Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Paradoxical effects of kisspeptin: it enhances oocyte in vitro maturation but has an adverse impact on hatched blastocysts during in vitro culture

Islam M. Saadeldin A B , Ok Jae Koo A , Jung Taek Kang A , Dae Kee Kwon A , Sol Ji Park A , Su Jin Kim A , Joon Ho Moon A , Hyun Ju Oh A , Goo Jang A and Byeong Chun Lee A C
+ Author Affiliations
- Author Affiliations

A Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 151-742, Korea.

B Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, 44519, Egypt.

C Corresponding author. Email: bclee@snu.ac.kr

Reproduction, Fertility and Development 24(5) 656-668 https://doi.org/10.1071/RD11118
Submitted: 2 May 2011  Accepted: 30 July 2011   Published: 28 November 2011

Abstract

Kisspeptin (Kp) is best known as a multifunctional peptide with roles in reproduction, the cardiovascular system and cancer. In the present study the expression of kisspeptin hierarchy elements (KISS1, GNRH1 and LHB) and their receptors (KISS1R, GNRHR and LHCGR, respectively) in porcine ovary and in cumulus–oocyte complexes (COCs) were investigated, as were its effects on the in vitro maturation (IVM) of oocytes and their subsequent ability to sustain preimplantation embryo competence after parthenogenetic electrical activation. Kp system elements were expressed and affected IVM of oocytes when maturation medium was supplemented with 10–6 M Kp. Oocyte maturation, maternal gene expression (MOS, GDF9 and BMP15), blastocyst formation rate, blastocyst hatching and blastocyst total cell count were all significantly increased when oocytes were matured in medium containing Kp compared with the control group (without Kp). A Kp antagonist (p234) at 4 × 10–6 M interfered with this hierarchy but did not influence the threshold effect of gonadotrophins on oocyte maturation. FSH was critical and permissive to Kp action on COCs by increasing the relative expression of KISS1R. In contrast, Kp significantly increased apoptosis, the expression of pro-apoptotic gene, BAK1, and suppressed trophoblast outgrowths from hatched blastocysts cultured on feeder cells. The present study provides the first functional evidence of the Kp hierarchy in porcine COCs and its role in enhancing oocyte maturation and subsequent developmental competence in an autocrine–paracrine manner. However, Kp supplementation may have a harmful impact on cultured hatched blastocysts reflecting systemic or local regulation during the critical early period of embryonic development.

Additional keywords: embryo development, KISS1R, oocyte maturation, p234.


References

Armstrong, R. A., Reynolds, R. M., Leask, R., Shearing, C. H., Calder, A. A., and Riley, S. C. (2009). Decreased serum levels of kisspeptin in early pregnancy are associated with intra-uterine growth restriction and pre-eclampsia. Prenat. Diagn. 29, 982–985.
Decreased serum levels of kisspeptin in early pregnancy are associated with intra-uterine growth restriction and pre-eclampsia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVOhu77K&md5=ac88077121b923da27b14588d62e7b47CAS | 19582702PubMed |

Bilban, M., Ghaffari-Tabrizi, N., Hintermann, E., Bauer, S., Molzer, S., Zoratti, C., Malli, R., Sharabi, A., Hiden, U., Graier, W., Knöfler, M., Andreae, F., Wagner, O., Quaranta, V., and Desoye, G. (2004). Kisspeptin-10, a KiSS-1/metastin-derived decapeptide, is a physiological invasion inhibitor of primary human trophoblasts. J. Cell Sci. 117, 1319–1328.
Kisspeptin-10, a KiSS-1/metastin-derived decapeptide, is a physiological invasion inhibitor of primary human trophoblasts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjs1ygur4%3D&md5=6405135e07940d8205545cc75b715955CAS | 15020672PubMed |

Boyd, S. M., Hooper, M. L., and Wyllie, A. H. (1984). The mode of cell death associated with cavitation in teratocarcinoma-derived embryoid bodies. J. Embryol. Exp. Morphol. 80, 63–74.
| 1:STN:280:DyaL2c3ms1Klsg%3D%3D&md5=5cd402c48b8983c1e4dc459d8deac345CAS | 6747531PubMed |

Briant, C., Schneider, J., Guillaume, D., Ottogalli, M., Duchamp, G., Bruneau, B., and Caraty, A. (2006). Kisspeptin induces ovulation in cycling Welsh pony mares. Anim. Reprod. Sci. 94, 217–219.
Kisspeptin induces ovulation in cycling Welsh pony mares.Crossref | GoogleScholarGoogle Scholar |

Brown, D., Yu, B. D., Joza, N., Benit, P., Meneses, J., Fripo, M., Rustin, P., Penninger, J. M., and Martin, G. R. (2006). Loss of Aif function causes cell death in mouse embryos, but the temporal progression of patterning is normal. Proc. Natl. Acad. Sci. USA 103, 9918–9923.
Loss of Aif function causes cell death in mouse embryos, but the temporal progression of patterning is normal.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmvVajtLc%3D&md5=a6604b711b8662dde44a903be580a254CAS | 16788063PubMed |

