Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Temporal effects of exogenous oocyte-secreted factors on bovine oocyte developmental competence during IVM

Tamer S. Hussein A , Melanie L. Sutton-McDowall A , Robert B. Gilchrist A B and Jeremy G. Thompson A B C
+ Author Affiliations
- Author Affiliations

A Robinson Institute, Research Centre for Reproductive Health, School of Paediatrics and Reproductive Health, The University of Adelaide, Adelaide, SA 5005, Australia.

B Joint last authors.

C Corresponding author. Email: jeremy.thompson@adelaide.edu.au

Reproduction, Fertility and Development 23(4) 576-584 https://doi.org/10.1071/RD10323
Submitted: 29 November 2010  Accepted: 16 December 2010   Published: 3 May 2011

Abstract

We investigated whether paracrine signalling between the bovine oocyte and cumulus cells is altered during the course of in vitro maturation (IVM). Bovine COCs were cocultured with denuded oocytes or treated with specific oocyte-secreted factors, namely recombinant bone morphogenetic protein (BMP)-15 or growth differentiation factor (GDF)-9, beginning from 0 or 9 h IVM. To generate a 9-h denuded oocyte (DO) group, COCs were cultured intact for the first 9 h of IVM and then denuded. Coculturing intact COCs with DOs denuded immediately after collection or following 9 h of maturation did not affect cleavage rate, but improved blastocyst yield (P < 0.05) on Day 8 (51 and 61%, respectively; P < 0.05) and cell number compared with COCs cultured alone (41%). Significantly, we observed higher levels of endogenous GDF-9 and BMP-15 protein in oocytes of COCs matured for 9 h compared with no incubation. The addition of 175 ng mL–1 GDF-9 or 10% v/v BMP-15 from partially purified transfected 293H cell supernatant for 24 h IVM significantly enhanced development to the blastocyst stage from 40% (control) to 51 and 47%, respectively (P < 0.05). However, treatment of COCs with GDF-9 or BMP-15 between 9 and 24 h of IVM did not increase blastocyst yield. These results provide evidence of quantitative and possibly qualitative temporal changes in oocyte paracrine factor production during IVM.

Additional keywords: bone morphogenetic proteins, cumulus–oocyte complex, growth differentiation factors.


References

Albertini, D. F., Combelles, C. M. H., Benecchi, E., and Carabastsos, M. J. (2001). Cellular basis for paracrine regulation of ovarian follicle development. Reproduction 121, 647–653.
Cellular basis for paracrine regulation of ovarian follicle development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXktVaisbY%3D&md5=f6ad440f61b5b59dc69c8e28a6fb16beCAS | 11427152PubMed |

Anderson, E., and Albertini, D. F. (1976). Gap junctions between the oocyte and companion follicle cells in the mammalian ovary. J. Cell Biol. 71, 680–686.
Gap junctions between the oocyte and companion follicle cells in the mammalian ovary.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE2s%2FltFCgtA%3D%3D&md5=e50e7d94c6433644959a8702f1e1bc3cCAS | 825522PubMed |

Buccione, R., Schroeder, A. C., and Eppig, J. J. (1990). Interactions between somatic cells and germ cells throughout mammalian oogenesis. Biol. Reprod. 43, 543–547.
Interactions between somatic cells and germ cells throughout mammalian oogenesis.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3M7ksFGiuw%3D%3D&md5=8fa59218298c723842e3706fc308dd57CAS | 2289008PubMed |

Carabatsos, M. J., Sellitto, C., Goodenough, D. A., and Albertini, D. F. (2000). Oocyte–granulosa cell heterologous gap junctions are required for the coordination of nuclear and cytoplasmic meiotic competence. Dev. Biol. 226, 167–179.
Oocyte–granulosa cell heterologous gap junctions are required for the coordination of nuclear and cytoplasmic meiotic competence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXntFSjtrY%3D&md5=aef44be930c2b0f344e4e91bd0c0a9b2CAS | 11023678PubMed |

