e351495cd256a6bf16e94b61590cCAS | 9429229PubMed |

Tsao, C.-C., Wester, M. R., Ghanayem, B., Coulter, S. J., Chanas, B., Johnson, E. F., and Goldstein, J. A. (2001). Identification of human CYP2C19 residues that confer S-mephenytoin 4’-hydroxylation activity to CYP2C9. Biochemistry 40, 1937–1944.
Identification of human CYP2C19 residues that confer S-mephenytoin 4’-hydroxylation activity to CYP2C9.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlvVKqug%3D%3D&md5=c9b8650dba76011f66a4b87e5753a0d0CAS | 11329260PubMed |

Ulvila, J., Arpiainen, S., Pelkonen, O., Aida, K., Sueyoshi, T., Negishi, M., and Hakkola, J. (2004). Regulation of Cyp2a5 transcription in mouse primary hepatocytes: roles of hepatocyte nuclear factor 4 and nuclear factor I. J. Pharmacol. Exp. Ther. 381, 887–894.
| 1:CAS:528:DC%2BD2cXlvFKjs7w%3D&md5=dd0b284c24aeccf591c914116218047cCAS |

Wada, Y., Mitsuda, M., Ishihara, Y., Watanabe, M., Iwasaki, M., and Asahi, S. (2008). Important amino acid residues that confer CYP2C19 selective activity to CYP2C9. J. Biochem. 144, 323–333.
Important amino acid residues that confer CYP2C19 selective activity to CYP2C9.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhvFWitQ%3D%3D&md5=741ed4aec7ac0d60d1b38fbd0f71981aCAS | 18511451PubMed |

Wang, B., Yang, L.-P., Zhang, X.-Z., Huang, S.-Q., Bartlam, M., and Zhou, S.-F. (2009). New insights into the structural characteristics and functional relevance of the human cytochrome P450 2D6 enzyme. Drug Metab. Rev. 41, 573–643.
New insights into the structural characteristics and functional relevance of the human cytochrome P450 2D6 enzyme.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1KqurbE&md5=5fbdc08d0c50e341d28fa441e83b6d56CAS | 19645588PubMed |

Wester, M. R., Yano, J. K., Schoch, G. A., Yang, C., Griffin, K. J., Stout, C. D., and Johnson, E. F. (2004). The structure of human cytochrome P450 2C9 complexed with flurbiprofen at 2.0-A resolution. J. Biol. Chem. 279, 35 630–35 637.
The structure of human cytochrome P450 2C9 complexed with flurbiprofen at 2.0-A resolution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmsl2hsLs%3D&md5=474a9c5a22551a7d0f00ad5436a34e2dCAS |

Yano, J. K., Hsu, M.-H., Griffin, K. J., Stout, C. D., and Johnson, E. F. (2005). Structures of human microsomal cytochrome P450 2A6 complexed with coumarin and methoxsalen. Nat. Struct. Mol. Biol. 12, 822–823.
Structures of human microsomal cytochrome P450 2A6 complexed with coumarin and methoxsalen.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpslaqt7Y%3D&md5=3b68141d3cc3e7390643397f988d699dCAS | 16086027PubMed |

Yokomori, N., Nishio, K., Aida, K., and Negishi, M. (1997). Transcriptional regulation by HNF-4 of the steroid 15alpha-hydroxylase P450 (Cyp2a-4) gene in mouse liver. J. Steroid Biochem. Mol. Biol. 62, 307–314.
Transcriptional regulation by HNF-4 of the steroid 15alpha-hydroxylase P450 (Cyp2a-4) gene in mouse liver.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhtVarsA%3D%3D&md5=ef552f0db2bcc748648dc9d3bfc32f38CAS | 9408084PubMed |

Yuan, X., Ta, T. C., Lin, M., Evans, J. R., Dong, Y., Bolotin, E., Sherman, M. A., Forman, B. M., and Sladek, F. M. (2009). Identification of an endogenous ligand bound to a native orphan nuclear receptor. PLoS ONE 4, e5609.
Identification of an endogenous ligand bound to a native orphan nuclear receptor.Crossref | GoogleScholarGoogle Scholar | 19440305PubMed |