Caraty, A., Smith, J. T., Lomet, D., Ben Saïd, S., Morrissey, A., Cognie, J., Doughton, B., Baril, G., Briant, C., and Clarke, I. J. (2007). Kisspeptin synchronizes preovulatory surges in cyclical ewes and causes ovulation in seasonally acyclic ewes. Endocrinology 148, 5258–5267.
Kisspeptin synchronizes preovulatory surges in cyclical ewes and causes ovulation in seasonally acyclic ewes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1aju7nM&md5=abc5114d495960447a5c6537b7f6c607CAS | 17702853PubMed |

Cárdenas, H., Jiménez, E., and Pope, W. F. (2008). Dihydrotestosterone influenced numbers of healthy follicles and follicular amounts of LH receptor mRNA during the follicular phase of the estrous cycle in gilts. Reproduction 135, 343–350.
Dihydrotestosterone influenced numbers of healthy follicles and follicular amounts of LH receptor mRNA during the follicular phase of the estrous cycle in gilts.Crossref | GoogleScholarGoogle Scholar | 18299427PubMed |

Castaño, J. P., Martínez-Fuentes, A. J., Gutiérrez-Pascual, E., Vaudry, H., Tena-Sempere, M., and Malagón, M. M. (2009). Intracellular signalling pathways activated by kisspeptins through GPR54: do multiple signals underlie function diversity? Peptides 30, 10–15.
Intracellular signalling pathways activated by kisspeptins through GPR54: do multiple signals underlie function diversity?Crossref | GoogleScholarGoogle Scholar | 18775460PubMed |

Castellano, J. M., Gaytan, M., Roa, J., Vigo, E., Navarro, V. M., Bellido, C., Dieguez, C., Aguilar, E., Sánchez-Criado, J. E., Pellicer, A., Pinilla, L., Gaytan, F., and Tena-Sempere, M. (2006). Expression of KiSS-1 in rat ovary: putative local regulator of ovulation? Endocrinology 147, 4852–4862.
Expression of KiSS-1 in rat ovary: putative local regulator of ovulation?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVSksbvF&md5=0310f19285c82a8a6eb082bdbf70f6eeCAS | 16825322PubMed |

Chun, S. Y., Eisenhauer, K. M., Minami, S., Billig, H., Perlas, E., and Hsueh, A. J. (1996). Hormonal regulation of apoptosis in early antral follicles: follicle-stimulating hormone as a major survival factor. Endocrinology 137, 1447–1456.
Hormonal regulation of apoptosis in early antral follicles: follicle-stimulating hormone as a major survival factor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhvVegtLk%3D&md5=076d30f81a15f64edc1ada657302bc48CAS | 8625923PubMed |

Constantin, S., Caligioni, C. S., Stojilkovic, S., and Wray, S. (2009). Kisspeptin-10 facilitates a plasma membrane-driven calcium oscillator in gonadotrophin-releasing hormone-1 neurons. Endocrinology 150, 1400–1412.
Kisspeptin-10 facilitates a plasma membrane-driven calcium oscillator in gonadotrophin-releasing hormone-1 neurons.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisV2gtbw%3D&md5=a653eb57d01bc66321a532c11fc6b41eCAS | 18948403PubMed |

de Roux, N., Genin, E., Carel, J. C., Matsuda, F., Chaussain, J. L., and Milgrom, E. (2003). Hypogonadotrophic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54. Proc. Natl. Acad. Sci. USA 100, 10 972–10 976.
Hypogonadotrophic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnslyntbc%3D&md5=30483991dc8cca129198072cd27c5edbCAS |

Dhillo, W. S., Savage, P., Murphy, K. G., Chaudhri, O. B., Patterson, M., Nijher, G. M., Foggo, V. M., Dancey, G. S., Mitchell, H., Seckl, M. J., Ghatei, M. A., and Bloom, S. R. (2006). Plasma kisspeptin is raised in patients with gestational trophoblastic neoplasia and falls during treatment. Am. J. Physiol. Endocrinol. Metab. 291, E878–E884.
Plasma kisspeptin is raised in patients with gestational trophoblastic neoplasia and falls during treatment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1Gns7nO&md5=0db9f9effa4cb7dc474ef51c2db2fc65CAS | 16757546PubMed |

Dungan, H. M., Clifton, D. K., and Steiner, R. A. (2006). Minireview: kisspeptin neurons as central processors in the regulation of gonadotrophin-releasing hormone secretion. Endocrinology 147, 1154–1158.
Minireview: kisspeptin neurons as central processors in the regulation of gonadotrophin-releasing hormone secretion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhvFygtr4%3D&md5=19589ff4c5dd670260cccf98180c0171CAS | 16373418PubMed |

El Majdoubi, M., Paruthiyil, S., and Weiner, E. R. (2003). Pulsatile luteinizing hormone and follicle-stimulating hormone secretion and gonadotrophin subunit mRNA levels in the ovariectomized GPR-4 transgenic rat. Neuroendocrinology 78, 287–293.
Pulsatile luteinizing hormone and follicle-stimulating hormone secretion and gonadotrophin subunit mRNA levels in the ovariectomized GPR-4 transgenic rat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpvFygsro%3D&md5=4090cae3a8c1b0855478ec32cb791ff3CAS | 14688441PubMed |