Cecconi, S., Tatone, C., Buccione, R., Mangia, F., and Colonna, R. (1991). Granulosa cell–oocyte interactions: the phosphorylation of specific proteins in mouse oocytes at the germinal vesicle stage is dependent upon the differentiative state of companion somatic cells. J. Exp. Zool. 258, 249–254.
Granulosa cell–oocyte interactions: the phosphorylation of specific proteins in mouse oocytes at the germinal vesicle stage is dependent upon the differentiative state of companion somatic cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXkt1Kksbg%3D&md5=b54bf96a30cc7b798fb9679ae4c684b6CAS | 2022950PubMed |

Dragovic, R. A., Ritter, L. J., Schulz, S. J., Amato, F., Armstrong, D. T., and Gilchrist, R. B. (2005). Role of oocyte-secreted growth differentiation factor 9 in the regulation of mouse cumulus expansion. Endocrinology 146, 2798–2806.
Role of oocyte-secreted growth differentiation factor 9 in the regulation of mouse cumulus expansion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkslehsrg%3D&md5=cf0ba526a65f7a6cb60e146ee55f9cf0CAS | 15761035PubMed |

Eppig, J. J. (1982). The relationship between cumulus cell–oocyte coupling, oocyte meiotic maturation, and cumulus expansion. Dev. Biol. 89, 268–272.
The relationship between cumulus cell–oocyte coupling, oocyte meiotic maturation, and cumulus expansion.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL38%2FpsF2msw%3D%3D&md5=2986baaca4cc2fcc6fbce0df6a17846aCAS | 7054011PubMed |

Eppig, J. J. (2001). Oocyte control of ovarian follicular development and function in mammals. Reproduction 122, 829–838.
Oocyte control of ovarian follicular development and function in mammals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhvVWjsw%3D%3D&md5=bcab819b1164cc65fc109559ad1c77e7CAS | 11732978PubMed |

Eppig, J. J., Chesnel, F., Hirao, Y., O’Brien, M. J., Pendola, F. L., Watanabe, S., and Wigglesworth, K. (1997). Oocyte control of granulosa cell development: how and why. Hum. Reprod. 12, 127–132..
| 1:STN:280:DyaK1c%2FpsVSmug%3D%3D&md5=1a56da10a169cbdf2306fa0835b1cf6fCAS | 9433969PubMed |

Eppig, J. J., Pendola, F. L., Wigglesworth, K., and Pendola, J. K. (2005). Mouse oocytes regulate metabolic cooperativity between granulosa cells and oocytes: amino acid transport. Biol. Reprod. 73, 351–357.
Mouse oocytes regulate metabolic cooperativity between granulosa cells and oocytes: amino acid transport.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXms1yqsLk%3D&md5=cbeb3bbcd353f682aaf7e30085def117CAS | 15843493PubMed |

Eppig, J. J., O’Brien, M. J., Wigglesworth, K., Nicholson, A., Zhang, W., and King, B. A. (2009). Effect of in vitro maturation of mouse oocytes on the health and lifespan of adult offspring. Hum. Reprod. 24, 922–928.
Effect of in vitro maturation of mouse oocytes on the health and lifespan of adult offspring.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1M3htlyrsw%3D%3D&md5=c817dd809dc48cdeadc41aabfe0d9394CAS | 19151027PubMed |

Fatehi, A. N., Zeinstra, E. C., Kooij, R. V., Colenbrander, B., and Bevers, M. M. (2002). Effect of cumulus cell removal of in vitro matured bovine oocytes prior to in vitro fertilization on subsequent cleavage rate. Theriogenology 57, 1347–1355.
Effect of cumulus cell removal of in vitro matured bovine oocytes prior to in vitro fertilization on subsequent cleavage rate.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD383mvF2hsA%3D%3D&md5=231b1a6236efebb042e99b461a6c52d2CAS | 12013454PubMed |

Fouladi-Nashta, A. A., Alberio, R., Kafi, M., Nicholas, B., Campbell, K. H., and Webb, R. (2005). Differential staining combined with TUNEL labelling to detect apoptosis in preimplantation bovine embryos. Reprod. Biomed. Online 10, 497–502.
Differential staining combined with TUNEL labelling to detect apoptosis in preimplantation bovine embryos.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2M3mtFKgtw%3D%3D&md5=641b75533855f58c1d377f6136c650aaCAS | 15901458PubMed |

Fukui, Y., and Sakuma, Y. (1980). Maturation of bovine oocytes cultured in vitro: relation to ovarian activity, follicular size and the presence or absence of cumulus cells. Biol. Reprod. 22, 669–673..
| 1:STN:280:DyaL3c3itFentA%3D%3D&md5=b3691f8863a616857e5be77137435670CAS | 7388112PubMed |

Fulka, J.,, First, N. L., and Moor, R. M. (1998). Nuclear and cytoplasmic determinants involved in the regulation of mammalian oocyte maturation. Mol. Hum. Reprod. 4, 41–49.
Nuclear and cytoplasmic determinants involved in the regulation of mammalian oocyte maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhvV2qtL8%3D&md5=43ce9cd65bcfb7da1a4816b0a59608acCAS | 9510010PubMed |

Gilchrist, R. B. (2011). Recent insights into oocyte–follicle cell interactions provide opportunities for the development of new approaches to IVM. Reprod. Fertil. Dev. 23, 23–31..
| 21366977PubMed |

Gilchrist, R. B., and Thompson, J. G. (2007). Oocyte maturation: emerging concepts and technologies to improve developmental potential in vitro. Theriogenology 67, 6–15.
Oocyte maturation: emerging concepts and technologies to improve developmental potential in vitro.Crossref | GoogleScholarGoogle Scholar | 17092551PubMed |

Gilchrist, R. B., Ritter, L. J., and Armstrong, D. T. (2001). Mouse oocyte mitogenic activity is developmentally coordinated throughout folliculogenesis and meiotic maturation. Dev. Biol. 240, 289–298.
Mouse oocyte mitogenic activity is developmentally coordinated throughout folliculogenesis and meiotic maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXptFegtrc%3D&md5=8cc2920ae38f948aa1233e078f05f551CAS | 11784064PubMed |

Gilchrist, R. B., Ritter, L. J., and Armstrong, D. T. (2004a). Oocyte–somatic cell interactions during follicle development in mammals. Anim. Reprod. Sci. 82–83, 431–446.
Oocyte–somatic cell interactions during follicle development in mammals.Crossref | GoogleScholarGoogle Scholar | 15271471PubMed |

Gilchrist, R. B., Ritter, L. J., Cranfield, M., Jeffery, L. A., Amato, F., Scott, S. J., Myllymaa, S., Kaivo-Oja, N., Lankinen, H., Mottershead, D. G., Groome, N. P., and Ritvos, O. (2004b). Immunoneutralization of growth differentiation factor 9 reveals it partially accounts for mouse oocyte mitogenic activity. Biol. Reprod. 71, 732–739.
Immunoneutralization of growth differentiation factor 9 reveals it partially accounts for mouse oocyte mitogenic activity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntFejtLY%3D&md5=25dd100b50b34f821c049cf0891a0f5fCAS | 15128595PubMed |

Gilchrist, R. B., Ritter, L. J., Myllymaa, S., Kaivo-Oja, N., Dragovic, R. A., Hickey, T. E., Ritvos, O., and Mottershead, D. G. (2006). Molecular basis of oocyte–paracrine signalling that promotes mouse granulosa cell proliferation. J. Cell Sci. 119, 3811–3821.
Molecular basis of oocyte–paracrine signalling that promotes mouse granulosa cell proliferation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFCgt7vJ&md5=a01161338ce9cd1a555f35879adfd842CAS | 16926195PubMed |

Gilchrist, R. B., Lane, M., and Thompson, J. G. (2008). Oocyte-secreted factors: regulators of cumulus cell function and oocyte quality. Hum. Reprod. Update 14, 159–177.
Oocyte-secreted factors: regulators of cumulus cell function and oocyte quality.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXisVKmurY%3D&md5=ec4994d45ddf61de382a6d71e49eeaa6CAS | 18175787PubMed |