Felip, A., Zanuy, S., Pineda, R., Pinilla, L., Carrillo, M., Tena-Sempere, M., and Gómez, A. (2009). Evidence for two distinct KiSS genes in non-placental vertebrates that encode kisspeptins with different gonadotrophin-releasing activities in fish and mammals. Mol. Cell. Endocrinol. 312, 61–71.
Evidence for two distinct KiSS genes in non-placental vertebrates that encode kisspeptins with different gonadotrophin-releasing activities in fish and mammals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFKnsLrN&md5=4cb0360eeb8e58fe97ff91485ea1dfdbCAS | 19084576PubMed |

Filby, A. L., van Aerle, R., Duitman, J., and Tyler, C. R. (2008). The kisspeptin/gonadotrophin-releasing hormone pathway and molecular signalling of puberty in fish. Biol. Reprod. 78, 278–289.
The kisspeptin/gonadotrophin-releasing hormone pathway and molecular signalling of puberty in fish.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1Kru7k%3D&md5=02c5c4b8caa2842bd934587707414ce6CAS | 17978278PubMed |

Gaytán, F., Gaytán, M., Castellano, J. M., Romero, M., Roa, J., Aparicio, B., Garrido, N., Sánchez-Criado, J. E., Millar, R. P., Pellicer, A., Fraser, H. M., and Tena-Sempere, M. (2009). KiSS-1 in the mammalian ovary: distribution of kisspeptin in human and marmoset and alterations in KiSS-1 mRNA levels in a rat model of ovulatory dysfunction. Am. J. Physiol. Endocrinol. Metab. 296, E520–E531.
KiSS-1 in the mammalian ovary: distribution of kisspeptin in human and marmoset and alterations in KiSS-1 mRNA levels in a rat model of ovulatory dysfunction.Crossref | GoogleScholarGoogle Scholar | 19141682PubMed |

Gharib, S. D., Wierman, M. E., Shupnik, M. A., and Chin, W. W. (1990). Molecular biology of the pituitary gonadotrophins. Endocr. Rev. 11, 177–199.
Molecular biology of the pituitary gonadotrophins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXktlCktLw%3D&md5=0c303db053b9779024dcd7ca4e5a9e2aCAS | 2108012PubMed |

Haisenleder, D. J., Workman, L. J., Burger, L. L., Aylor, K. W., Dalkin, A. C., and Marshall, H. C. (2001). Gonadotrophin subunit transcriptional responses to calcium signals in the rat: evidence for regulation by pulse frequency. Biol. Reprod. 65, 1789–1793.
Gonadotrophin subunit transcriptional responses to calcium signals in the rat: evidence for regulation by pulse frequency.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXos1Knsbc%3D&md5=bae04fe035a549c59da0ef03220b85a7CAS | 11717142PubMed |

Hashiba, Y., Asada, Y., Heikinheimo, O., Lanzendorf, S. E., and Mizutani, S. (2001). Microinjection of antisense c-mos oligonucleotides prevents the progression of meiosis in human and hamster oocytes. Fertil. Steril. 76, 143–147.
Microinjection of antisense c-mos oligonucleotides prevents the progression of meiosis in human and hamster oocytes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MzosVGrtw%3D%3D&md5=77255d90dee28e2fcf2eacd100dd3bbeCAS | 11438333PubMed |

Hiden, U., Bilban, M., Knöfler, M., and Desoye, G. (2007). Kisspeptins and the placenta: regulation of trophoblast invasion. Rev. Endocr. Metab. Disord. 8, 31–39.
Kisspeptins and the placenta: regulation of trophoblast invasion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjs1ekurk%3D&md5=da70680f0fa875a9860011b36a923781CAS | 17351756PubMed |

Hillensjö, T., and LeMaire, W. J. (1980). Gonadotrophin-releasing hormone agonists stimulate meiotic maturation of follicle-enclosed rat oocytes in vitro. Nature 287, 145–146.
Gonadotrophin-releasing hormone agonists stimulate meiotic maturation of follicle-enclosed rat oocytes in vitro.Crossref | GoogleScholarGoogle Scholar | 7001246PubMed |

Hsueh, A. J., Adashi, E. Y., Jones, P. B., and Welsh, T. H., (1984). Hormonal regulation of the differentiation of cultured ovarian granulosa cells. Endocr Rev. 5, 76–127.
| 1:CAS:528:DyaL2cXhvVGrtrc%3D&md5=044dc50e8275fca63a2bc4349e0a3733CAS | 6142819PubMed |

Hsueh, A. J., Billig, H., and Tsafriri, A. (1994). Ovarian follicle atresia: a hormonally controlled apoptotic process. Endocr. Rev. 15, 707–724.
| 1:CAS:528:DyaK2MXjs12lsb8%3D&md5=fc3649297861ac7df73ad29b9e1c1bfbCAS | 7705278PubMed |

Hunter, M. G. (2000). Oocyte maturation and ovum quality in pigs. Rev. Reprod. 5, 122–130.
Oocyte maturation and ovum quality in pigs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjsleiu7k%3D&md5=9621c226c51d554f640452144d5b1055CAS | 10864857PubMed |

Inoue, N., Hirano, T., Uenoyama, Y., Tsukamura, X., Okamura, H., and Maeda, K. (2009). Localization of kisspeptin and gonadotrophin-releasing hormone (GnRH) in developing ovarian follicles of pigs and goats. Biol. Reprod. 81, 551.