Gittens, J. E., Barr, K. J., Vanderhyden, B. C., and Kidder, G. M. (2005). Interplay between paracrine signaling and gap junctional communication in ovarian follicles. J. Cell Sci. 118, 113–122.
Interplay between paracrine signaling and gap junctional communication in ovarian follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhsVCrtbc%3D&md5=25f04d42acdb7693aa8ea69e504cd73dCAS | 15585573PubMed |

Gosden, R., Krapez, J., and Briggs, D. (1997). Growth and development of the mammalian oocyte. Bioessays 19, 875–882.
Growth and development of the mammalian oocyte.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1c%2FjtVWktQ%3D%3D&md5=55ea10afa1fbbedfdffea612e6413aa6CAS | 9363681PubMed |

Gueripel, X., Brun, V., and Gougeon, A. (2006). Oocyte bone morphogenetic protein 15, but not growth differentiation factor 9, is increased during gonadotropin-induced follicular development in the immature mouse and is associated with cumulus oophorus expansion. Biol. Reprod. 75, 836–843.
Oocyte bone morphogenetic protein 15, but not growth differentiation factor 9, is increased during gonadotropin-induced follicular development in the immature mouse and is associated with cumulus oophorus expansion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1yjsbfO&md5=8bf225527037659d72e448c19cc40f19CAS | 16943361PubMed |

Hickey, T. E., Marrocco, D. L., Amato, F., Ritter, L. J., Norman, R. J., Gilchrist, R. B., and Armstrong, D. T. (2005). Androgens augment the mitogenic effects of oocyte-secreted factors and growth differentiation factor 9 on porcine granulosa cells. Biol. Reprod. 73, 825–832.
Androgens augment the mitogenic effects of oocyte-secreted factors and growth differentiation factor 9 on porcine granulosa cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVCgtrnO&md5=b42e2c13a15b57404bdbea1593157c42CAS | 15972887PubMed |

Hussein, T. S., Froiland, D. A., Amato, F., Thompson, J. G., and Gilchrist, R. B. (2005). Oocytes prevent cumulus cell apoptosis by maintaining a morphogenic paracrine gradient of bone morphogenetic proteins. J. Cell Sci. 118, 5257–5268.
Oocytes prevent cumulus cell apoptosis by maintaining a morphogenic paracrine gradient of bone morphogenetic proteins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlWru7rK&md5=cd5206931fe74a00e34a042bb1fa7eaaCAS | 16263764PubMed |

Hussein, T. S., Thompson, J. G., and Gilchrist, R. B. (2006). Oocyte-secreted factors enhance oocyte developmental competence. Dev. Biol. 296, 514–521.
Oocyte-secreted factors enhance oocyte developmental competence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XotV2gsb4%3D&md5=f5422aafc3526afdfce8cf9e6068acc2CAS | 16854407PubMed |

Juengel, J. L., and McNatty, K. P. (2005). The role of proteins of the transforming growth factor-beta superfamily in the intraovarian regulation of follicular development. Hum. Reprod. Update 11, 143–160..
| 1:CAS:528:DC%2BD2MXitV2jtrg%3D&md5=e8b8a69c9f05d1a260f6ae8b91bf7101CAS | 15705960PubMed |

Ka, H. H., Sawai, K., Wang, W. H., Im, K. S., and Niwa, K. (1997). Amino acids in maturation medium and presence of cumulus cells at fertilization promote male pronuclear formation in porcine oocytes matured and penetrated in vitro. Biol. Reprod. 57, 1478–1483.
Amino acids in maturation medium and presence of cumulus cells at fertilization promote male pronuclear formation in porcine oocytes matured and penetrated in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXnvVaiurw%3D&md5=bda3d668cdcb4e3636879d27860c5d13CAS | 9408257PubMed |

Kidder, G. M., and Mhawi, A. A. (2002). Gap junctions and ovarian folliculogenesis. Reproduction 123, 613–620.
Gap junctions and ovarian folliculogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjvVGgtL8%3D&md5=c71907a6faef2acd067b3cf674865e2dCAS | 12006089PubMed |

Li, R., Norman, R. J., Armstrong, D. T., and Gilchrist, R. B. (2000). Oocyte-secreted factor(s) determine functional differences between bovine mural granulosa cells and cumulus cells. Biol. Reprod. 63, 839–845.
Oocyte-secreted factor(s) determine functional differences between bovine mural granulosa cells and cumulus cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmtFCiu7g%3D&md5=8940970846168268b51cc098c8474102CAS | 10952929PubMed |

Li, H.-K., Kuo, T.-Y., Yang, H.-S., Chen, L.-R., Li, S. S.-L., and Huang, H.-W. (2008). Differential gene expression of bone morphogenetic protein 15 and growth differentiating factor 9 during in vitro maturation of porcine oocytes and early embryos. Anim. Reprod. Sci. 103, 312–322.
Differential gene expression of bone morphogenetic protein 15 and growth differentiating factor 9 during in vitro maturation of porcine oocytes and early embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVSmtb7O&md5=af611034faadaebbcd71661231d51673CAS | 17222994PubMed |

Luciano, A. M., Lodde, V., Beretta, M. S., Colleoni, S., Lauria, A., and Modina, S. (2005). Developmental capability of denuded bovine oocyte in a co-culture system with intact cumulus–oocyte complexes: role of cumulus cells, cyclic adenosine 3′,5′-monophosphate and glutathione. Mol. Reprod. Dev. 71, 389–397.
Developmental capability of denuded bovine oocyte in a co-culture system with intact cumulus–oocyte complexes: role of cumulus cells, cyclic adenosine 3′,5′-monophosphate and glutathione.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltFyhs78%3D&md5=8dd2bf5536aedfddcc00b7f84b99d21dCAS | 15803456PubMed |

McElroy, S. L., Byrne, J. A., Chavez, S. L., Behr, B., Hsueh, A. J., Westphal, L. M., and Reijo Pera, R. A. (2010). Parthenogenic blastocysts derived from cumulus-free in vitro matured human oocytes. PLoS ONE 5, e10979.
Parthenogenic blastocysts derived from cumulus-free in vitro matured human oocytes.Crossref | GoogleScholarGoogle Scholar | 20539753PubMed |

McNatty, K. P., Juengel, J. L., Reader, K. L., Lun, S., Myllymaa, S., Lawrence, S. B., Western, A., Meerasahib, M. F., Mottershead, D. G., Groome, N. P., Ritvos, O., and Laitinen, M. P. (2005). Bone morphogenetic protein 15 and growth differentiation factor 9 co-operate to regulate granulosa cell function in ruminants. Reproduction 129, 481–487.
Bone morphogenetic protein 15 and growth differentiation factor 9 co-operate to regulate granulosa cell function in ruminants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjs1ertb0%3D&md5=97eeaef10dce5a730b96393c4e3774d3CAS | 15798023PubMed |

Moor, R. M., Smith, M. W., and Dawson, R. M. (1980). Measurement of intercellular coupling between oocytes and cumulus cells using intracellular markers. Exp. Cell Res. 126, 15–29.
Measurement of intercellular coupling between oocytes and cumulus cells using intracellular markers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXhvFWlu7g%3D&md5=768830e7ef437a9c290ebe7feeb3492fCAS | 7358087PubMed |

Portela, V. M., Machado, M., Buratini, J.,, Zamberlam, G., Amorim, R. L., Goncalves, P., and Price, C. A. (2010). Expression and function of fibroblast growth factor 18 in the ovarian follicle in cattle. Biol. Reprod. 83, 339–346.
Expression and function of fibroblast growth factor 18 in the ovarian follicle in cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVyrsrrI&md5=69db98c120e09a36c0fc1d13c6b6b6acCAS | 20484739PubMed |