Juengel, J. L., Bodensteiner, K. J., Heath, D. A., Hudson, N. L., Moeller, C. L., Smith, P., Galloway, S. M., Davis, G. H., Sawyer, H. R., and McNatty, K. P. (2004). Physiology of GDF9 and BMP15 signalling molecules. Anim. Reprod. Sci. 82–83, 447–460.
Physiology of GDF9 and BMP15 signalling molecules.Crossref | GoogleScholarGoogle Scholar | 15271472PubMed |

Kauffman, A. S., Gottsch, M. L., Roa, J., Byquist, A. C., Crown, A., Clifton, D. K., Hoffman, G. E., Steiner, R. A., and Tena-Sempere, M. (2007). Sexual differentiation of Kiss1 gene expression in the brain of the rat. Endocrinology 148, 1774–1783.
Sexual differentiation of Kiss1 gene expression in the brain of the rat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjvVOhtLw%3D&md5=23c8b3942adb28257cd23168503e882dCAS | 17204549PubMed |

Kirby, H. R., Maguire, J. J., Colledge, W. H., and Davenport, A. P. (2010). International Union of Basic and Clinical Pharmacology. LXXVII. Kisspeptin receptor nomenclature, distribution and function. Pharmacol. Rev. 62, 565–578.
International Union of Basic and Clinical Pharmacology. LXXVII. Kisspeptin receptor nomenclature, distribution and function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXktlel&md5=22520fc7bf9771034419a580e6a3767fCAS | 21079036PubMed |

Kroll, H., Bolsover, S., Hsu, J., Kim, S. H., and Bouloux, P. M. (2011). Kisspeptin-evoked calcium signals in isolated primary rat gonadotrophin-releasing hormone neurons. Neuroendocrinology 93, 114–120.
Kisspeptin-evoked calcium signals in isolated primary rat gonadotrophin-releasing hormone neurons.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXivFCnsLs%3D&md5=a967d9f7a054c63932ba37f405928b6dCAS | 21051881PubMed |

Krsmanovic, L. Z., Hu, L., Leung, P. K., Feng, H., and Catt, K. J. (2009). The hypothalamic GnRH pulse generator: multiple regulatory mechanisms. Trends Endocrinol. Metab. 20, 402–408.
The hypothalamic GnRH pulse generator: multiple regulatory mechanisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1Wnu7bN&md5=c975d20ac95ade0ae3dffca6bc922760CAS | 19740674PubMed |

Kubelka, M., Rimkeviĉová, Z., Guerrier, P., and Motlík, J. (1995). Inhibition of protein synthesis affects histone H1 kinase, but not chromosome condensation activity, during the first meiotic division of pig oocytes. Mol. Reprod. Dev. 41, 63–69.
Inhibition of protein synthesis affects histone H1 kinase, but not chromosome condensation activity, during the first meiotic division of pig oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXlsVagsrg%3D&md5=5987e644d778ed6e31485192c3dfa700CAS | 7619507PubMed |

Lee, J. H., Miele, M. E., Hicks, D. J., Phillips, K. K., Trent, J. M., Weissman, B. E., and Welch, D. R. (1996). KiSS-1, a novel human malignant melanoma metastasis-suppressor gene. J. Natl. Cancer Inst. 88, 1731–1737.
KiSS-1, a novel human malignant melanoma metastasis-suppressor gene.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2s%2FpvFChtA%3D%3D&md5=b566713545aee224d7c79b75e5fd619aCAS | 8944003PubMed |

Li, S., Ren, J., Yang, G., Guo, Y., and Huang, L. (2008). Characterization of the porcine Kisspeptins receptor gene and evaluation as candidate for timing of puberty in sows. Anim Breed Genet 125, 219–227.
Characterization of the porcine Kisspeptins receptor gene and evaluation as candidate for timing of puberty in sows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVWmtrnF&md5=3e405f3320abad58c0e6d90032f68903CAS |

Litichever, N., Gershon, E., Dekel, N., and Koch, Y. (2009). Hormonal regulation of GnRH and LHbeta mRNA expression in cultured rat granulosa cells. J. Mol. Neurosci. 39, 78–85.
Hormonal regulation of GnRH and LHbeta mRNA expression in cultured rat granulosa cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFaksbbJ&md5=4b5e17e9bbb1c219700b439b923640ebCAS | 19253008PubMed |

Liu, X., Lee, K., and Herbison, A. E. (2008). Kisspeptin excites gonadotrophin-releasing hormone neurons through a phospholipase C/calcium-dependent pathway regulating multiple ion channels. Endocrinology 149, 4605–4614.
Kisspeptin excites gonadotrophin-releasing hormone neurons through a phospholipase C/calcium-dependent pathway regulating multiple ion channels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVKnu7nL&md5=8db7c9fc7afa21754efb903fc21f470fCAS | 18483150PubMed |

Martinez-Fuentes, A., Molina, M., Vazquez-Martinez, R. M., Gahete, M. D., Jimenez-Reina, L., Moreno, J., Benito-Lopez, P., Quintero, A., de la Riva, A., Dieguez, C., Soto, A., Leal-Cerro, A., Resmini, E., Webb, S., Zatelli, M. C., Degli Uberti, E. C., Malagon, M. M., Luque, R., and Castano, J. P. (2011). Expression of functional KiSS-1 and KiSS-1R system is altered in human pituitary adenomas: evidence for apoptotic action of kisspeptin-10. Eur. J. Endocrinol. 164, 355–362.
Expression of functional KiSS-1 and KiSS-1R system is altered in human pituitary adenomas: evidence for apoptotic action of kisspeptin-10.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjslKjtLg%3D&md5=7122dd5a6011110afa5c2596387937dfCAS | 21169415PubMed |

Matsui, H., Takatsu, Y., Kumano, S., Matsumoto, H., and Ohtaki, T. (2004). Peripheral administration of metastin induces marked gonadotrophin release and ovulation in the rat. Biochem. Biophys. Res. Commun. 320, 383–388.
Peripheral administration of metastin induces marked gonadotrophin release and ovulation in the rat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlt1egtr8%3D&md5=11c0c741b37586ee6719acdcff0feef9CAS | 15219839PubMed |

McNatty, K. P., Juengel, J. L., Reader, K. L., Lun, S., Myllymaa, S., Lawrence, S. B., Western, A., Meerasahib, M. F., Mottershead, D. G., Groome, N. P., Ritvos, O., and Laitinen, M. P. (2005). Bone morphogenetic protein 15 and growth differentiation factor 9 co-operate to regulate granulosa cell function in ruminants. Reproduction 129, 481–487.
Bone morphogenetic protein 15 and growth differentiation factor 9 co-operate to regulate granulosa cell function in ruminants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjs1ertb0%3D&md5=97eeaef10dce5a730b96393c4e3774d3CAS | 15798023PubMed |

Mead, E. J., Maguire, J. J., Kuc, R. E., and Davenport, A. P. (2007). Kisspeptins: a multifunctional peptide system with a role in reproduction, cancer and the cardiovascular system. Br. J. Pharmacol. 151, 1143–1153.
Kisspeptins: a multifunctional peptide system with a role in reproduction, cancer and the cardiovascular system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXovFehsrk%3D&md5=b119a961486d85b37dca3e0d4bc1eff8CAS | 17519946PubMed |

Millar, R. P., Roseweir, A. K., Tello, J. A., Anderson, R. A., George, J. T., Morgan, K., and Pawson, A. J. (2010). Kisspeptin antagonists: unravelling the role of kisspeptin in reproductive physiology. Brain Res. 1364, 81–89.
Kisspeptin antagonists: unravelling the role of kisspeptin in reproductive physiology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVyht7zE&md5=1c95d7911e886a1298614f34cbd0283bCAS | 20858467PubMed |

Navenot, J. M., Fujii, N., and Peiper, S. C. (2009a). KiSS1 metastasis suppressor gene product induces suppression of tyrosine kinase receptor signalling to Akt, tumour necrosis factor family ligand expression and apoptosis. Mol. Pharmacol. 75, 1074–1083.
KiSS1 metastasis suppressor gene product induces suppression of tyrosine kinase receptor signalling to Akt, tumour necrosis factor family ligand expression and apoptosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlsFSlsrs%3D&md5=0f3aa1bd561f7b5634d43a448fda945fCAS | 19201817PubMed |

Navenot, J. M., Fujii, N., and Peiper, S. C. (2009b). Activation of Rho and Rho-associated kinase by GPR54 and KiSS1 metastasis suppressor gene product induces changes of cell morphology and contributes to apoptosis. Mol. Pharmacol. 75, 1300–1306.
Activation of Rho and Rho-associated kinase by GPR54 and KiSS1 metastasis suppressor gene product induces changes of cell morphology and contributes to apoptosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmvVWqsLk%3D&md5=a52a82c2982ceb2c3e5b4ccb3deb53e9CAS | 19286835PubMed |

Newman, B., and Dai, Y. (1996). Transcription of c-mos protooncogene in the pig involves both tissue-specific promoters and alternative polyadenylation sites. Mol. Reprod. Dev. 44, 275–288.
Transcription of c-mos protooncogene in the pig involves both tissue-specific promoters and alternative polyadenylation sites.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XkvFGlsr0%3D&md5=cb021fcc5946adc91ec6c247991d850fCAS | 8858597PubMed |

Nocillado, J. N., Levavi-Sivan, B., Carrick, F., and Elizur, A. (2007). Temporal expression of G-protein-coupled receptor 54 (GPR54), gonadotrophin-releasing hormones (GnRH), and dopamine receptor D2 (drd2) in pubertal female grey mullet, Mugil cephalus. Gen. Comp. Endocrinol. 150, 278–287.
Temporal expression of G-protein-coupled receptor 54 (GPR54), gonadotrophin-releasing hormones (GnRH), and dopamine receptor D2 (drd2) in pubertal female grey mullet, Mugil cephalus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xhtlagt7rK&md5=67f8e98ae36000ca366cb11e52d99ac5CAS | 17083940PubMed |

O’Keefe, S. J., Wolfes, H., Kiessling, A. A., and Cooper, G. M. (1989). Microinjection of antisense c-mos oligonucleotides prevents meiosis II in the maturing mouse egg. Proc. Natl. Acad. Sci. USA 86, 7038–7042.
Microinjection of antisense c-mos oligonucleotides prevents meiosis II in the maturing mouse egg.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXlvVyltLg%3D&md5=fd99f0b412c5fe7a98b7d6e50dfddec8CAS | 2476810PubMed |