Romaguera, R., Morato, R., Jimenez-Macedo, A. R., Catala, M., Roura, M., Paramio, M. T., Palomo, M. J., Mogas, T., and Izquierdo, D. (2010). Oocyte secreted factors improve embryo developmental competence of COCs from small follicles in prepubertal goats. Theriogenology 74, 1050–1059.
Oocyte secreted factors improve embryo developmental competence of COCs from small follicles in prepubertal goats.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3cjpvFyisg%3D%3D&md5=b785d47625c570bf4a5e433ecd65d086CAS | 20542547PubMed |

Sasseville, M., Ritter, L. J., Nguyen, T. M., Liu, F., Mottershead, D. G., Russell, D. L., and Gilchrist, R. B. (2010). Growth differentiation factor 9 signaling requires ERK1/2 activity in mouse granulosa and cumulus cells. J. Cell Sci. 123, 3166–3176.
Growth differentiation factor 9 signaling requires ERK1/2 activity in mouse granulosa and cumulus cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlGls73I&md5=c61184780d98abfce8ee8450033c974bCAS | 20736313PubMed |

Sirard, M. A., and Bilodeau, S. (1990). Effects of granulosa cell co-culture on in-vitro meiotic resumption of bovine oocytes. J. Reprod. Fertil. 89, 459–465.
Effects of granulosa cell co-culture on in-vitro meiotic resumption of bovine oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXlt12rtb8%3D&md5=b2d44b26312197793a1fa7ec3ad90c5fCAS | 1698225PubMed |

Su, Y. Q., Sugiura, K., Li, Q., Wigglesworth, K., Matzuk, M. M., and Eppig, J. J. (2010). Mouse oocytes enable LH-induced maturation of the cumulus–oocyte complex via promoting EGF receptor-dependent signaling. Mol. Endocrinol. 24, 1230–1239.
Mouse oocytes enable LH-induced maturation of the cumulus–oocyte complex via promoting EGF receptor-dependent signaling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXns1Smur4%3D&md5=b8fa4dc25361e2176ae4d8a8ab19df29CAS | 20382892PubMed |

Sugiura, K., and Eppig, J. J. (2005). Society for Reproductive Biology Founders’ Lecture 2005. Control of metabolic cooperativity between oocytes and their companion granulosa cells by mouse oocytes. Reprod. Fertil. Dev. 17, 667–674.
Society for Reproductive Biology Founders’ Lecture 2005. Control of metabolic cooperativity between oocytes and their companion granulosa cells by mouse oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFKkt7%2FK&md5=8cce4882bb3a1db03096957584c82c8dCAS | 16364219PubMed |

Sugiura, K., Su, Y. Q., Diaz, F. J., Pangas, S. A., Sharma, S., Wigglesworth, K., O’Brien, M. J., Matzuk, M. M., Shimasaki, S., and Eppig, J. J. (2007). Oocyte-derived BMP15 and FGFs cooperate to promote glycolysis in cumulus cells. Development 134, 2593–2603.
Oocyte-derived BMP15 and FGFs cooperate to promote glycolysis in cumulus cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpsFeju7k%3D&md5=719ea9ec05ca9d59be04f176a32a29b9CAS | 17553902PubMed |

Sutton-McDowall, M. L., Gilchrist, R. B., and Thompson, J. G. (2005). Effect of hexoses and gonadotrophin supplementation on bovine oocyte nuclear maturation during in vitro maturation in a synthetic follicle fluid medium. Reprod. Fertil. Dev. 17, 407–415.
Effect of hexoses and gonadotrophin supplementation on bovine oocyte nuclear maturation during in vitro maturation in a synthetic follicle fluid medium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjtFOktbs%3D&md5=18fca65c9b205815093898bcfb963e0eCAS | 15899152PubMed |

Tanghe, S., Van Soom, A., Nauwynck, H., Coryn, M., and de Kruif, A. (2002). Minireview: Functions of the cumulus oophorus during oocyte maturation, ovulation, and fertilization. Mol. Reprod. Dev. 61, 414–424.
Minireview: Functions of the cumulus oophorus during oocyte maturation, ovulation, and fertilization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhsFCgtbk%3D&md5=999a76961f18d5886f5a70363ac17ea4CAS | 11835587PubMed |