Ohashi, S., Naito, K., Sugiura, K., Iwamori, N., Goto, S., Naruoka, H., and Tojo, H. (2003). Analyses of mitogen-activated protein kinase function in the maturation of porcine oocytes. Biol. Reprod. 68, 604–609.
Analyses of mitogen-activated protein kinase function in the maturation of porcine oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntVChtw%3D%3D&md5=fd48c13f46a72974b13f8d0f341db7cfCAS | 12533425PubMed |

Ohtaki, T., Shintani, Y., Honda, S., Matsumoto, H., Hori, A., Kanehashi, K., Terao, Y., Kumano, S., Takatsu, Y., Masuda, Y., Ishibashi, Y., Watanabe, T., Asada, M., Yamada, T., Suenaga, M., Kitada, C., Usuki, S., Kurokawa, T., Onda, H., Nishimura, O., and Fujino, M. (2001). Metastasis suppressor gene KiSS-1 encodes peptide ligand of a G-protein-coupled receptor. Nature 411, 613–617.
Metastasis suppressor gene KiSS-1 encodes peptide ligand of a G-protein-coupled receptor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXksVSgs7o%3D&md5=aa06449758aa4576b915bba800cfdbd5CAS | 11385580PubMed |

Okada, K., Krylov, V., Kren, R., and Fulka, J., (2006). Development of pig embryos after electro-activation and in vitro fertilization in PZM-3 or PZM supplemented with fetal bovine serum. J. Reprod. Dev. 52, 91–98.
Development of pig embryos after electro-activation and in vitro fertilization in PZM-3 or PZM supplemented with fetal bovine serum.Crossref | GoogleScholarGoogle Scholar | 16293938PubMed |

Okazaki, T., Nishibori, M., Yamashita, Y., and Shimada, M. (2003). LH reduces proliferative activity of cumulus cells and accelerates GVBD of porcine oocytes. Mol. Cell. Endocrinol. 209, 43–50.
LH reduces proliferative activity of cumulus cells and accelerates GVBD of porcine oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXos1Knt7o%3D&md5=56053b88e9bb14b9fd363f7dfcc72fd6CAS | 14604815PubMed |

Pati, D., and Habibi, H. R. (2002). Involvement of protein kinase C and arachidonic acid pathways in the gonadotrophin-releasing hormone regulation of oocyte meiosis and follicular steroidogenesis in the goldfish ovary. Biol. Reprod. 66, 813–822.
Involvement of protein kinase C and arachidonic acid pathways in the gonadotrophin-releasing hormone regulation of oocyte meiosis and follicular steroidogenesis in the goldfish ovary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhvVeiu7w%3D&md5=a9a85a64a018f9d05ddd8da9b86f0f51CAS | 11870090PubMed |

Pennetier, S., Uzbekova, S., Perreau, C., Papillier, P., Mermillod, P., and Dalbiès-Tran, R. (2004). Spatio-temporal expression of the germ cell marker genes MATER, ZAR1, GDF9, BMP15 and VASA in adult bovine tissues, oocytes and preimplantation embryos. Biol. Reprod. 71, 1359–1366.
Spatio-temporal expression of the germ cell marker genes MATER, ZAR1, GDF9, BMP15 and VASA in adult bovine tissues, oocytes and preimplantation embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnvVGquro%3D&md5=2330fe70e0fd48447448593608717a7fCAS | 15189828PubMed |

Pineda, R., Garcia-Galiano, D., Roseweir, A., Romero, M., Sanchez-Garrido, M. A., Ruiz-Pino, F., Morgan, K., Pinilla, L., Millar, R. P., and Tena-Sempere, M. (2010). Critical roles of kisspeptins in female puberty and preovulatory gonadotrophin surges as revealed by a novel antagonist. Endocrinology 151, 722–730.
Critical roles of kisspeptins in female puberty and preovulatory gonadotrophin surges as revealed by a novel antagonist.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVOqu78%3D&md5=f327bf0879f34daaceffef6d826e19e9CAS | 19952274PubMed |

Procházka, R., Nemcová, L., Nagyová, E., Scsuková, S., and Mlynarcíková, A. (2009). Development of functional LH Receptors on pig cumulus–oocyte complexes cultured in vitro by a novel two-step culture system. Mol. Reprod. Dev. 76, 751–761.
Development of functional LH Receptors on pig cumulus–oocyte complexes cultured in vitro by a novel two-step culture system.Crossref | GoogleScholarGoogle Scholar | 19382213PubMed |

Roa, J., and Tena-Sempere, M. (2007). KiSS-1 system and reproduction: comparative aspects and roles in the control of female gonadotrophic axis in mammals. Gen. Comp. Endocrinol. 153, 132–140.
KiSS-1 system and reproduction: comparative aspects and roles in the control of female gonadotrophic axis in mammals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotlSitL8%3D&md5=c3a39ceff948dda6e7434c3cd2aeb703CAS | 17324425PubMed |