Thomas, R. E., Armstrong, D. T., and Gilchrist, R. B. (2004a). Bovine cumulus cell–oocyte gap junctional communication during in vitro maturation in response to manipulation of cell-specific cyclic adenosine 3′,5′-monophosophate levels. Biol. Reprod. 70, 548–556.
Bovine cumulus cell–oocyte gap junctional communication during in vitro maturation in response to manipulation of cell-specific cyclic adenosine 3′,5′-monophosophate levels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhs1Chsrs%3D&md5=21b862ce5b34b09e126f15d35762f5dcCAS | 14568915PubMed |

Thomas, R. E., Thompson, J. G., Armstrong, D. T., and Gilchrist, R. B. (2004b). Effect of specific phosphodiesterase isoenzyme inhibitors during in vitro maturation of bovine oocytes on meiotic and developmental capacity. Biol. Reprod. 71, 1142–1149.
Effect of specific phosphodiesterase isoenzyme inhibitors during in vitro maturation of bovine oocytes on meiotic and developmental capacity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnvVGqt7Y%3D&md5=4ef8c102d6f89b1f91806cb6752d6272CAS | 15189837PubMed |

Thompson, J. G., Gardner, D. K., Pugh, P. A., McMillan, W. H., and Tervit, H. R. (1995). Lamb birth weight is affected by culture system utilized during in vitro pre-elongation development of ovine embryos. Biol. Reprod. 53, 1385–1391.
Lamb birth weight is affected by culture system utilized during in vitro pre-elongation development of ovine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXpsVeisrs%3D&md5=8f1fac2237ea86271ee121e4d2f01effCAS | 8562695PubMed |

Trombly, D. J., Woodruff, T. K., and Mayo, K. E. (2009). Roles for transforming growth factor beta superfamily proteins in early folliculogenesis. Semin. Reprod. Med. 27, 14–23.
Roles for transforming growth factor beta superfamily proteins in early folliculogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhvVGntr8%3D&md5=9fabfa95db662f412bb01e66f43251ddCAS | 19197801PubMed |

Yeo, C. X., Gilchrist, R. B., Thompson, J. G., and Lane, M. (2008). Exogenous growth differentiation factor 9 in oocyte maturation media enhances subsequent embryo development and fetal viability in mice. Hum. Reprod. 23, 67–73.
Exogenous growth differentiation factor 9 in oocyte maturation media enhances subsequent embryo development and fetal viability in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVWgsbzF&md5=7a56e3cf9e53953ce3bb75892fd298c7CAS | 17933754PubMed |

Yoshino, O., McMahon, H. E., Sharma, S., and Shimasaki, S. (2006). A unique preovulatory expression pattern plays a key role in the physiological functions of BMP-15 in the mouse. Proc. Natl Acad. Sci. USA 103, 10 678–10 683.
A unique preovulatory expression pattern plays a key role in the physiological functions of BMP-15 in the mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XntFWmsL0%3D&md5=000b9ededb045f9b417ab57c587e9349CAS |

Zhang, L., Jiang, S., Wozniak, P. J., Yang, X., and Godke, R. A. (1995). Cumulus cell function during bovine oocyte maturation, fertilization, and embryo development in vitro. Mol. Reprod. Dev. 40, 338–344.
Cumulus cell function during bovine oocyte maturation, fertilization, and embryo development in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXkt1Khs7k%3D&md5=433f328f7ead3e08df42103e50f945c2CAS | 7772344PubMed |

Zhu, G., Guo, B., Pan, D., Mu, Y., and Feng, S. (2008). Expression of bone morphogenetic proteins and receptors in porcine cumulus-oocyte complexes during in vitro maturation. Anim. Reprod. Sci. 104, 275–283.
Expression of bone morphogenetic proteins and receptors in porcine cumulus-oocyte complexes during in vitro maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVOmsb8%3D&md5=05e120933b0ec90c870b32dc0aeb3b9eCAS | 17368971PubMed |