Roa, J., Aguilar, E., Dieguez, C., Pinilla, L., and Tena-Sempere, M. (2008). New frontiers in kisspeptin/GPR54 physiology as fundamental gatekeepers of reproductive function. Front. Neuroendocrinol. 29, 48–69.
New frontiers in kisspeptin/GPR54 physiology as fundamental gatekeepers of reproductive function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXisFOrtg%3D%3D&md5=a188faa1fd52bb66b533d86ffa7d3176CAS | 17870152PubMed |

Roa, J., Castellano, J. M., Navarro, V. M., Handelsman, D. J., Pinilla, L., and Tena-Sempere, M. (2009). Kisspeptins and the control of gonadotrophin secretion in male and female rodents. Peptides 30, 57–66.
Kisspeptins and the control of gonadotrophin secretion in male and female rodents.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFCmsbfL&md5=18ed5c60619e3033a4c15403921a9f8fCAS | 18793689PubMed |

Roseweir, A. K., and Millar, R. P. (2009). The role of kisspeptin in the control of gonadotrophin secretion. Hum. Reprod. Update 15, 203–212.
The role of kisspeptin in the control of gonadotrophin secretion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1OgurY%3D&md5=1658bbde52b8b28d268f116a7d256618CAS | 19109311PubMed |

Roseweir, A. K., Kauffman, A. S., Smith, J. T., Guerriero, K. A., Morgan, K., Pielecka-Fortuna, J., Pineda, R., Gottsch, M. L., Tena-Sempere, M., Moenter, S. M., Terasawa, E., Clarke, I. J., Steiner, R. A., and Millar, R. P. (2009). Discovery of potent kisspeptin antagonists delineate physiological mechanisms of gonadotrophin regulation. J. Neurosci. 29, 3920–3929.
Discovery of potent kisspeptin antagonists delineate physiological mechanisms of gonadotrophin regulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktVSqtbY%3D&md5=ac718de5d1aad1ade5f2c65a6480e4aeCAS | 19321788PubMed |

Sagata, N., Oskarsson, M., Copeland, T., Brumbaugh, J., and Vande Woude, G. F. (1988). Function of c-mos proto-oncogene product in meiotic maturation in Xenopus oocytes. Nature 335, 519–525.
Function of c-mos proto-oncogene product in meiotic maturation in Xenopus oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXktFymt74%3D&md5=724da197d1e3376daec2f675f387a205CAS | 2971141PubMed |

Schirman-Hildesheim, T. D., Bar, T., Ben-Aroya, N., and Koch, Y. (2005). Differential gonadotrophin-releasing hormone (GnRH) and GnRH receptor messenger ribonucleic acid expression patterns in different tissues of the female rat across the estrous cycle. Endocrinology 146, 3401–3408.
Differential gonadotrophin-releasing hormone (GnRH) and GnRH receptor messenger ribonucleic acid expression patterns in different tissues of the female rat across the estrous cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXntVaitbk%3D&md5=c36166feb8cb1e06a8a40b2a0f86960cCAS | 15908340PubMed |

Seminara, S. B., Messager, S., Chatzidaki, E. E., Thresher, R. R., Acierno, J. S., , Shagoury, J. K., Bo-Abbas, Y., Kuohung, W., Schwinof, K. M., Hendrick, A. G., Zahn, D., Dixon, J., Kaiser, U. B., Slaugenhaupt, S. A., Gusella, J. F., O’Rahilly, S., Carlton, M. B., Crowley, W. F., , Aparicio, S. A., and Colledge, W. H. (2003). The GPR54 gene as a regulator of puberty. N. Engl. J. Med. 349, 1614–1627.
The GPR54 gene as a regulator of puberty.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXosFWrsr8%3D&md5=0846c024c3a5adbed8c71e1e9274868fCAS | 14573733PubMed |

Shahed, A., and Young, K. A. (2009). Differential ovarian expression of KiSS-1 and GPR-54 during the estrous cycle and photoperiod induced recrudescence in Siberian hamsters (Phodopus sungorus). Mol. Reprod. Dev. 76, 444–452.
Differential ovarian expression of KiSS-1 and GPR-54 during the estrous cycle and photoperiod induced recrudescence in Siberian hamsters (Phodopus sungorus).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktVWjt70%3D&md5=a0d0f136ed4021445853618c61c89fc4CAS | 18937338PubMed |

Shupnik, M. A., and Fallest, P. C. (1994). Pulsatile GnRH regulation of gonadotrophin subunit gene transcription. Neurosci. Biobehav. Rev. 18, 597–599.
Pulsatile GnRH regulation of gonadotrophin subunit gene transcription.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjs1yru7s%3D&md5=713f39e2a140431404a4f55ae503328eCAS | 7708375PubMed |

Smith, J. T., Cunningham, M. J., Rissman, E. F., Clifton, D. K., and Steiner, R. A. (2005a). Regulation of Kiss1 gene expression in the brain of the female mouse. Endocrinology 146, 3686–3692.
Regulation of Kiss1 gene expression in the brain of the female mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpsVehurY%3D&md5=533eb438ac4805761b4af20a61702edbCAS | 15919741PubMed |

Smith, J. T., Dungan, H. M., Stoll, E. A., Gottsch, M. L., Braun, R. E., Eacker, S. M., Clifton, D. K., and Steiner, R. A. (2005b). Differential regulation of KiSS-1 mRNA expression by sex steroids in the brain of the male mouse. Endocrinology 146, 2976–2984.
Differential regulation of KiSS-1 mRNA expression by sex steroids in the brain of the male mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlslGhsLg%3D&md5=7c0678d9feadaecdb5da2f18c5f105eeCAS | 15831567PubMed |

Smith, J. T., Li, Q., Sing Yap, K., Shahab, M., Roseweir, A. K., Millar, R. P., and Clarke, I. J. (2011). Kisspeptin is essential for the full preovulatory LH surge and stimulates GnRH release from the isolated ovine median eminence. Endocrinology , .
Kisspeptin is essential for the full preovulatory LH surge and stimulates GnRH release from the isolated ovine median eminence.Crossref | GoogleScholarGoogle Scholar | 21239443PubMed |

Sun, L., Haun, S., Jones, R. C., Edmondson, R. D., and Machaca, K. (2009). Kinase-dependent regulation of inositol 1,4,5-trisphosphate-dependent Ca2+ release during oocyte maturation. J. Biol. Chem. 284, 20 184–20 196.
Kinase-dependent regulation of inositol 1,4,5-trisphosphate-dependent Ca2+ release during oocyte maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXos1ensL4%3D&md5=e13e63e7646d744c6364a918703872c7CAS |

Takekida, S., Matsuo, H., and Maruo, T. (2003). GnRH agonist action on granulosa cells at varying follicular stages. Mol. Cell. Endocrinol. 202, 155–164.
GnRH agonist action on granulosa cells at varying follicular stages.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktFSnsbY%3D&md5=73bd529596ae71c950a2acf1c06cf95cCAS | 12770745PubMed |

Tena-Sempere, M. (2006a). GPR54 and kisspeptin in reproduction. Hum. Reprod. Update 12, 631–639.
GPR54 and kisspeptin in reproduction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xotl2lsrc%3D&md5=e4068a928f0c81e1aad1cfaa679533cdCAS | 16731583PubMed |

Tena-Sempere, M. (2006b). KiSS-1 and reproduction: focus on its role in the metabolic regulation of fertility. Neuroendocrinology 83, 275–281.
KiSS-1 and reproduction: focus on its role in the metabolic regulation of fertility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1SrtL3L&md5=88ca90ec7058e61396b8cdd0dc7d3cc4CAS | 16940711PubMed |

Terao, Y., Kumano, S., Takatsu, Y., Hattori, M., Nishimura, A., Ohtaki, T., and Shintani, Y. (2004). Expression of KiSS-1, a metastasis suppressor gene, in trophoblast giant cells of the rat placenta. Biochim. Biophys. Acta 1678, 102–110.
| 1:CAS:528:DC%2BD2cXkt1Smtb8%3D&md5=51274fd7d5b49c45a056eac02ac39a77CAS | 15157736PubMed |

Tomikawa, J., Homma, T., Tajima, S., Shibata, T., Inamoto, Y., Takase, K., Inoue, N., Ohkura, S., Uenoyama, Y., Maeda, K., and Tsukamura, H. (2010). Molecular characterization and estrogen regulation of hypothalamic KISS1 gene in the pig. Biol. Reprod. 82, 313–319.
Molecular characterization and estrogen regulation of hypothalamic KISS1 gene in the pig.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVSnsLg%3D&md5=b2bbc4c37e222f4ac1009feb96e09b45CAS | 19828777PubMed |

Torricelli, M., Galleri, L., Voltolini, C., Biliotti, G., Florio, P., De Bonis, M., and Petraglia, F. (2008). Changes of placental Kiss-1 mRNA expression and maternal/cord kisspeptin levels at preterm delivery. Reprod. Sci. 15, 779–784.
Changes of placental Kiss-1 mRNA expression and maternal/cord kisspeptin levels at preterm delivery.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlyjtbvL&md5=c29e623ef70142d500e1bcd474aa3452CAS | 19017815PubMed |

Vaudry, H. (2010). Antagonizing kisspeptins: physiological lessons and pharmacological challenges. Endocrinology 151, 448–450.
Antagonizing kisspeptins: physiological lessons and pharmacological challenges.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVOqtLw%3D&md5=8129ecfd5df6ccfd623496892da64449CAS | 20100915PubMed |

Yoshioka, K., Suzuki, C., Tanaka, A., Anas, M.-K. I., and Iwamura, S. (2002). Birth of piglets derived from porcine zygotes cultured in a chemically defined medium. Biol. Reprod. 66, 112–119.
Birth of piglets derived from porcine zygotes cultured in a chemically defined medium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xht1yksQ%3D%3D&md5=1222cf9263515655d52deba5e03ac896CAS | 11751272PubMed |

Zhang, D. X., Li, X. P., Sun, S. C., Shen, X. H., Cui, X. S., and Kim, N. H. (2010). Involvement of ER-calreticulin-Ca2+ signalling in the regulation of porcine oocyte meiotic maturation and maternal gene expression. Mol. Reprod. Dev. 77, 462–471.
Involvement of ER-calreticulin-Ca2+ signalling in the regulation of porcine oocyte meiotic maturation and maternal gene expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjvFKqt74%3D&md5=b0c65439d22b01eb1ea515d9d3ad9aa7CAS | 20222029PubMed |